1
|
Magyar LB, Ábrahám E, Lipinszki Z, Tarnopol RL, Whiteman NK, Varga V, Hultmark D, Andó I, Cinege G. Pore-Forming Toxin-Like Proteins in the Anti-Parasitoid Immune Response of Drosophila. J Innate Immun 2024; 17:10-28. [PMID: 39626640 PMCID: PMC11731912 DOI: 10.1159/000542583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 11/10/2024] [Indexed: 12/08/2024] Open
Abstract
INTRODUCTION Species of the ananassae subgroup of Drosophilidae are highly resistant to parasitoid wasp infections. We have previously shown that the genes encoding cytolethal distending toxin B (CdtB) and the apoptosis inducing protein of 56 kDa (AIP56) were horizontally transferred to these fly species from prokaryotes and are now instrumental in the anti-parasitoid immune defense of Drosophila ananassae. Here we describe a new family of genes, which encode proteins with hemolysin E domains, heretofore only identified in prokaryotes. Hemolysin E proteins are pore-forming toxins, important virulence factors of bacteria. METHODS Bioinformatical, transcriptional, and protein expressional studies were used. RESULTS The hemolysin E-like genes have a scattered distribution among the genomes of species belonging to several different monophyletic lineages in the family Drosophilidae. We detected structural homology with the bacterial Hemolysin E toxins and showed that the origin of the D. ananassae hemolysin E-like genes (hl1-38) is consistent with prokaryotic horizontal gene transfer. These genes encode humoral factors, secreted into the hemolymph by the fat body and hemocytes. Their expression is induced solely by parasitoid infection and the proteins bind to the developing parasitoids. CONCLUSIONS Hemolysin E-like proteins acquired by horizontal gene transfer and expressed by the primary immune organs may contribute to the elimination of parasitoids, as novel humoral factors in Drosophila innate immunity.
Collapse
Affiliation(s)
- Lilla B. Magyar
- Innate Immunity Group, Institute of Genetics, HUN-REN Biological Research Centre, Szeged, Hungary
- Doctoral School of Biology, University of Szeged, Szeged, Hungary
| | - Edit Ábrahám
- Synthetic and Systems Biology Unit, Institute of Biochemistry, HUN-REN Biological Research Centre, Szeged, Hungary
- National Laboratory for Biotechnology, Institute of Genetics, HUN-REN Biological Research Centre, Szeged, Hungary
| | - Zoltán Lipinszki
- Synthetic and Systems Biology Unit, Institute of Biochemistry, HUN-REN Biological Research Centre, Szeged, Hungary
- National Laboratory for Biotechnology, Institute of Genetics, HUN-REN Biological Research Centre, Szeged, Hungary
| | - Rebecca L. Tarnopol
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, USA
| | - Noah K. Whiteman
- Department of Integrative Biology, University of California, Berkeley, CA, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Viktória Varga
- Innate Immunity Group, Institute of Genetics, HUN-REN Biological Research Centre, Szeged, Hungary
| | - Dan Hultmark
- Department of Molecular Biology, Umea University, Umea, Sweden
| | - István Andó
- Innate Immunity Group, Institute of Genetics, HUN-REN Biological Research Centre, Szeged, Hungary
| | - Gyöngyi Cinege
- Innate Immunity Group, Institute of Genetics, HUN-REN Biological Research Centre, Szeged, Hungary
| |
Collapse
|
2
|
Domínguez-Maqueda M, Espinosa-Ruíz C, Esteban MÁ, Alarcón FJ, Tapia-Paniagua ST, Balebona MC, Moriñigo MÁ. An ex vivo Approach in European Seabass Leucocytes Supports the in vitro Regulation by Postbiotics of Aip56 Gene Expression of Photobacterium damselae subsp. piscicida. Probiotics Antimicrob Proteins 2024:10.1007/s12602-024-10255-x. [PMID: 38652230 DOI: 10.1007/s12602-024-10255-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/05/2024] [Indexed: 04/25/2024]
Abstract
Shewanella putrefaciens Pdp11 (SpPdp11) is a probiotic strain assayed in aquaculture; however, its postbiotic potential is unknown. Postbiotics are bacterial metabolites, including extracellular products (ECPs) that improve host physiology and immunity. Their production and composition can be affected by different factors such as the growing conditions of the probiotics. Photobacterium damselae subsp. piscicida strain Lg 41/01 (Phdp) is one of the most important pathogens in marine aquaculture. The major virulent factor of this bacterium is the exotoxin aip56, responsible for inducing apoptosis of fish leucocytes. Viable SpPdp11 cells have been reported to increase resistance to challenges with Phdp. This work aimed to evaluate the effect of two ECPs, T2348-ECP and FM1548-ECP, obtained from SpPdp11 grown under different culture conditions that previously demonstrated to exert different degradative and non-cytotoxic activities, as well as the effect on pathogens biofilm formation. These SpPdp11-ECPs were then analyzed by their effect on the viability, phagocytosis, respiratory burst and apoptogenic activity against European sea bass leucocytes infected or not with Phdp supernatant. Both ECPs, T2348-ECP and FM1548-ECP, were not cytotoxic against leucocytes and significantly reduced their apoptosis. Phagocytosis and respiratory burst of leucocytes were significantly reduced by incubation with Phdp supernatant, and not influenced by incubation with T2348-ECP or FM1548-ECP. However, both activities were significantly increased after leucocyte incubation with combined T2348-ECP and FM1548-ECP with Phdp supernatant, compared to those incubated only with Phdp supernatant. Finally, both T2348-ECP and FM1548-ECP significantly reduced the relative in vitro expression of the Phdp aip56 encoding gene.
Collapse
Affiliation(s)
- Marta Domínguez-Maqueda
- Departamento de Microbiología, Facultad de Ciencias, Instituto Andaluz de Biotecnología y Desarrollo Azul (IBYDA), Universidad de Málaga, Ceimar-Universidad de Málaga, Málaga, Spain
| | - Cristóbal Espinosa-Ruíz
- Departamento de Biología Celular e Histología, Facultad de Biología, Universidad de Murcia, Murcia, Spain
| | - María Ángeles Esteban
- Departamento de Biología Celular e Histología, Facultad de Biología, Universidad de Murcia, Murcia, Spain
| | - Francisco Javier Alarcón
- Departamento de Biología y Geología, Universidad de Almería, Ceimar-Universidad de Almería, Almería, Spain
- Lifebioencapsulation SL, 0413-El Alquián, Almería, Spain
| | - Silvana T Tapia-Paniagua
- Departamento de Microbiología, Facultad de Ciencias, Instituto Andaluz de Biotecnología y Desarrollo Azul (IBYDA), Universidad de Málaga, Ceimar-Universidad de Málaga, Málaga, Spain.
| | - María Carmen Balebona
- Departamento de Microbiología, Facultad de Ciencias, Instituto Andaluz de Biotecnología y Desarrollo Azul (IBYDA), Universidad de Málaga, Ceimar-Universidad de Málaga, Málaga, Spain
| | - Miguel Ángel Moriñigo
- Departamento de Microbiología, Facultad de Ciencias, Instituto Andaluz de Biotecnología y Desarrollo Azul (IBYDA), Universidad de Málaga, Ceimar-Universidad de Málaga, Málaga, Spain
| |
Collapse
|
3
|
Verster KI, Cinege G, Lipinszki Z, Magyar LB, Kurucz É, Tarnopol RL, Ábrahám E, Darula Z, Karageorgi M, Tamsil JA, Akalu SM, Andó I, Whiteman NK. Evolution of insect innate immunity through domestication of bacterial toxins. Proc Natl Acad Sci U S A 2023; 120:e2218334120. [PMID: 37036995 PMCID: PMC10120054 DOI: 10.1073/pnas.2218334120] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 03/01/2023] [Indexed: 04/12/2023] Open
Abstract
Toxin cargo genes are often horizontally transferred by phages between bacterial species and are known to play an important role in the evolution of bacterial pathogenesis. Here, we show how these same genes have been horizontally transferred from phage or bacteria to animals and have resulted in novel adaptations. We discovered that two widespread bacterial genes encoding toxins of animal cells, cytolethal distending toxin subunit B (cdtB) and apoptosis-inducing protein of 56 kDa (aip56), were captured by insect genomes through horizontal gene transfer from bacteria or phages. To study the function of these genes in insects, we focused on Drosophila ananassae as a model. In the D. ananassae subgroup species, cdtB and aip56 are present as singular (cdtB) or fused copies (cdtB::aip56) on the second chromosome. We found that cdtB and aip56 genes and encoded proteins were expressed by immune cells, some proteins were localized to the wasp embryo's serosa, and their expression increased following parasitoid wasp infection. Species of the ananassae subgroup are highly resistant to parasitoid wasps, and we observed that D. ananassae lines carrying null mutations in cdtB and aip56 toxin genes were more susceptible to parasitoids than the wild type. We conclude that toxin cargo genes were captured by these insects millions of years ago and integrated as novel modules into their innate immune system. These modules now represent components of a heretofore undescribed defense response and are important for resistance to parasitoid wasps. Phage or bacterially derived eukaryotic toxin genes serve as macromutations that can spur the instantaneous evolution of novelty in animals.
Collapse
Affiliation(s)
- Kirsten I. Verster
- Department of Integrative Biology, University of California, Berkeley, CA94720
| | - Gyöngyi Cinege
- Innate Immunity Group, Institute of Genetics, Biological Research Centre, Eötvös Loránd Research Network, Szeged6726, Hungary
| | - Zoltán Lipinszki
- MTA SZBK Lendület Laboratory of Cell Cycle Regulation, Institute of Biochemistry, Biological Research Centre, Eötvös Loránd Research Network, Szeged6726, Hungary
| | - Lilla B. Magyar
- Innate Immunity Group, Institute of Genetics, Biological Research Centre, Eötvös Loránd Research Network, Szeged6726, Hungary
- Doctoral School of Biology, University of Szeged, Szeged6720, Hungary
| | - Éva Kurucz
- Innate Immunity Group, Institute of Genetics, Biological Research Centre, Eötvös Loránd Research Network, Szeged6726, Hungary
| | - Rebecca L. Tarnopol
- Department of Plant and Microbial Biology, University of California, Berkeley, CA94720
| | - Edit Ábrahám
- MTA SZBK Lendület Laboratory of Cell Cycle Regulation, Institute of Biochemistry, Biological Research Centre, Eötvös Loránd Research Network, Szeged6726, Hungary
| | - Zsuzsanna Darula
- Single Cell Omics Advanced Core Facility, Hungarian Centre of Excellence for Molecular Medicine, Szeged6728, Hungary
- Laboratory of Proteomics Research, Biological Research Centre, Eötvös Loránd Research Network, Szeged6726, Hungary
| | | | - Josephine A. Tamsil
- Department of Molecular and Cell Biology, University of California, Berkeley, CA94720
| | - Saron M. Akalu
- Department of Integrative Biology, University of California, Berkeley, CA94720
| | - István Andó
- Innate Immunity Group, Institute of Genetics, Biological Research Centre, Eötvös Loránd Research Network, Szeged6726, Hungary
| | - Noah K. Whiteman
- Department of Integrative Biology, University of California, Berkeley, CA94720
- Department of Molecular and Cell Biology, University of California, Berkeley, CA94720
- Helen Wills Neuroscience Institute, University of California, Berkeley, CA94720
| |
Collapse
|
4
|
The Evolution of a Specialized, Highly Virulent Fish Pathogen through Gene Loss and Acquisition of Host-Specific Survival Mechanisms. Appl Environ Microbiol 2022; 88:e0022222. [PMID: 35862683 PMCID: PMC9317898 DOI: 10.1128/aem.00222-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Photobacterium damselae comprises two subspecies, P. damselae subsp. damselae and P. damselae subsp. piscicida, that contrast remarkably despite their taxonomic relationship. The former is opportunistic and free-living but can cause disease in compromised individuals from a broad diversity of taxa, while the latter is a highly specialized, primary fish pathogen. Here, we employ new closed curated genome assemblies from Australia to estimate the global phylogenetic structure of the species P. damselae. We identify genes responsible for the shift from an opportunist to a host-adapted fish pathogen, potentially via an arthropod vector as fish-to-fish transmission was not achieved in repeated cohabitation challenges despite high virulence for Seriola lalandi. Acquisition of ShdA adhesin and of thiol peroxidase may have allowed the environmental, generalist ancestor to colonize zooplankton and to occasionally enter in fish host sentinel cells. As dependence on the host has increased, P. damselae has lost nonessential genes, such as those related to nitrite and sulfite reduction, urea degradation, a type 6 secretion system (T6SS) and several toxin-antitoxin (TA) systems. Similar to the evolution of Yersinia pestis, the loss of urease may be the crucial event that allowed the pathogen to stably colonize zooplankton vectors. Acquisition of host-specific genes, such as those required to form a sialic acid capsule, was likely necessary for the emergent P. damselae subsp. piscicida to become a highly specialized, facultative intracellular fish pathogen. Processes that have shaped P. damselae subsp. piscicida from subsp. damselae are similar to those underlying evolution of Yersinia pestis from Y. pseudotuberculosis. IMPORTANCEPhotobacterium damselae subsp. damselae is a ubiquitous marine bacterium and opportunistic pathogen of compromised hosts of diverse taxa. In contrast, its sister subspecies P. damselae subsp. piscicida (Pdp) is highly virulent in fish. Pdp has evolved from a single subclade of Pdd through gene loss and acquisition. We show that fish-to-fish transmission does not occur in repeated infection models in the primary host, Seriola lalandi, and present genomic evidence for vector-borne transmission, potentially via zooplankton. The broad genomic changes from generalist Pdd to specialist Pdp parallel those of the environmental opportunist Yersinia pseudotuberculosis to vector-borne plague bacterium Y. pestis and demonstrate that evolutionary processes in bacterial pathogens are universal between the terrestrial and marine biosphere.
Collapse
|
5
|
In vitro hemocyte phagocytosis activation after experimental infection of common octopus, Octopus vulgaris (Cuvier, 1797) with Photobacterium damselae subsp. piscicida or Vibrio alginolyticus at different temperatures and infection routes. J Invertebr Pathol 2022; 191:107754. [DOI: 10.1016/j.jip.2022.107754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 01/12/2022] [Accepted: 03/31/2022] [Indexed: 11/19/2022]
|
6
|
Baseggio L, Silayeva O, Buller N, Landos M, Englestädter J, Barnes AC. Complete, closed and curated genome sequences of Photobacterium damselae subsp. piscicida isolates from Australia indicate mobilome-driven localized evolution and novel pathogenicity determinants. Microb Genom 2021; 7:000562. [PMID: 33885359 PMCID: PMC8208687 DOI: 10.1099/mgen.0.000562] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Despite the recent advances in sequencing technologies, the complete assembly of multi-chromosome genomes of the Vibrionaceae, often containing several plasmids, remains challenging. Using a combination of Oxford Nanopore MinION long reads and short Illumina reads, we fully sequenced, closed and curated the genomes of two strains of a primary aquatic pathogen Photobacterium damselae subsp. piscicida isolated in Australia. These are also the first genome sequences of P. damselae subsp. piscicida isolated in Oceania and, to our knowledge, in the Southern hemisphere. We also investigated the phylogenetic relationships between Australian and overseas isolates, revealing that Australian P. damselae subsp. piscicida are more closely related to the Asian and American strains rather than to the European ones. We investigated the mobilome and present new evidence showing that a host specialization process and progressive adaptive evolution to fish are ongoing in P. damselae subsp. piscicida, and are largely mediated by transposable elements, predominantly in chromosome 2, and by plasmids. Finally, we identified two novel potential virulence determinants in P. damselae subsp. piscicida - a chorismate mutase gene, which is ubiquitously retained and co-localized with the AIP56 apoptogenic toxin-encoding gene on the pPHDP10 plasmid, and transfer-messenger RNA gene ssrA located on the main chromosome, homologous to a critical-to-virulence determinant in Yersinia pseudotuberculosis. Our study describes, to our knowledge, the only fully closed and manually curated genomes of P. damselae subsp. piscicida available to date, offering new insights into this important fish pathogen and its evolution.
Collapse
Affiliation(s)
- Laura Baseggio
- School of Biological Sciences, University of Queensland, Brisbane, Queensland 4072, Australia
| | - Oleksandra Silayeva
- School of Biological Sciences, University of Queensland, Brisbane, Queensland 4072, Australia
| | - Nicky Buller
- Diagnostic and Laboratory Services (DDLS), Department of Primary Industries and Regional Development (DPIRD), 3 Baron-Hay Court, South Perth, Western Australia 6151, Australia
| | - Matt Landos
- Future Fisheries Veterinary Services, East Ballina, New South Wales 2478, Australia
| | - Jan Englestädter
- School of Biological Sciences, University of Queensland, Brisbane, Queensland 4072, Australia
| | - Andrew C. Barnes
- School of Biological Sciences, University of Queensland, Brisbane, Queensland 4072, Australia
- *Correspondence: Andrew C. Barnes,
| |
Collapse
|
7
|
Pereira C, Rodrigues IS, Pereira LMG, Lisboa J, Pinto RD, Araújo L, Oliveira P, Benz R, Dos Santos NMS, do Vale A. Role of AIP56 disulphide bond and its reduction by cytosolic redox systems for efficient intoxication. Cell Microbiol 2019; 22:e13109. [PMID: 31454143 DOI: 10.1111/cmi.13109] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 08/08/2019] [Accepted: 08/21/2019] [Indexed: 12/14/2022]
Abstract
Apoptosis-inducing protein of 56 kDa (AIP56) is a major virulence factor of Photobacterium damselae subsp. piscicida, a gram-negative pathogen that infects warm water fish species worldwide and causes serious economic losses in aquacultures. AIP56 is a single-chain AB toxin composed by two domains connected by an unstructured linker peptide flanked by two cysteine residues that form a disulphide bond. The A domain comprises a zinc-metalloprotease moiety that cleaves the NF-kB p65, and the B domain is involved in binding and internalisation of the toxin into susceptible cells. Previous experiments suggested that disruption of AIP56 disulphide bond partially compromised toxicity, but conclusive evidences supporting the importance of that bond in intoxication were lacking. Here, we show that although the disulphide bond of AIP56 is dispensable for receptor recognition, endocytosis, and membrane interaction, it needs to be intact for efficient translocation of the toxin into the cytosol. We also show that the host cell thioredoxin reductase-thioredoxin system is involved in AIP56 intoxication by reducing the disulphide bond of the toxin at the cytosol. The present study contributes to a better understanding of the molecular mechanisms operating during AIP56 intoxication and reveals common features shared with other AB toxins.
Collapse
Affiliation(s)
- Cassilda Pereira
- Fish Immunology and Vaccinology Group, IBMC-Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal.,i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Inês S Rodrigues
- Fish Immunology and Vaccinology Group, IBMC-Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal.,i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Liliana M G Pereira
- Fish Immunology and Vaccinology Group, IBMC-Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal.,i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Johnny Lisboa
- Fish Immunology and Vaccinology Group, IBMC-Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal.,i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Rute D Pinto
- Fish Immunology and Vaccinology Group, IBMC-Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal.,i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Leonor Araújo
- Fish Immunology and Vaccinology Group, IBMC-Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal.,i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Pedro Oliveira
- EPIUnit, ICBAS-Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Roland Benz
- Department of Life Sciences and Chemistry, Jacobs University, Bremen, Germany
| | - Nuno M S Dos Santos
- Fish Immunology and Vaccinology Group, IBMC-Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal.,i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Ana do Vale
- Fish Immunology and Vaccinology Group, IBMC-Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal.,i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| |
Collapse
|
8
|
Rodrigues IS, Pereira LMG, Lisboa J, Pereira C, Oliveira P, Dos Santos NMS, do Vale A. Involvement of Hsp90 and cyclophilins in intoxication by AIP56, a metalloprotease toxin from Photobacterium damselae subsp. piscicida. Sci Rep 2019; 9:9019. [PMID: 31227743 PMCID: PMC6588550 DOI: 10.1038/s41598-019-45240-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 06/03/2019] [Indexed: 12/28/2022] Open
Abstract
AIP56 (apoptosis inducing protein of 56 kDa) is a key virulence factor secreted by virulent strains of Photobacterium damselae subsp. piscicida (Phdp), a Gram-negative bacterium that causes septicemic infections in several warm water marine fish species. AIP56 is systemically disseminated during infection and induces massive apoptosis of host macrophages and neutrophils, playing a decisive role in the disease outcome. AIP56 is a single-chain AB-type toxin, being composed by a metalloprotease A domain located at the N-terminal region connected to a C-terminal B domain, required for internalization of the toxin into susceptible cells. After binding to a still unidentified surface receptor, AIP56 is internalised through clathrin-mediated endocytosis, reaches early endosomes and translocates into the cytosol through a mechanism requiring endosomal acidification and involving low pH-induced unfolding of the toxin. At the cytosol, the catalytic domain of AIP56 cleaves NF-κB p65, leading to the apoptotic death of the intoxicated cells. It has been reported that host cytosolic factors, including host cell chaperones such as heat shock protein 90 (Hsp90) and peptidyl-prolyl cis/trans isomerases (PPIases), namely cyclophilin A/D (Cyp) and FK506-binding proteins (FKBP) are involved in the uptake of several bacterial AB toxins with ADP-ribosylating activity, but are dispensable for the uptake of other AB toxins with different enzymatic activities, such as Bacillus anthracis lethal toxin (a metalloprotease) or the large glycosylating toxins A and B of Clostridium difficile. Based on these findings, it has been proposed that the requirement for Hsp90/PPIases is a common and specific characteristic of ADP-ribosylating toxins. In the present work, we demonstrate that Hsp90 and the PPIases cyclophilin A/D are required for efficient intoxication by the metalloprotease toxin AIP56. We further show that those host cell factors interact with AIP56 in vitro and that the interactions increase when AIP56 is unfolded. The interaction with Hsp90 was also demonstrated in intact cells, at 30 min post-treatment with AIP56, suggesting that it occurs during or shortly after translocation of the toxin from endosomes into the cytosol. Based on these findings, we propose that the participation of Hsp90 and Cyp in bacterial toxin entry may be more disseminated than initially expected, and may include toxins with different catalytic activities.
Collapse
Affiliation(s)
- Inês S Rodrigues
- Fish Immunology and Vaccinology Group, IBMC-Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Liliana M G Pereira
- Fish Immunology and Vaccinology Group, IBMC-Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Johnny Lisboa
- Fish Immunology and Vaccinology Group, IBMC-Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Cassilda Pereira
- Fish Immunology and Vaccinology Group, IBMC-Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Pedro Oliveira
- EPIUnit, ICBAS-Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Nuno M S Dos Santos
- Fish Immunology and Vaccinology Group, IBMC-Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Ana do Vale
- Fish Immunology and Vaccinology Group, IBMC-Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal.
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.
| |
Collapse
|
9
|
Lin Z, Cheng Y, Wang RJ, Du J, Volovych O, Li JC, Hu Y, Lu ZY, Lu Z, Zou Z. A Metalloprotease Homolog Venom Protein From a Parasitoid Wasp Suppresses the Toll Pathway in Host Hemocytes. Front Immunol 2018; 9:2301. [PMID: 30405599 PMCID: PMC6206080 DOI: 10.3389/fimmu.2018.02301] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 09/17/2018] [Indexed: 12/18/2022] Open
Abstract
Parasitoid wasps depend on a variety of maternal virulence factors to ensure successful parasitism. Encapsulation response carried out by host hemocytes is one of the major host immune responses toward limiting endoparasitoid wasp offspring production. We found that VRF1, a metalloprotease homolog venom protein identified from the endoparasitoid wasp, Microplitis mediator, could modulate egg encapsulation in its host, the cotton bollworm, Helicoverpa armigera. Here, we show that the VRF1 proenzyme is cleaved after parasitism, and that the C-terminal fragment containing the catalytic domain enters host hemocytes 6 h post-parasitism. Furthermore, using yeast two-hybrid and pull-down assays, VRF1 is shown to interact with the H. armigera NF-κB factor, Dorsal. We also show that overexpressed of VRF1 in an H. armigera cell line cleaved Dorsal in vivo. Taken together, our results have revealed a novel mechanism by which a component of endoparasitoid wasp venom interferes with the Toll signaling pathway in the host hemocytes.
Collapse
Affiliation(s)
- Zhe Lin
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Yang Cheng
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Rui-Juan Wang
- Department of Entomology, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Jie Du
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Olga Volovych
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Jian-Cheng Li
- Institute of Plant Protection of Hebei Academy of Agriculture and Forestry Sciences, Baoding, China
| | - Yang Hu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Zi-Yun Lu
- Institute of Plant Protection of Hebei Academy of Agriculture and Forestry Sciences, Baoding, China
| | - Zhiqiang Lu
- Department of Entomology, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Zhen Zou
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
10
|
Núñez-Díaz JA, García de la Banda I, Lobo C, Moriñigo MA, Balebona MC. Transcription of immune related genes in Solea senegalensis vaccinated against Photobacterium damselae subsp. piscicida. Identification of surrogates of protection. FISH & SHELLFISH IMMUNOLOGY 2017; 66:455-465. [PMID: 28532666 DOI: 10.1016/j.fsi.2017.05.044] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 05/17/2017] [Accepted: 05/18/2017] [Indexed: 06/07/2023]
Abstract
Solea senegalensis is a flatfish with a great potential for aquaculture, but infectious diseases restrict its production, being this fish species highly susceptible to Photobacterium damselae subsp. piscicida (Phdp) infections. A better understanding of the mechanisms related to fish immune response is crucial for the development of effective approaches in disease management. In the present work, transcriptional changes of immune related genes have been evaluated in farmed S. senegalensis specimens vaccinated against Phdp by intraperitoneal injection (IP) and immersion (IM). IP fish showed higher antibody levels and increased transcription of genes encoding lysozyme C1, complement factors involved in the classical pathway and components involved in the opsonization and the limitation of free iron availability, all of them facilitating the faster elimination of the pathogen and promoting higher RPS after the infection with Phdp. The results of this study seem to support a different intensity of the specimens immune response in the head kidney. Analysis of the immune response in 15 day post-challenged fish showed up-regulation of genes involved in all stages of S. senegalensis immune response, but especially those genes encoding proteins related to the innate response such as complement, lysozyme and iron homeostasis in the head kidney. On the other hand, liver transcription was higher for genes related to inflammation, apoptosis and cell mediated cytotoxicity (CMC). Furthermore, comparison of the differential response of S. senegalensis genes in vaccinated and unvaccinated fish to Phdp infection allowed the identification of a potential biosignature, consisting in 10 genes, as a surrogate of protection and therefore, as indicator of vaccine success against fotobacteriosis after IP vaccination. These results provide important insights into the S. senegalensis protection against Phdp induced by vaccination.
Collapse
Affiliation(s)
- J A Núñez-Díaz
- Universidad de Málaga, Departamento de Microbiología, Campus de Teatinos s/n, 29071 Málaga, Spain
| | - I García de la Banda
- Spanish Institute of Oceanography, Oceanographic Center of Santander, 39080 Santander, Spain
| | - C Lobo
- Spanish Institute of Oceanography, Oceanographic Center of Santander, 39080 Santander, Spain
| | - M A Moriñigo
- Universidad de Málaga, Departamento de Microbiología, Campus de Teatinos s/n, 29071 Málaga, Spain
| | - M C Balebona
- Universidad de Málaga, Departamento de Microbiología, Campus de Teatinos s/n, 29071 Málaga, Spain.
| |
Collapse
|
11
|
Stolle AS, Norkowski S, Körner B, Schmitz J, Lüken L, Frankenberg M, Rüter C, Schmidt MA. T3SS-Independent Uptake of the Short-Trip Toxin-Related Recombinant NleC Effector of Enteropathogenic Escherichia coli Leads to NF-κB p65 Cleavage. Front Cell Infect Microbiol 2017; 7:119. [PMID: 28451521 PMCID: PMC5390045 DOI: 10.3389/fcimb.2017.00119] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 03/23/2017] [Indexed: 12/15/2022] Open
Abstract
Effector proteins secreted by the type 3 secretion system (T3SS) of pathogenic bacteria have been shown to precisely modulate important signaling cascades of the host for the benefit of the pathogens. Among others, the non-LEE encoded T3SS effector protein NleC of enteropathogenic Escherichia coli (EPEC) is a Zn-dependent metalloprotease and suppresses innate immune responses by directly targeting the NF-κB signaling pathway. Many pathogenic bacteria release potent bacterial toxins of the A-B type, which-in contrast to the direct cytoplasmic injection of T3SS effector proteins-are released first into the environment. In this study, we found that NleC displays characteristics of bacterial A-B toxins, when applied to eukaryotic cells as a recombinant protein. Although lacking a B subunit, that typically mediates the uptake of toxins, recombinant NleC (rNleC) induces endocytosis via lipid rafts and follows the endosomal-lysosomal pathway. The conformation of rNleC is altered by low pH to facilitate its escape from acidified endosomes. This is reminiscent of the homologous A-B toxin AIP56 of the fish pathogen Photobacterium damselae piscicida (Phdp). The recombinant protease NleC is functional inside eukaryotic cells and cleaves p65 of the NF-κB pathway. Here, we describe the endocytic uptake mechanism of rNleC, characterize its intracellular trafficking and demonstrate that its specific activity of cleaving p65 requires activation of host cells e.g., by IL1β. Further, we propose an evolutionary link between some T3SS effector proteins and bacterial toxins from apparently unrelated bacteria. In summary, these properties might suggest rNleC as an interesting candidate for future applications as a potential therapeutic against immune disorders.
Collapse
Affiliation(s)
- Anne-Sophie Stolle
- Institute of Infectiology, Center for Molecular Biology of Inflammation, University of MünsterMünster, Germany
| | - Stefanie Norkowski
- Institute of Infectiology, Center for Molecular Biology of Inflammation, University of MünsterMünster, Germany
| | - Britta Körner
- Institute of Infectiology, Center for Molecular Biology of Inflammation, University of MünsterMünster, Germany
| | - Jürgen Schmitz
- Institute of Experimental Pathology, Center for Molecular Biology of Inflammation, University of MünsterMünster, Germany
| | - Lena Lüken
- Institute of Infectiology, Center for Molecular Biology of Inflammation, University of MünsterMünster, Germany
| | - Maj Frankenberg
- Institute of Infectiology, Center for Molecular Biology of Inflammation, University of MünsterMünster, Germany
| | - Christian Rüter
- Institute of Infectiology, Center for Molecular Biology of Inflammation, University of MünsterMünster, Germany
| | - M Alexander Schmidt
- Institute of Infectiology, Center for Molecular Biology of Inflammation, University of MünsterMünster, Germany
| |
Collapse
|
12
|
Costas B, Rêgo PCNP, Simões I, Marques JF, Castro-Cunha M, Afonso A. Cellular and humoral immune responses of Senegalese sole, Solea senegalensis (Kaup), following challenge with two Photobacterium damselae subsp. piscicida strains from different geographical origins. JOURNAL OF FISH DISEASES 2013; 36:543-553. [PMID: 23163607 DOI: 10.1111/jfd.12033] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2011] [Revised: 12/02/2011] [Accepted: 02/06/2012] [Indexed: 06/01/2023]
Abstract
The present study aimed to investigate leucocyte responses to inflammation as well as some innate immune parameters of Senegalese sole, Solea senegalensis, following challenge with two strains of Photobacterium damselae subsp. piscicida belonging to the European and Japanese clones described for this bacterium. Pathogenicity assays were performed to assess the virulence of each Photobacterium damselae subsp. piscicida strain for sole. Subsequently, fish were intraperitoneally injected with phosphate-buffered saline (control) or two concentrations (2 × 10² and 2 × 10⁶ CFU mL⁻¹) of each bacterial strain and sampled after 6 and 24 h. Results showed that the European isolate induces a higher degree of response than the Japanese strain. While blood neutrophilia and monocytosis correlated well with the increase in neutrophil and macrophage numbers in the peritoneal cavity, fish infected with the European isolate presented higher peritoneal cell numbers than fish challenged with the Japanese strain. In addition, alternative complement pathway activity and respiratory burst of head kidney leucocytes increased significantly in fish infected with the European isolate. The enhanced innate immune response displayed by Senegalese sole challenged with the European isolate is probably due to the higher degree of virulence presented by this Photobacterium damselae subsp. piscicida strain.
Collapse
Affiliation(s)
- B Costas
- CIIMAR-CIMAR L.A., Centro Interdisciplinar de Investigação Marinha e Ambiental, Porto, Portugal.
| | | | | | | | | | | |
Collapse
|
13
|
Silva DS, Pereira LMG, Moreira AR, Ferreira-da-Silva F, Brito RM, Faria TQ, Zornetta I, Montecucco C, Oliveira P, Azevedo JE, Pereira PJB, Macedo-Ribeiro S, do Vale A, dos Santos NMS. The apoptogenic toxin AIP56 is a metalloprotease A-B toxin that cleaves NF-κb P65. PLoS Pathog 2013; 9:e1003128. [PMID: 23468618 PMCID: PMC3585134 DOI: 10.1371/journal.ppat.1003128] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Accepted: 11/28/2012] [Indexed: 12/15/2022] Open
Abstract
AIP56 (apoptosis-inducing protein of 56 kDa) is a major virulence factor of Photobacterium damselae piscicida (Phdp), a Gram-negative pathogen that causes septicemic infections, which are among the most threatening diseases in mariculture. The toxin triggers apoptosis of host macrophages and neutrophils through a process that, in vivo, culminates with secondary necrosis of the apoptotic cells contributing to the necrotic lesions observed in the diseased animals. Here, we show that AIP56 is a NF-κB p65-cleaving zinc-metalloprotease whose catalytic activity is required for the apoptogenic effect. Most of the bacterial effectors known to target NF-κB are type III secreted effectors. In contrast, we demonstrate that AIP56 is an A-B toxin capable of acting at distance, without requiring contact of the bacteria with the target cell. We also show that the N-terminal domain cleaves NF-κB at the Cys39-Glu40 peptide bond and that the C-terminal domain is involved in binding and internalization into the cytosol. The apoptosis inducing protein of 56 kDa (AIP56) is a key virulence factor secreted by Photobacterium damselae piscicida (Phdp), a Gram-negative bacterium that causes septicaemic infections in economically important marine fish species. It is known that AIP56 induces massive destruction of the phagocytic cells of the infected host, allowing the extracellular multiplication of the bacteria and contributing to the genesis of the pathology. Here we show that AIP56 acts by cleaving NF-κB p65. The NF-κB family of transcription factors is evolutionarily conserved and plays a central role in the host responses to microbial pathogen invasion, regulating the expression of inflammatory and anti-apoptotic genes. Pathogenic bacteria have evolved complex strategies to interfere with NF-κB signalling, usually by injecting protein effectors directly into the cell's cytosol through bacterial secretion machineries that require contact with host cells. In contrast, AIP56 acts at distance and has an intrinsic ability to reach the cytosol due to the presence of a C-terminal domain that functions as “delivery module.”
Collapse
Affiliation(s)
- Daniela S. Silva
- Fish Immunology and Vaccinology, Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal
- Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal
| | - Liliana M. G. Pereira
- Fish Immunology and Vaccinology, Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal
- Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal
| | - Ana R. Moreira
- Fish Immunology and Vaccinology, Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal
| | - Frederico Ferreira-da-Silva
- Protein Production and Purification, Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal
| | - Rui M. Brito
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal
- Chemistry Department, Faculty of Science and Technology, University of Coimbra, Coimbra, Portugal
| | - Tiago Q. Faria
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal
| | - Irene Zornetta
- Dipartimento di Scienze Biomediche dell'Università di Padova and Instituto di Neuroscienze del CNR, Padova, Italy
| | - Cesare Montecucco
- Dipartimento di Scienze Biomediche dell'Università di Padova and Instituto di Neuroscienze del CNR, Padova, Italy
| | - Pedro Oliveira
- Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal
| | - Jorge E. Azevedo
- Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal
- Organelle Biogenesis and Function, Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal
| | - Pedro J. B. Pereira
- Biomolecular Structure, Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal
| | - Sandra Macedo-Ribeiro
- Protein Crystallography, Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal
| | - Ana do Vale
- Fish Immunology and Vaccinology, Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal
| | - Nuno M. S. dos Santos
- Fish Immunology and Vaccinology, Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal
- * E-mail:
| |
Collapse
|
14
|
Silva MT. Bacteria-induced phagocyte secondary necrosis as a pathogenicity mechanism. J Leukoc Biol 2010; 88:885-96. [PMID: 20566623 DOI: 10.1189/jlb.0410205] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Triggering of phagocyte apoptosis is a major virulence mechanism used by some successful bacterial pathogens. A central issue in the apoptotic death context is that fully developed apoptosis results in necrotic cell autolysis (secondary necrosis) with release of harmful cell components. In multicellular animals, this occurs when apoptosing cells are not removed by scavengers, mainly macrophages. Secondary necrotic lysis of neutrophils and macrophages may occur in infection when extensive phagocyte apoptosis is induced by bacterial cytotoxins and removal of apoptosing phagocytes is defective because the apoptotic process exceeds the available scavenging capacity or targets macrophages directly. Induction of phagocyte secondary necrosis is an important pathogenic mechanism, as it combines the pathogen evasion from phagocyte antimicrobial activities and the release of highly cytotoxic molecules, particularly of neutrophil origin, such as neutrophil elastase. This pathogenicity mechanism therefore promotes the unrestricted multiplication of the pathogen and contributes directly to the pathology of several necrotizing infections, where extensive apoptosis and necrosis of macrophages and neutrophils are present. Here, examples of necrotizing infectious diseases, where phagocyte secondary necrosis is implicated, are reviewed.
Collapse
Affiliation(s)
- Manuel T Silva
- Instituto de Biologia Molecular e Celular, University of Porto, Rua do Campo Alegre 823, Porto, Portugal.
| |
Collapse
|