1
|
Singh G, van Laarhoven A, Adams R, Reid TD, Combrinck J, van Dorp S, Riou C, Thango N, Enslin J, Kruger S, Figaji AA, Rohlwink UK. The influence of fixation and cryopreservation of cerebrospinal fluid on antigen expression and cell percentages by flow cytometric analysis. Sci Rep 2024; 14:2463. [PMID: 38291295 PMCID: PMC10827736 DOI: 10.1038/s41598-024-52669-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 01/22/2024] [Indexed: 02/01/2024] Open
Abstract
The pauci-cellular nature of cerebrospinal (CSF), particularly ventricular CSF, and the rapid cell death following sampling, incumbers the use of flow cytometric analysis of these samples in the investigation of central nervous system (CNS) pathologies. Developing a method that allows long-term storage and batched analysis of CSF samples without compromising cell integrity is highly desirable in clinical research, given that CSF is often sampled after hours creating logistical difficulties for fresh processing. We examined percentages and relative proportion of peripheral and brain-derived immune cells in cryopreserved and transfix-treated CSF, compared to freshly processed CSF. Cell proportions were more comparable between Fresh and Cryopreserved CSF (mean of differences = 3.19), than between fresh and transfix-treated CSF (mean of differences = 14.82). No significant differences in cell percentages were observed in fresh versus cryopreserved CSF; however significantly lower cell percentages were observed in transfix-treated CSF compared to Fresh CSF [(CD11b++ (p = 0.01), CD4+ (p = 0.001), CD8+ (p = 0.007), NK cells (p = 0.04), as well as CD69+ activation marker (p = 0.001)]. Furthermore, loss of marker expression of various lymphocyte sub-populations were observed in transfix-treated CSF. Cryopreservation is a feasible option for long-term storage of ventricular CSF and allows accurate immunophenotyping of peripheral and brain-derived cell populations by flow cytometry.
Collapse
Affiliation(s)
- Gabriela Singh
- Division of Neurosurgery, Department of Surgery, Neuroscience Institute, University of Cape Town, Cape Town, South Africa.
| | - Arjan van Laarhoven
- Department of Internal Medicine and Radboud Center of Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Rozanne Adams
- City of Cape Town, Becton Dickinson (BD) Biosciences, Western Cape, South Africa
| | - Timothy Dawson Reid
- South African Tuberculosis Vaccine Initiative (SATVI), Institute of Infectious Disease and Molecular Medicine (IDM), University of Cape Town, Cape Town, South Africa
| | - Jill Combrinck
- Division of Neurosurgery, Department of Surgery, Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| | - Suzanne van Dorp
- Department of Hematology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Catherine Riou
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Nqobile Thango
- Division of Neurosurgery, Department of Surgery, Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| | - Johannes Enslin
- Division of Neurosurgery, Department of Surgery, Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| | - Stefan Kruger
- Division of Neurosurgery, Department of Surgery, Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| | - Anthony Aaron Figaji
- Division of Neurosurgery, Department of Surgery, Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| | - Ursula Karin Rohlwink
- Division of Neurosurgery, Department of Surgery, Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
2
|
Kamala K, Sivaperumal P. Prevalence of enterotoxin genes of Staphylococcus sp. isolated from marine fish to reveal seafood contamination. MARINE POLLUTION BULLETIN 2023; 195:115464. [PMID: 37666137 DOI: 10.1016/j.marpolbul.2023.115464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/22/2023] [Accepted: 08/26/2023] [Indexed: 09/06/2023]
Abstract
Seafood is a valuable nutritional source, but it is highly susceptible to bacterial contamination, posing a severe health risk to humans. Enterotoxin-producing genes carrying Staphylococcus sp. are a significant concern in marine fish. This study aimed to investigate the prevalence of enterotoxin genes in Staphylococcus sp. isolated from 17 common fish species and emphasise the need for improving seafood quality and hygiene. The potential risks of contamination by enterotoxin-producing Staphylococcus sp. were assessed. The results indicated the risk associated with the consumption of contaminated seafood, especially from marketed and frozen samples. Gene expression analysis on a heat map revealed that samples stored in markets are heavily loaded with Staphylococcus enterotoxin genes due to the unhygienic water that was used from the local markets for fish processing. To enhance seafood quality, effective measures on handling and storage should be regularly monitored, and they must be implemented throughout the local seafood markets.
Collapse
Affiliation(s)
- Kannan Kamala
- Centre for Marine Actinobacterial Research (CMAR), Department of Physiology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical & Technical Sciences, Saveetha University, Chennai 600077, Tamil Nadu, India
| | - Pitchiah Sivaperumal
- Marine Biomedical Research Lab & Environmental Toxicology Unit, Centre for Marine Research and Conservation, Saveetha Dental College and Hospitals, Saveetha Institute of Medical & Technical Sciences, Saveetha University, Chennai 600077, Tamil Nadu, India.
| |
Collapse
|
3
|
Li Y, Yang KD, Kong DC, Ye JF. Advances in phage display based nano immunosensors for cholera toxin. Front Immunol 2023; 14:1224397. [PMID: 37781379 PMCID: PMC10534012 DOI: 10.3389/fimmu.2023.1224397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 08/23/2023] [Indexed: 10/03/2023] Open
Abstract
Cholera, a persistent global public health concern, continues to cause outbreaks in approximately 30 countries and territories this year. The imperative to safeguard water sources and food from Vibrio cholerae, the causative pathogen, remains urgent. The bacterium is mainly disseminated via ingestion of contaminated water or food. Despite the plate method's gold standard status for detection, its time-consuming nature, taking several days to provide results, remains a challenge. The emergence of novel virulence serotypes raises public health concerns, potentially compromising existing detection methods. Hence, exploiting Vibrio cholerae toxin testing holds promise due to its inherent stability. Immunobiosensors, leveraging antibody specificity and sensitivity, present formidable tools for detecting diverse small molecules, encompassing drugs, hormones, toxins, and environmental pollutants. This review explores cholera toxin detection, highlighting phage display-based nano immunosensors' potential. Engineered bacteriophages exhibit exceptional cholera toxin affinity, through specific antibody fragments or mimotopes, enabling precise quantification. This innovative approach promises to reshape cholera toxin detection, offering an alternative to animal-derived methods. Harnessing engineered bacteriophages aligns with ethical detection and emphasizes sensitivity and accuracy, a pivotal stride in the evolution of detection strategies. This review primarily introduces recent advancements in phage display-based nano immunosensors for cholera toxin, encompassing technical aspects, current challenges, and future prospects.
Collapse
Affiliation(s)
- Yang Li
- General Surgery Center, First Hospital of Jilin University, Changchun, Jilin, China
- School of Nursing, Jilin University, Changchun, China
| | - Kai-di Yang
- School of Nursing, Jilin University, Changchun, China
| | - De-cai Kong
- General Surgery Center, First Hospital of Jilin University, Changchun, Jilin, China
| | - Jun-feng Ye
- General Surgery Center, First Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
4
|
Patel H, Rawat S. A genetic regulatory see-saw of biofilm and virulence in MRSA pathogenesis. Front Microbiol 2023; 14:1204428. [PMID: 37434702 PMCID: PMC10332168 DOI: 10.3389/fmicb.2023.1204428] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 05/30/2023] [Indexed: 07/13/2023] Open
Abstract
Staphylococcus aureus is one of the most common opportunistic human pathogens causing several infectious diseases. Ever since the emergence of the first methicillin-resistant Staphylococcus aureus (MRSA) strain decades back, the organism has been a major cause of hospital-acquired infections (HA-MRSA). The spread of this pathogen across the community led to the emergence of a more virulent subtype of the strain, i.e., Community acquired Methicillin resistant Staphylococcus aureus (CA-MRSA). Hence, WHO has declared Staphylococcus aureus as a high-priority pathogen. MRSA pathogenesis is remarkable because of the ability of this "superbug" to form robust biofilm both in vivo and in vitro by the formation of polysaccharide intercellular adhesin (PIA), extracellular DNA (eDNA), wall teichoic acids (WTAs), and capsule (CP), which are major components that impart stability to a biofilm. On the other hand, secretion of a diverse array of virulence factors such as hemolysins, leukotoxins, enterotoxins, and Protein A regulated by agr and sae two-component systems (TCS) aids in combating host immune response. The up- and downregulation of adhesion genes involved in biofilm formation and genes responsible for synthesizing virulence factors during different stages of infection act as a genetic regulatory see-saw in the pathogenesis of MRSA. This review provides insight into the evolution and pathogenesis of MRSA infections with a focus on genetic regulation of biofilm formation and virulence factors secretion.
Collapse
Affiliation(s)
| | - Seema Rawat
- Microbiology Laboratory, School of Life Sciences, Central University of Gujarat, Gandhinagar, Gujarat, India
| |
Collapse
|
5
|
Oloomi M, Moazzezy N, Bouzari S. Protein kinase signaling by Shiga Toxin subunits. JOURNAL OF MEDICAL SIGNALS & SENSORS 2022; 12:57-63. [PMID: 35265466 PMCID: PMC8804587 DOI: 10.4103/jmss.jmss_79_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 02/24/2021] [Accepted: 06/14/2021] [Indexed: 11/17/2022]
Abstract
Background: Escherichia coli produces Shiga toxin (Stx), a pentamer composed of one A subunit and four B subunits. The B subunit of Stx (StxB) mediated the attachment of the holotoxin to the cell surface while the A subunit (StxA) has N-glycosidase activity, resulting in protein synthesis and cell death inhibition. Stx-induced cytotoxicity and apoptosis have been observed in various cell lines, although the signaling effectors are not precisely defined. Activated by protein kinases (PK), the signaling pathway in human tumors plays an oncogenic role. Tumor proliferation, survival, and metastasis are promoted by kinase receptors. In this regard, PK regulatory effects on the cellular constituents of the tumor microenvironment can affect immunosuppressive purposes. Methods: In this study, kinase inhibitors were used to evaluate the influence of Stx and its subunits on HeLa and Vero cells. Selective inhibitors of protein kinase C (PKC), CaM kinase (calmodulin kinase), protein kinase A (PKA), and protein kinase G (PKG) were used to compare the signaling activity of each subunit. Results: The ribotoxic activity in the target cells will lead to rapid protein synthesis inhibition and cell death in the mammalian host. The expression of Bcl2 family members was also assessed. Protein kinase signaling by Stx and its A and B subunits was induced by PKA, PKG, and PKC in HeLa cells. CaM kinase induction was significant in Vero cells. StxB significantly induced the pro-apoptotic Bax signaling factor in HeLa cells. Conclusion: The assessment of different signaling pathways utilized by Stx and its subunits could help in a better understanding of various cell death responses. The use of inhibitors can block cell damage and disease progression and create therapeutic compounds for targeted cancer therapy. Inhibition of these pathways is the primary clinical goal.
Collapse
|
6
|
Eltwisy HO, Abdel-Fattah M, Elsisi AM, Omar MM, Abdelmoteleb AA, El-Mokhtar MA. Pathogenesis of Staphylococcus haemolyticus on primary human skin fibroblast cells. Virulence 2021; 11:1142-1157. [PMID: 32799619 PMCID: PMC7549902 DOI: 10.1080/21505594.2020.1809962] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
STAPHYLOCOCCUS HAEMOLYTICUS (S. haemolyticus) is one of the Coagulase-negative staphylococci (CoNS) that inhabits the skin as a commensal. It is increasingly implicated in opportunistic infections, including diabetic foot ulcer (DFU) infections. In contrast to the abundance of information available for S. aureus and S. epidermidis, little is known about the pathogenicity of S. haemolyticus, despite the increased prevalence of this pathogen in hospitalized patients. We described, for the first time, the pathogenesis of different clinical isolates of S. haemolyticus isolated from DFU on primary human skin fibroblast (PHSF) cells. Virulence-related genes were investigated, adhesion and invasion assays were carried out using Giemsa stain, transmission electron microscopy (TEM), MTT and flowcytometry assays. Our results showed that most S. haemolyticus carried different sets of virulence-related genes. S. haemolyticus adhered to the PHSF cells to variable degrees. TEM showed that the bacteria were engulfed in a zipper-like mechanism into a vacuole inside the cell. Bacterial internalization was confirmed using flowcytometry and achieved high intracellular levels. PHSF cells infected with S.haemolyticus suffered from amarked decrease in viability and increased apoptosis when treated with whole bacterial suspensions or cell-free supernatants but not with heat-treated cells. After co-culture with PBMCs, S. haemolyticus induced high levels of pro-inflammatory cytokines. This study highlights the significant development of S. haemolyticus, which was previously considered a contaminant when detected in cultures of clinical samples. Their high ability to adhere, invade and kill the PHSF cells illustrate the severe damage associated with DFU infections. ABBREVIATIONS CoNS, coagulase-negative staphylococci; DFU, diabetic foot ulcer; DM, diabetes mellitus; DMEM, Dulbecco's Modified Eagle Medium; MTT, 3-(4, 5-dimethylthiazolyl-2)-2, 5-diphenyltetrazolium bromide; PBMCs,peripheral blood mononuclear cells; PHSF, primary human skin fibroblast; CFU, colony-forming unit.
Collapse
Affiliation(s)
- Hala O Eltwisy
- Department of Microbiology, Faculty of Science, Beni-Suef University , Beni-Suef, Egypt
| | - Medhat Abdel-Fattah
- Department of Microbiology and Botany, Faculty of Science, Beni-Suef University , Beni-Suef, Egypt
| | - Amani M Elsisi
- Department of Pharmaceutics and Industrial Pharmacy, Beni-Suef University , Beni-Suef, Egypt
| | - Mahmoud M Omar
- Department of Pharmaceutics and Industrial Pharmacy, Deraya University , El-Minia, Egypt
| | | | - Mohamed A El-Mokhtar
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Assiut University , Assiut, Egypt
| |
Collapse
|
7
|
Sivaraman GK, Sivam V, Ganesh B, Elangovan R, Vijayan A, Mothadaka MP. Whole genome sequence analysis of multi drug resistant community associated methicillin resistant Staphylococcus aureus from food fish: detection of clonal lineage ST 28 and its antimicrobial resistance and virulence genes. PeerJ 2021; 9:e11224. [PMID: 34113482 PMCID: PMC8158172 DOI: 10.7717/peerj.11224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 03/15/2021] [Indexed: 11/20/2022] Open
Abstract
Methicillin-resistant staphylococcus aureus (MRSA) sequence type 28 (ST 28) and spa type t021 is a CC30, prototype of ST-30, Community Associated-MRSA (CA-MRSA) (lukS-lukF +). It is a multi-drug resistant strain harbouring staphylococcal endotoxins, haemolysins, ureolysin, serine protease, and antimicrobial resistance genes. In this study, we report the draft genome sequence of this MRSA isolated from the most commonly used food fish, ribbon fish (Trichiurus lepturus). The total number of assembled paired-end high-quality reads was 7,731,542 with a total length of 2.8Mb of 2797 predicted genes. The unique ST28/ t021 CA- MRSA in fish is the first report from India, and in addition to antibiotic resistance is known to co-harbour virulence genes, haemolysins, aureolysins and endotoxins. Comprehensive comparative genomic analysis of CA-MRSA strain7 can help further understand their diversity, genetic structure, diversity and a high degree of virulence to aid in fisheries management.
Collapse
Affiliation(s)
- Gopalan Krishnan Sivaraman
- Microbiology, Fermentation & Biotechnology, ICAR- Central Institute of Fisheries Technology, Cochin, Kerala, India
| | - Visnuvinayagam Sivam
- Microbiology, Fermentation & Biotechnology, ICAR- Central Institute of Fisheries Technology, Cochin, Kerala, India
| | - Balasubramanian Ganesh
- Division of Laoratory, ICMR- National Institute of Epidemiology, Chennai, Tamil Nadu, India
| | | | - Ardhra Vijayan
- Microbiology, Fermentation & Biotechnology, ICAR- Central Institute of Fisheries Technology, Cochin, Kerala, India
| | - Mukteswar Prasad Mothadaka
- Microbiology, Fermentation & Biotechnology, ICAR- Central Institute of Fisheries Technology, Cochin, Kerala, India
| |
Collapse
|
8
|
Chung HY, Kim YT, Kwon JG, Im HH, Ko D, Lee JH, Choi SH. Molecular interaction between methicillin-resistant Staphylococcus aureus (MRSA) and chicken breast reveals enhancement of pathogenesis and toxicity for food-borne outbreak. Food Microbiol 2020; 93:103602. [PMID: 32912577 DOI: 10.1016/j.fm.2020.103602] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 06/27/2020] [Accepted: 07/21/2020] [Indexed: 12/24/2022]
Abstract
To study pathogenesis and toxicity of Staphylococcus aureus in foods, FORC_062 was isolated from a human blood sample and complete genome sequence has a type II SCCmec gene cluster and a type II toxin-antitoxin system, indicating an MRSA strain. Its mobile gene elements has many pathogenic genes involved in host infection, biofilm formation, and various enterotoxin and hemolysin genes. Clinical MRSA is often found in animal foods and ingestion of MRSA-contaminated foods causes human infection. Therefore, it is very important to understand the role of contaminated foods. To elucidate the interaction between clinical MRSA FORC_062 and raw chicken breast, transcriptome analysis was conducted, showing that gene expressions of amino acid biosynthesis and metabolism were specifically down-regulated, suggesting that the strain may import and utilize amino acids from the chicken breast, but not able to synthesize them. However, toxin gene expressions were up-regulated, suggesting that human infection of S. aureus via contaminated food may be more fatal. In addition, the contaminated foods enhance multiple-antibiotic resistance activities and virulence factors in this clinical MRSA. Consequently, MRSA-contaminated food may play a role as a nutritional reservoir as well as in enhancing factor for pathogenesis and toxicity of clinical MRSA for severe food-borne outbreaks.
Collapse
Affiliation(s)
- Han Young Chung
- National Research Laboratory of Molecular Microbiology and Toxicology, Department of Agricultural Biotechnology, And Center for Food Safety and Toxicology, Seoul National University, Seoul, 08826, South Korea; Food-borne Pathogen Omics Research Center (FORC), Seoul National University, Seoul, 08826, South Korea
| | - You-Tae Kim
- Department of Food Science and Biotechnology, Kyung Hee University, Yongin, 17104, South Korea; Food-borne Pathogen Omics Research Center (FORC), Seoul National University, Seoul, 08826, South Korea
| | - Joon-Gi Kwon
- Department of Food Science and Biotechnology, Kyung Hee University, Yongin, 17104, South Korea; Food-borne Pathogen Omics Research Center (FORC), Seoul National University, Seoul, 08826, South Korea
| | - Han Hyeok Im
- National Research Laboratory of Molecular Microbiology and Toxicology, Department of Agricultural Biotechnology, And Center for Food Safety and Toxicology, Seoul National University, Seoul, 08826, South Korea; Food-borne Pathogen Omics Research Center (FORC), Seoul National University, Seoul, 08826, South Korea
| | - Duhyun Ko
- National Research Laboratory of Molecular Microbiology and Toxicology, Department of Agricultural Biotechnology, And Center for Food Safety and Toxicology, Seoul National University, Seoul, 08826, South Korea; Food-borne Pathogen Omics Research Center (FORC), Seoul National University, Seoul, 08826, South Korea
| | - Ju-Hoon Lee
- Department of Food Science and Biotechnology, Kyung Hee University, Yongin, 17104, South Korea; Food-borne Pathogen Omics Research Center (FORC), Seoul National University, Seoul, 08826, South Korea.
| | - Sang Ho Choi
- National Research Laboratory of Molecular Microbiology and Toxicology, Department of Agricultural Biotechnology, And Center for Food Safety and Toxicology, Seoul National University, Seoul, 08826, South Korea; Food-borne Pathogen Omics Research Center (FORC), Seoul National University, Seoul, 08826, South Korea.
| |
Collapse
|
9
|
Genetic Underpinnings of Host Manipulation by Ophiocordyceps as Revealed by Comparative Transcriptomics. G3-GENES GENOMES GENETICS 2020; 10:2275-2296. [PMID: 32354705 PMCID: PMC7341126 DOI: 10.1534/g3.120.401290] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Ant-infecting Ophiocordyceps fungi are globally distributed, host manipulating, specialist parasites that drive aberrant behaviors in infected ants, at a lethal cost to the host. An apparent increase in activity and wandering behaviors precedes a final summiting and biting behavior onto vegetation, which positions the manipulated ant in a site beneficial for fungal growth and transmission. We investigated the genetic underpinnings of host manipulation by: (i) producing a high-quality hybrid assembly and annotation of the Ophiocordyceps camponoti-floridani genome, (ii) conducting laboratory infections coupled with RNAseq of O. camponoti-floridani and its host, Camponotus floridanus, and (iii) comparing these data to RNAseq data of Ophiocordyceps kimflemingiae and Camponotus castaneus as a powerful method to identify gene expression patterns that suggest shared behavioral manipulation mechanisms across Ophiocordyceps-ant species interactions. We propose differentially expressed genes tied to ant neurobiology, odor response, circadian rhythms, and foraging behavior may result by activity of putative fungal effectors such as enterotoxins, aflatrem, and mechanisms disrupting feeding behaviors in the ant.
Collapse
|
10
|
Giglio ML, Ituarte S, Ibañez AE, Dreon MS, Prieto E, Fernández PE, Heras H. Novel Role for Animal Innate Immune Molecules: Enterotoxic Activity of a Snail Egg MACPF-Toxin. Front Immunol 2020; 11:428. [PMID: 32231667 PMCID: PMC7082926 DOI: 10.3389/fimmu.2020.00428] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 02/25/2020] [Indexed: 01/22/2023] Open
Abstract
Gastropod Molluscs rely exclusively on the innate immune system to protect from pathogens, defending their embryos through maternally transferred effectors. In this regard, Pomacea snail eggs, in addition to immune defenses, have evolved the perivitellin-2 or PV2 combining two immune proteins into a neurotoxin: a lectin and a pore-forming protein from the Membrane Attack Complex/Perforin (MACPF) family. This binary structure resembles AB-toxins, a group of toxins otherwise restricted to bacteria and plants. Many of these are enterotoxins, leading us to explore this activity in PV2. Enterotoxins found in bacteria and plants act mainly as pore-forming toxins and toxic lectins, respectively. In animals, although both pore-forming proteins and lectins are ubiquitous, no enterotoxins have been reported. Considering that Pomacea snail eggs ingestion induce morpho-physiological changes in the intestinal mucosa of rodents and is cytotoxic to intestinal cells in culture, we seek for the factor causing these effects and identified PmPV2 from Pomacea maculata eggs. We characterized the enterotoxic activity of PmPV2 through in vitro and in vivo assays. We determined that it withstands the gastrointestinal environment and resisted a wide pH range and enzymatic proteolysis. After binding to Caco-2 cells it promoted changes in surface morphology and an increase in membrane roughness. It was also cytotoxic to both epithelial and immune cells from the digestive system of mammals. It induced enterocyte death by a lytic mechanism and disrupted enterocyte monolayers in a dose-dependent manner. Further, after oral administration to mice PmPV2 attached to enterocytes and induced large dose-dependent morphological changes on their small intestine mucosa, reducing the absorptive surface. Additionally, PmPV2 was detected in the Peyer's patches where it activated lymphoid follicles and triggered apoptosis. We also provide evidence that the toxin can traverse the intestinal barrier and induce oral adaptive immunity with evidence of circulating antibody response. As a whole, these results indicate that PmPV2 is a true enterotoxin, a role that has never been reported to lectins or perforin in animals. This extends by convergent evolution the presence of plant- and bacteria-like enterotoxins to animals, thus expanding the diversity of functions of MACPF proteins in nature.
Collapse
Affiliation(s)
- Matías L Giglio
- Instituto de Investigaciones Bioquímicas de La Plata "Prof. Dr. Rodolfo R. Brenner" (INIBIOLP), CONICET, CCT-La Plata, Universidad Nacional de la Plata (UNLP), La Plata, Argentina
| | - Santiago Ituarte
- Instituto de Investigaciones Bioquímicas de La Plata "Prof. Dr. Rodolfo R. Brenner" (INIBIOLP), CONICET, CCT-La Plata, Universidad Nacional de la Plata (UNLP), La Plata, Argentina
| | - Andrés E Ibañez
- División de Vertebrados, Facultad de Ciencias Naturales y Museo (FCNyM), Universidad Nacional de La Plata, La Plata, Argentina
| | - Marcos S Dreon
- Instituto de Investigaciones Bioquímicas de La Plata "Prof. Dr. Rodolfo R. Brenner" (INIBIOLP), CONICET, CCT-La Plata, Universidad Nacional de la Plata (UNLP), La Plata, Argentina
- Cátedra de Bioquímica y Biología Molecular, Facultad de Ciencias Médicas, Universidad Nacional de la Plata (UNLP), La Plata, Argentina
| | - Eduardo Prieto
- Instituto de Investigaciones Físico-químicas Teóricas y Aplicadas (INIFTA), CONICET, CCT-La Plata, Universidad Nacional de La Plata, La Plata, Argentina
| | - Patricia E Fernández
- Facultad de Ciencias Veterinarias (FEV), Instituto de Patología B. Epstein, Cátedra de Patología General Veterinaria, Universidad Nacional de La Plata (UNLP), La Plata, Argentina
| | - Horacio Heras
- Instituto de Investigaciones Bioquímicas de La Plata "Prof. Dr. Rodolfo R. Brenner" (INIBIOLP), CONICET, CCT-La Plata, Universidad Nacional de la Plata (UNLP), La Plata, Argentina
| |
Collapse
|
11
|
Meshkani SE, Mahdian D, Abbaszadeh-Goudarzi K, Abroudi M, Dadashizadeh G, Lalau JD, De Broe ME, Hosseinzadeh H. Metformin as a protective agent against natural or chemical toxicities: a comprehensive review on drug repositioning. J Endocrinol Invest 2020; 43:1-19. [PMID: 31098946 DOI: 10.1007/s40618-019-01060-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Accepted: 05/07/2019] [Indexed: 02/06/2023]
Abstract
BACKGROUND Metformin is the first prescribed drug for hyperglycemia in type 2 diabetes mellitus. Mainly by activating AMPK pathway, this drug exerts various functions that among them protective effects are of the interest. PURPOSE Herein, we aimed to gather data about the protective impacts of metformin against various natural or chemical toxicities. RESULTS An extensive search among PubMed, Scopus, and Google Scholar was conducted by keywords related to protection, toxicity, natural and chemical toxins and, metformin. Our literature review showed metformin alongside its anti-hyperglycemic effect has a wide range of anti-toxic effects against anti-tumour and routine drugs, natural and chemical toxins, herbicides and, heavy metals. CONCLUSION It is evident that metformin is a potent drug against the toxicity of a broad spectrum of natural, chemical toxic agents which is proved by a vast number of studies. Metformin mainly through AMPK axis can protect different organs against toxicities. Moreover, metformin preserves DNA integrity and can be an option for adjuvant therapy to ameliorate side effect of other therapeutics.
Collapse
Affiliation(s)
- S E Meshkani
- Cellular and Molecular Research Center, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - D Mahdian
- Cellular and Molecular Research Center, Sabzevar University of Medical Sciences, Sabzevar, Iran
- Department of Pharmacology, School of Medicine, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - K Abbaszadeh-Goudarzi
- Cellular and Molecular Research Center, Sabzevar University of Medical Sciences, Sabzevar, Iran
- Department of Biochemistry, School of Medicine, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - M Abroudi
- Cellular and Molecular Research Center, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - G Dadashizadeh
- Cellular and Molecular Research Center, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - J-D Lalau
- Department of Endocrinology, Université de Picardie Jules Verne, Amiens, France
| | - M E De Broe
- Department of Biomedical Sciences, Universiteit Antwerpen, Antwerp, Belgium
| | - H Hosseinzadeh
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
12
|
Lin J, Peng Y, Bai C, Zhang T, Zheng H, Wang X, Ye J, Ye X, Li Y, Yao Z. Prevalence, Influencing Factors, Antibiotic Resistance, Toxin and Molecular Characteristics of Staphylococcus aureus and MRSA Nasal Carriage among Diabetic Population in the United States, 2001-2004. Pol J Microbiol 2019; 66:439-448. [PMID: 29319509 DOI: 10.5604/01.3001.0010.7038] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Diabetic population were reported more likely to suffer carriage and infection with Staphylococcus aureus (S. aureus) and methicillin-resistant Staphylococcus aureus (MRSA) than non-diabetic population. We aim to elucidate the prevalence and characteristics of S. aureus and MRSA nasal carriage among diabetic population in the United States National Health and Nutrition Examination Survey, 2001-2004. Univariate analyses were conducted using Chi-square test, Fisher's exact probability test or student t test, as appropriate. Multivariate analy¬sis using logistic regression was conducted to assess the association between influencing factors and S. aureus and MRSA nasal carriage. 1010 diabetic participants were included in the study. The prevalence of S. aureus and MRSA nasal carriage were 28.32% and 1.09%, respec¬tively. After the logistic regression, ever had a painful sensation or tingling in hands or feet past three months (Odds Ratio [OR] = 0.359, 95% Confidence Interval [CI], 0.146-0.882) was significant among S. aureus nasal carriage and gender (OR = 3.410, 95% CI, 1.091-10.653) was significant among MRSA nasal carriage. The proportions of staphylococcal enterotoxin (SE) A, SEB, SEC, SED, Toxic-shock syn¬drome toxin-1, and Panton Valentine Leukocidin toxin among S. aureus strains were 18.75%, 3.13%, 12.50%, 15.63%, 28.13%, and 9.38%, respectively. 63.63% of MRSA strains were community-acquired, 27.27% were hospital-acquired, and 9.09% were non-typeable. Diabetic patients might be more likely to carry S. aureus and MRSA in the United States. Improving hand hygiene compliance, reducing antibiotic overuse, screening for carriers, and decolonization are recommended to reduce the spread of S. aureus and MRSA, especially in community.
Collapse
Affiliation(s)
- Jialing Lin
- Department of Epidemiology and Health Statistics, Guangdong Pharmaceutical University, Guangzhou City, China
| | - Yang Peng
- Centre for Chronic Diseases, University of Queensland, Brisbane City, Australia
| | - Chan Bai
- Department of Epidemiology and Health Statistics, Guangdong Pharmaceutical University, Guangzhou City, China
| | - Ting Zhang
- Department of Epidemiology and Health Statistics, Guangdong Pharmaceutical University, Guangzhou City, China
| | - Haoqu Zheng
- Department of Epidemiology and Health Statistics, Guangdong Pharmaceutical University, Guangzhou City, China
| | - Xiaojie Wang
- Department of Epidemiology and Health Statistics, Guangdong Pharmaceutical University, Guangzhou City, China
| | - Jiaping Ye
- Department of Epidemiology and Health Statistics, Guangdong Pharmaceutical University, Guangzhou City, China
| | - Xiaohua Ye
- Department of Epidemiology and Health Statistics, Guangdong Pharmaceutical University, Guangzhou City, China
| | - Ying Li
- Division of Environmental Health, Public Health Laboratory Center, Guangdong Pharmaceutical University, Guangzhou City, China
| | - Zhenjiang Yao
- Department of Epidemiology and Health Statistics, Guangdong Pharmaceutical University, Guangzhou City, China
| |
Collapse
|
13
|
Molecular dissection of box jellyfish venom cytotoxicity highlights an effective venom antidote. Nat Commun 2019; 10:1655. [PMID: 31040274 PMCID: PMC6491561 DOI: 10.1038/s41467-019-09681-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 03/25/2019] [Indexed: 01/11/2023] Open
Abstract
The box jellyfish Chironex fleckeri is extremely venomous, and envenoming causes tissue necrosis, extreme pain and death within minutes after severe exposure. Despite rapid and potent venom action, basic mechanistic insight is lacking. Here we perform molecular dissection of a jellyfish venom-induced cell death pathway by screening for host components required for venom exposure-induced cell death using genome-scale lenti-CRISPR mutagenesis. We identify the peripheral membrane protein ATP2B1, a calcium transporting ATPase, as one host factor required for venom cytotoxicity. Targeting ATP2B1 prevents venom action and confers long lasting protection. Informatics analysis of host genes required for venom cytotoxicity reveal pathways not previously implicated in cell death. We also discover a venom antidote that functions up to 15 minutes after exposure and suppresses tissue necrosis and pain in mice. These results highlight the power of whole genome CRISPR screening to investigate venom mechanisms of action and to rapidly identify new medicines. Box jellyfish venom causes tissue damage, pain, and death through unknown molecular mechanisms. Here, Lau et al. perform a CRISPR screen to identify genes required for venom action and use this information to develop an antidote that blocks venom-induced pain and tissue damage in vivo.
Collapse
|
14
|
Detection of methicillin resistant and toxin-associated genes in Staphylococcus aureus. BENI-SUEF UNIVERSITY JOURNAL OF BASIC AND APPLIED SCIENCES 2018. [DOI: 10.1016/j.bjbas.2017.07.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
|
15
|
Kong C, Neoh HM, Nathan S. Targeting Staphylococcus aureus Toxins: A Potential form of Anti-Virulence Therapy. Toxins (Basel) 2016; 8:toxins8030072. [PMID: 26999200 PMCID: PMC4810217 DOI: 10.3390/toxins8030072] [Citation(s) in RCA: 195] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Revised: 03/03/2016] [Accepted: 03/10/2016] [Indexed: 01/01/2023] Open
Abstract
Staphylococcus aureus is an opportunistic pathogen and the leading cause of a wide range of severe clinical infections. The range of diseases reflects the diversity of virulence factors produced by this pathogen. To establish an infection in the host, S. aureus expresses an inclusive set of virulence factors such as toxins, enzymes, adhesins, and other surface proteins that allow the pathogen to survive under extreme conditions and are essential for the bacteria’s ability to spread through tissues. Expression and secretion of this array of toxins and enzymes are tightly controlled by a number of regulatory systems. S. aureus is also notorious for its ability to resist the arsenal of currently available antibiotics and dissemination of various multidrug-resistant S. aureus clones limits therapeutic options for a S. aureus infection. Recently, the development of anti-virulence therapeutics that neutralize S. aureus toxins or block the pathways that regulate toxin production has shown potential in thwarting the bacteria’s acquisition of antibiotic resistance. In this review, we provide insights into the regulation of S. aureus toxin production and potential anti-virulence strategies that target S. aureus toxins.
Collapse
Affiliation(s)
- Cin Kong
- School of Biosciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor Darul Ehsan, Malaysia.
| | - Hui-min Neoh
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia, 56000 Cheras, Kuala Lumpur, Malaysia.
| | - Sheila Nathan
- School of Biosciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor Darul Ehsan, Malaysia.
| |
Collapse
|
16
|
Gupta S, Prasad GVRK, Mukhopadhaya A. Vibrio cholerae Porin OmpU Induces Caspase-independent Programmed Cell Death upon Translocation to the Host Cell Mitochondria. J Biol Chem 2015; 290:31051-68. [PMID: 26559970 DOI: 10.1074/jbc.m115.670182] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Indexed: 12/11/2022] Open
Abstract
Porins, a major class of outer membrane proteins in Gram-negative bacteria, primarily act as transport channels. OmpU is one of the major porins of human pathogen, Vibrio cholerae. In the present study, we show that V. cholerae OmpU has the ability to induce target cell death. Although OmpU-mediated cell death shows some characteristics of apoptosis, such as flipping of phosphatidylserine in the membrane as well as cell size shrinkage and increased cell granularity, it does not show the caspase-3 activation and DNA laddering pattern typical of apoptotic cells. Increased release of lactate dehydrogenase in OmpU-treated cells indicates that the OmpU-mediated cell death also has characteristics of necrosis. Further, we show that the mechanism of OmpU-mediated cell death involves major mitochondrial changes in the target cells. We observe that OmpU treatment leads to the disruption of mitochondrial membrane potential, resulting in the release of cytochrome c and apoptosis-inducing factor (AIF). AIF translocates to the host cell nucleus, implying that it has a crucial role in OmpU-mediated cell death. Finally, we observe that OmpU translocates to the target cell mitochondria, where it directly initiates mitochondrial changes leading to mitochondrial membrane permeability transition and AIF release. Partial blocking of AIF release by cyclosporine A in OmpU-treated cells further suggests that OmpU may be inducing the opening of the mitochondrial permeability transition pore. All of these results lead us to the conclusion that OmpU induces cell death in target cells in a programmed manner in which mitochondria play a central role.
Collapse
Affiliation(s)
- Shelly Gupta
- From the Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Knowledge City, Sector 81, SAS Nagar, Mohali 140306, Punjab, India
| | - G V R Krishna Prasad
- From the Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Knowledge City, Sector 81, SAS Nagar, Mohali 140306, Punjab, India
| | - Arunika Mukhopadhaya
- From the Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Knowledge City, Sector 81, SAS Nagar, Mohali 140306, Punjab, India
| |
Collapse
|
17
|
Emerging Roles for RIPK1 and RIPK3 in Pathogen-Induced Cell Death and Host Immunity. Curr Top Microbiol Immunol 2015; 403:37-75. [PMID: 26385769 DOI: 10.1007/82_2015_449] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Receptor-interacting protein kinases 1 and 3 (RIPK1 and RIPK3 ) are homologous serine-threonine kinases that were recognized for their roles in directing programmed necrotic cell death or necroptosis under a broad range of pathologic settings. Emerging evidence suggests new physiologic roles for RIPK1 and RIPK3 in mediating cell death of innate immune responses. Our review discusses current evidence on the mechanisms and the impact of RIPK1- and/or RIPK3-dependent cell death in responses to a variety of viral and bacterial pathogens. Furthermore, the discussion also summarizes emerging roles for RIPK1 and RIPK3 in other facets of host immunity, including the maintenance of epithelial barrier function and pro-inflammatory processes that may, in some cases, manifest independent of cell death. Finally, we briefly consider the therapeutic opportunities in targeting RIPK1- and RIPK3-dependent processes in infection and immunity.
Collapse
|
18
|
Liu Y, Chen W, Ali T, Alkasir R, Yin J, Liu G, Han B. Staphylococcal enterotoxin H induced apoptosis of bovine mammary epithelial cells in vitro. Toxins (Basel) 2014; 6:3552-67. [PMID: 25533519 PMCID: PMC4280547 DOI: 10.3390/toxins6123552] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Revised: 12/09/2014] [Accepted: 12/15/2014] [Indexed: 02/01/2023] Open
Abstract
Staphylococcal enterotoxins (SEs) are powerful superantigenic toxins produced by Staphylococcus aureus (S. aureus). They can cause food poisoning and toxic shock. However, their impact on bovine mammary epithelial cells (bMECs) is still unknown. In this study, the distribution of SE genes was evaluated in 116 S. aureus isolates from bovine mastitis, and the most prevalent genes were seh (36.2%), followed by sei (12.1%), seg (11.2%), ser (4.3%), sec (3.4%), sea (2.6%) and sed (1.7%). To better understand the effect of staphylococcal enterotoxin H (SEH) on bMECs, the seh gene was cloned and inserted into the prokaryotic expression vector, pET28a, and transformed into Escherichia coli BL21 (DE3). The recombinant staphylococcal enterotoxin H (rSEH) was expressed and purified as soluble protein. Bioactivity analysis showed that rSEH possessed the activity of stimulating lymphocytes proliferation. The XTT assay showed that 100 μg/mL of rSEH produced the cytotoxic effect on bMECs, and fluorescence microscopy and flow cytometry analysis revealed that a certain dose of rSEH is effective at inducing bMECs apoptosis in vitro. This indicates that SEs can directly lead to cellular apoptosis of bMECs in bovine mastitis associated with S. aureus.
Collapse
Affiliation(s)
- Yongxia Liu
- Department of Clinical Medicine, College of Veterinary Medicine, China Agricultural University, Yuan Ming Yuan West Road No. 2, Haidian District, Beijing 100193, China.
| | - Wei Chen
- Department of Clinical Medicine, College of Veterinary Medicine, China Agricultural University, Yuan Ming Yuan West Road No. 2, Haidian District, Beijing 100193, China.
| | - Tariq Ali
- Department of Clinical Medicine, College of Veterinary Medicine, China Agricultural University, Yuan Ming Yuan West Road No. 2, Haidian District, Beijing 100193, China.
| | - Rashad Alkasir
- Department of Clinical Medicine, College of Veterinary Medicine, China Agricultural University, Yuan Ming Yuan West Road No. 2, Haidian District, Beijing 100193, China.
| | - Jinhua Yin
- Department of Clinical Medicine, College of Veterinary Medicine, China Agricultural University, Yuan Ming Yuan West Road No. 2, Haidian District, Beijing 100193, China.
| | - Gang Liu
- Department of Clinical Medicine, College of Veterinary Medicine, China Agricultural University, Yuan Ming Yuan West Road No. 2, Haidian District, Beijing 100193, China.
| | - Bo Han
- Department of Clinical Medicine, College of Veterinary Medicine, China Agricultural University, Yuan Ming Yuan West Road No. 2, Haidian District, Beijing 100193, China.
| |
Collapse
|
19
|
Otto M. Staphylococcus aureus toxins. Curr Opin Microbiol 2014; 17:32-7. [PMID: 24581690 PMCID: PMC3942668 DOI: 10.1016/j.mib.2013.11.004] [Citation(s) in RCA: 391] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Revised: 10/18/2013] [Accepted: 11/09/2013] [Indexed: 01/12/2023]
Abstract
Staphylococcus aureus is a dangerous pathogen that causes a variety of severe diseases. The virulence of S. aureus is defined by a large repertoire of virulence factors, among which secreted toxins play a preeminent role. Many S. aureus toxins damage biological membranes, leading to cell death. In particular, S. aureus produces potent hemolysins and leukotoxins. Among the latter, some were recently identified to lyse neutrophils after ingestion, representing an especially powerful weapon against bacterial elimination by innate host defense. Furthermore, S. aureus secretes many factors that inhibit the complement cascade or prevent recognition by host defenses. Several further toxins add to this multi-faceted program of S. aureus to evade elimination in the host. This review will give an overview over S. aureus toxins focusing on recent advances in our understanding of how leukotoxins work in receptor-mediated or receptor-independent fashions.
Collapse
Affiliation(s)
- Michael Otto
- Pathogen Molecular Genetics Section, Laboratory of Human Bacterial Pathogenesis, National Institute of Allergy and Infectious Diseases, The National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892, USA.
| |
Collapse
|
20
|
Bischofberger M, Iacovache I, van der Goot FG. Pathogenic pore-forming proteins: function and host response. Cell Host Microbe 2013; 12:266-75. [PMID: 22980324 DOI: 10.1016/j.chom.2012.08.005] [Citation(s) in RCA: 147] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Organisms from all kingdoms produce pore-forming proteins, with the best-characterized being of bacterial origin. The last decade of research has revealed that the channels formed by these proteins can be very diverse, thus differentially affecting target cell-membrane permeability and consequent cellular outcome. The responses to these toxins are also extremely diverse due to multiple downstream effects of pore-induced changes in ion balance. Determining the secondary effects of pore-forming toxins is essential to understand their contribution to infection.
Collapse
Affiliation(s)
- Mirko Bischofberger
- Ecole Polytechnique Fédérale de Lausanne, Global Health Institute, Station 15, CH-1015 Lausanne, Switzerland
| | | | | |
Collapse
|
21
|
Acinetobacter calcoaceticus-baumannii complex strains induce caspase-dependent and caspase-independent death of human epithelial cells. Curr Microbiol 2012; 65:319-29. [PMID: 22684803 PMCID: PMC3401494 DOI: 10.1007/s00284-012-0159-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Accepted: 05/15/2012] [Indexed: 12/25/2022]
Abstract
We investigated interactions of human isolates of Acinetobacter calcoaceticus–baumannii complex strains with epithelial cells. The results showed that bacterial contact with the cells as well as adhesion and invasion were required for induction of cytotoxicity. The infected cells revealed hallmarks of apoptosis characterized by cell shrinking, condensed chromatin, and internucleosomal fragmentation of nuclear DNA. The highest apoptotic index was observed for 4 of 10 A.calcoaceticus and 4 of 7 A. baumannii strains. Moreover, we observed oncotic changes: cellular swelling and blebbing, noncondensed chromatin, and the absence of DNA fragmentation. The highest oncotic index was observed in cells infected with 6 A.calcoaceticus isolates. Cell-contact cytotoxicity and cell death were not inhibited by the pan-caspase inhibitor z-VAD-fmk. Induction of oncosis was correlated with increased invasive ability of the strains. We demonstrated that the mitochondria of infected cells undergo structural and functional alterations which can lead to cell death. Infected apoptotic and oncotic cells exhibited loss of mitochondrial transmembrane potential (ΔΨm). Bacterial infection caused generation of nitric oxide and reactive oxygen species. This study indicated that Acinetobacter spp. induced strain-dependent distinct types of epithelial cell death that may contribute to the pathogenesis of bacterial infection.
Collapse
|