1
|
Handy NB, Xu Y, Moon D, Sowizral JJ, Moon E, Ho M, Wilson BA. Hierarchical determinants in cytotoxic necrotizing factor (CNF) toxins driving Rho G-protein deamidation versus transglutamination. mBio 2024; 15:e0122124. [PMID: 38920360 PMCID: PMC11253639 DOI: 10.1128/mbio.01221-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 05/22/2024] [Indexed: 06/27/2024] Open
Abstract
The cytotoxic necrotizing factor (CNF) family of AB-type bacterial protein toxins catalyze two types of modification on their Rho GTPase substrates: deamidation and transglutamination. It has been established that E. coli CNF1 and its close homolog proteins catalyze primarily deamidation and Bordetella dermonecrotic toxin (DNT) catalyzes primarily transglutamination. The rapidly expanding microbial genome sequencing data have revealed that there are at least 13 full-length variants of CNF1 homologs. CNFx from E. coli strain GN02091 is the most distant from all other members of the CNF family with 50%-55% sequence identity at the protein level and 0.45-0.52 nucleotide substitutions per site at the DNA level. CNFx modifies RhoA, Rac1, and Cdc42, and like CNF1, activates downstream SRE-dependent mitogenic signaling pathways in human HEK293T cells, but at a 1,000-fold higher EC50 value. Unlike other previously characterized CNF toxins, CNFx modifies Rho proteins primarily through transglutamination, as evidenced by gel-shift assay and confirmed by MALDI mass spectral analysis, when coexpressed with Rho-protein substrates in E. coli BL21 cells or through direct treatment of HEK293T cells. A comparison of CNF1 and CNFx sequences identified two critical active-site residues corresponding to positions 832 and 862 in CNF1. Reciprocal site-specific mutations at these residues in each toxin revealed hierarchical rules that define the preference for deamidase versus a transglutaminase activity in CNFs. An additional unique Cys residue at the C-terminus of CNFx was also discovered to be critical for retarding cargo delivery.IMPORTANCECytotoxic necrotizing factor (CNF) toxins not only play important virulence roles in pathogenic E. coli and other bacterial pathogens, but CNF-like genes have also been found in an expanding number of genomes from clinical isolates. Harnessing the power of evolutionary relationships among the CNF toxins enabled the deciphering of the hierarchical active-site determinants that define whether they modify their Rho GTPase substrates through deamidation or transglutamination. With our finding that a distant CNF variant (CNFx) unlike other known CNFs predominantly transglutaminates its Rho GTPase substrates, the paradigm of "CNFs deamidate and DNTs transglutaminate" could finally be attributed to two critical amino acid residues within the active site other than the previously identified catalytic Cys-His dyad residues. The significance of our approach and research findings is that they can be applied to deciphering enzyme reaction determinants and substrate specificities for other bacterial proteins in the development of precision therapeutic strategies.
Collapse
Affiliation(s)
- Nicholas B. Handy
- Department of Microbiology, School of Molecular and Cellular Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Yiting Xu
- Department of Microbiology, School of Molecular and Cellular Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Damee Moon
- Department of Microbiology, School of Molecular and Cellular Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Jacob J. Sowizral
- Department of Microbiology, School of Molecular and Cellular Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Eric Moon
- Department of Microbiology, School of Molecular and Cellular Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Mengfei Ho
- Department of Microbiology, School of Molecular and Cellular Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Brenda A. Wilson
- Department of Microbiology, School of Molecular and Cellular Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| |
Collapse
|
2
|
Nhu NTK, Phan MD, Hancock SJ, Peters KM, Alvarez-Fraga L, Forde BM, Andersen SB, Miliya T, Harris PNA, Beatson SA, Schlebusch S, Bergh H, Turner P, Brauner A, Westerlund-Wikström B, Irwin AD, Schembri MA. High-risk Escherichia coli clones that cause neonatal meningitis and association with recrudescent infection. eLife 2024; 12:RP91853. [PMID: 38622998 PMCID: PMC11021048 DOI: 10.7554/elife.91853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024] Open
Abstract
Neonatal meningitis is a devastating disease associated with high mortality and neurological sequelae. Escherichia coli is the second most common cause of neonatal meningitis in full-term infants (herein NMEC) and the most common cause of meningitis in preterm neonates. Here, we investigated the genomic relatedness of a collection of 58 NMEC isolates spanning 1974-2020 and isolated from seven different geographic regions. We show NMEC are comprised of diverse sequence types (STs), with ST95 (34.5%) and ST1193 (15.5%) the most common. No single virulence gene profile was conserved in all isolates; however, genes encoding fimbrial adhesins, iron acquisition systems, the K1 capsule, and O antigen types O18, O75, and O2 were most prevalent. Antibiotic resistance genes occurred infrequently in our collection. We also monitored the infection dynamics in three patients that suffered recrudescent invasive infection caused by the original infecting isolate despite appropriate antibiotic treatment based on antibiogram profile and resistance genotype. These patients exhibited severe gut dysbiosis. In one patient, the causative NMEC isolate was also detected in the fecal flora at the time of the second infection episode and after treatment. Thus, although antibiotics are the standard of care for NMEC treatment, our data suggest that failure to eliminate the causative NMEC that resides intestinally can lead to the existence of a refractory reservoir that may seed recrudescent infection.
Collapse
Affiliation(s)
- Nguyen Thi Khanh Nhu
- Institute for Molecular Bioscience (IMB), The University of QueenslandBrisbaneAustralia
- School of Chemistry and Molecular Biosciences, The University of QueenslandBrisbaneAustralia
- Australian Infectious Diseases Research Centre, The University of QueenslandBrisbaneAustralia
| | - Minh-Duy Phan
- Institute for Molecular Bioscience (IMB), The University of QueenslandBrisbaneAustralia
- School of Chemistry and Molecular Biosciences, The University of QueenslandBrisbaneAustralia
- Australian Infectious Diseases Research Centre, The University of QueenslandBrisbaneAustralia
| | - Steven J Hancock
- School of Chemistry and Molecular Biosciences, The University of QueenslandBrisbaneAustralia
- Australian Infectious Diseases Research Centre, The University of QueenslandBrisbaneAustralia
| | - Kate M Peters
- Institute for Molecular Bioscience (IMB), The University of QueenslandBrisbaneAustralia
- School of Chemistry and Molecular Biosciences, The University of QueenslandBrisbaneAustralia
- Australian Infectious Diseases Research Centre, The University of QueenslandBrisbaneAustralia
| | - Laura Alvarez-Fraga
- School of Chemistry and Molecular Biosciences, The University of QueenslandBrisbaneAustralia
- Australian Infectious Diseases Research Centre, The University of QueenslandBrisbaneAustralia
| | - Brian M Forde
- Australian Infectious Diseases Research Centre, The University of QueenslandBrisbaneAustralia
- University of Queensland Centre for Clinical Research, The University of QueenslandBrisbaneAustralia
| | - Stacey B Andersen
- Genome Innovation Hub, The University of QueenslandBrisbaneAustralia
| | - Thyl Miliya
- Cambodia Oxford Medical Research Unit, Angkor Hospital for ChildrenSiem ReapCambodia
| | - Patrick NA Harris
- University of Queensland Centre for Clinical Research, The University of QueenslandBrisbaneAustralia
- Pathology Queensland, Queensland HealthBrisbaneAustralia
| | - Scott A Beatson
- School of Chemistry and Molecular Biosciences, The University of QueenslandBrisbaneAustralia
- Australian Infectious Diseases Research Centre, The University of QueenslandBrisbaneAustralia
| | - Sanmarie Schlebusch
- University of Queensland Centre for Clinical Research, The University of QueenslandBrisbaneAustralia
- Pathology Queensland, Queensland HealthBrisbaneAustralia
- Q-PHIRE Genomics and Public Health Microbiology, Forensic and Scientific Services, Coopers PlainsBrisbaneAustralia
| | - Haakon Bergh
- Pathology Queensland, Queensland HealthBrisbaneAustralia
| | - Paul Turner
- Cambodia Oxford Medical Research Unit, Angkor Hospital for ChildrenSiem ReapCambodia
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of OxfordOxfordUnited Kingdom
| | - Annelie Brauner
- Department of Microbiology, Tumor and Cell Biology, Division of Clinical Microbiology, Karolinska Institutet and Karolinska University HospitalStockholmSweden
| | | | - Adam D Irwin
- Australian Infectious Diseases Research Centre, The University of QueenslandBrisbaneAustralia
- University of Queensland Centre for Clinical Research, The University of QueenslandBrisbaneAustralia
- Infection Management Prevention Service, Queensland Children's HospitalBrisbaneAustralia
| | - Mark A Schembri
- Institute for Molecular Bioscience (IMB), The University of QueenslandBrisbaneAustralia
- School of Chemistry and Molecular Biosciences, The University of QueenslandBrisbaneAustralia
- Australian Infectious Diseases Research Centre, The University of QueenslandBrisbaneAustralia
| |
Collapse
|
3
|
Zaragoza G, Pérez-Vázquez M, Villar-Gómara L, González-Prieto A, Oteo-Iglesias J, Alós JI. Community Emergence of Cefixime-Resistant Escherichia coli Belonging to ST12 with Chromosomal AmpC Hyperproduction. Antibiotics (Basel) 2024; 13:218. [PMID: 38534653 DOI: 10.3390/antibiotics13030218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/21/2024] [Accepted: 02/26/2024] [Indexed: 03/28/2024] Open
Abstract
Escherichia coli isolates that are resistant to cefixime and amoxicillin/clavulanic acid, but apparently susceptible to cefuroxime, with no ESBL identified, were initially detected in Madrid from urine samples in 2019. Throughout 2020 and 2021, all cases of community UTI by E. coli from six health areas in Madrid were studied. A representative sample of 23 cases was selected for further studies. The broth microdilution method and the agar diffusion method were performed to determine the antibiotic susceptibility. WGS was carried out for phylogeny, resistome and virulome analysis. Community consumption of third-generation oral cephalosporins in Madrid (2017-2021) was analyzed. A total of 582 (1.3%) E. coli isolates had the mentioned resistance profile. The mutation at position -32 (T > A) of the AmpC promoter was found in 21 isolates. No plasmid AmpC- or ESBL-encoding genes were detected. A cluster of 20 ST12 isolates was detected by cgMLST. A 6.2% increase in the consumption of third-generation oral cephalosporins, especially cefixime, was observed in Madrid. Chromosomal AmpC-hyperproducing ST12 E. coli isolates could be implicated in the increase in community UTI cases by cefixime-resistant isolates, which correlates with an increasing trend of cefixime consumption.
Collapse
Affiliation(s)
- Gloria Zaragoza
- Servicio de Microbiología, Hospital Universitario de Getafe, 28905 Madrid, Spain
| | - María Pérez-Vázquez
- Laboratorio de Resistencia a Antibióticos, Centro Nacional de Microbiología, Instituto de Salud Carlos III, 28222 Majadahonda, Spain
- CIBER de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Laura Villar-Gómara
- Agencia Española de Medicamentos y Productos Sanitarios (AEMPS), Plan Nacional frente a la Resistencia a los Antibióticos (PRAN), 28022 Madrid, Spain
| | - Andrea González-Prieto
- Laboratorio central BRsalud, Hospital Infanta Sofía, San Sebastián de los Reyes, 28702 Madrid, Spain
| | - Jesús Oteo-Iglesias
- Laboratorio de Resistencia a Antibióticos, Centro Nacional de Microbiología, Instituto de Salud Carlos III, 28222 Majadahonda, Spain
- CIBER de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Juan-Ignacio Alós
- Servicio de Microbiología, Hospital Universitario de Getafe, 28905 Madrid, Spain
| |
Collapse
|
4
|
Whelan S, Lucey B, Finn K. Uropathogenic Escherichia coli (UPEC)-Associated Urinary Tract Infections: The Molecular Basis for Challenges to Effective Treatment. Microorganisms 2023; 11:2169. [PMID: 37764013 PMCID: PMC10537683 DOI: 10.3390/microorganisms11092169] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/23/2023] [Accepted: 08/25/2023] [Indexed: 09/29/2023] Open
Abstract
Urinary tract infections (UTIs) are among the most common bacterial infections, especially among women and older adults, leading to a significant global healthcare cost burden. Uropathogenic Escherichia coli (UPEC) are the most common cause and accounts for the majority of community-acquired UTIs. Infection by UPEC can cause discomfort, polyuria, and fever. More serious clinical consequences can result in urosepsis, kidney damage, and death. UPEC is a highly adaptive pathogen which presents significant treatment challenges rooted in a complex interplay of molecular factors that allow UPEC to evade host defences, persist within the urinary tract, and resist antibiotic therapy. This review discusses these factors, which include the key genes responsible for adhesion, toxin production, and iron acquisition. Additionally, it addresses antibiotic resistance mechanisms, including chromosomal gene mutations, antibiotic deactivating enzymes, drug efflux, and the role of mobile genetic elements in their dissemination. Furthermore, we provide a forward-looking analysis of emerging alternative therapies, such as phage therapy, nano-formulations, and interventions based on nanomaterials, as well as vaccines and strategies for immunomodulation. This review underscores the continued need for research into the molecular basis of pathogenesis and antimicrobial resistance in the treatment of UPEC, as well as the need for clinically guided treatment of UTIs, particularly in light of the rapid spread of multidrug resistance.
Collapse
Affiliation(s)
- Shane Whelan
- Department of Biological Sciences, Munster Technological University, Bishopstown, T12 P928 Cork, Ireland;
| | - Brigid Lucey
- Department of Biological Sciences, Munster Technological University, Bishopstown, T12 P928 Cork, Ireland;
| | - Karen Finn
- Department of Analytical, Biopharmaceutical and Medical Sciences, Atlantic Technological University Galway City, Dublin Road, H91 T8NW Galway, Ireland
| |
Collapse
|
5
|
Herrera-Vázquez A, Arellano-Aranda R, Hernández-Cueto D, Rodríguez-Miranda E, López-Briones S, Hernández-Luna MA. Detection of Cyclomodulin CNF-1 Toxin-Producing Strains of Escherichia coli in Pig Kidneys at a Slaughterhouse. Microorganisms 2023; 11:2065. [PMID: 37630625 PMCID: PMC10458685 DOI: 10.3390/microorganisms11082065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/02/2023] [Accepted: 08/05/2023] [Indexed: 08/27/2023] Open
Abstract
Food is often contaminated with Escherichia coli (E. coli) bacteria strains, which have been associated with different diseases, including urinary tract infections. The consumption of meat by humans is a potential route of transmission of antimicrobial resistance, and food-producing animals have been associated as a major reservoir of resistant bacterial strains. The aim of this study was to determine the presence of the E. coli strains producing the CNF-1 toxin in pig kidneys. Pig kidneys were collected from a Mexican slaughterhouse and classified according to their coloration into reddish kidneys (RK) and yellowish kidneys (YK). A tissue sample from each kidney was processed for histological analysis, the presence of E. coli was determined by conventional PCR assay, and the CNF-1 toxin was detected by both conventional PCR and Western blotting. Herein, an inflammatory cell infiltrate was found in all collected kidneys, regardless of macroscopic differences. Surprisingly, E. coli and the CNF-1 toxin were detected in all kidney samples. We clearly demonstrate contamination by CNF-1 toxin-producing E. coli in pork kidneys from a slaughterhouse, even in those without apparent damage. This suggests that pork may serve as a reservoir for pathogens, representing an important risk to human health.
Collapse
Affiliation(s)
- Arturo Herrera-Vázquez
- Department of Medicine and Nutrition, Division of Health Sciences, University of Guanajuato, Campus León, Guanajuato 37670, Mexico (E.R.-M.); (S.L.-B.)
| | - Rebeca Arellano-Aranda
- Department of Veterinary, Division of Life Sciences, University of Guanajuato, Campus Irapuato Salamanca, Guanajuato 36500, Mexico
| | - Daniel Hernández-Cueto
- Unit of Investigative Research on Oncological Diseases, Children’s Hospital of Mexico Federico Gomez, Mexico City 06720, Mexico
| | - Esmeralda Rodríguez-Miranda
- Department of Medicine and Nutrition, Division of Health Sciences, University of Guanajuato, Campus León, Guanajuato 37670, Mexico (E.R.-M.); (S.L.-B.)
| | - Sergio López-Briones
- Department of Medicine and Nutrition, Division of Health Sciences, University of Guanajuato, Campus León, Guanajuato 37670, Mexico (E.R.-M.); (S.L.-B.)
| | - Marco Antonio Hernández-Luna
- Department of Medicine and Nutrition, Division of Health Sciences, University of Guanajuato, Campus León, Guanajuato 37670, Mexico (E.R.-M.); (S.L.-B.)
| |
Collapse
|
6
|
OmpA is involved in the invasion of duck brain microvascular endothelial cells by Riemerella anatipestifer. Vet Microbiol 2023; 280:109692. [PMID: 36863175 DOI: 10.1016/j.vetmic.2023.109692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 11/25/2022] [Accepted: 02/15/2023] [Indexed: 02/18/2023]
Abstract
Bacterial meningitis is a major cause of morbidity and mortality. Despite advances in antimicrobial chemotherapy, the disease remains detrimental to humans, livestock, and poultry. Riemerella anatipestifer is a gram-negative bacterium causing duckling serositis and meningitis. However, the virulence factors contributing to its binding and invasion of duck brain microvascular endothelial cells (DBMECs) and penetration of the blood-brain barrier (BBB) have never been reported. In this study, immortalized DBMECs were successfully generated and used as an in vitro-model of duck BBB. Furthermore, ompA gene deletion mutant of the pathogen and multiple complemented strains carrying the complete ompA gene and its truncated forms were constructed. Bacterial growth, invasion, and adhesion assays and animal experiments were performed. The results show that the OmpA protein of R. anatipestifer had no effect on bacterial growth and adhesion ability to DBMECs. The role of OmpA in the invasion of R. anatipestifer into DBMECs and duckling BBB was confirmed. The amino acids 230-242 of OmpA represents a key domain involved in R. anatipestifer invasion. In addition, another OmpA1164 protein constituted by the amino acids 102-488 within OmpA could function as a complete OmpA. The signal peptide sequence from amino acids 1-21 had no significant effect on OmpA functions. In conclusion, this study illustrated that OmpA is an important virulence factor mediating R. anatipestifer invasion of DBMECs and penetration of the duckling BBB.
Collapse
|
7
|
Lafrance AE, Chimalapati S, Garcia Rodriguez N, Kinch LN, Kaval KG, Orth K. Enzymatic Specificity of Conserved Rho GTPase Deamidases Promotes Invasion of Vibrio parahaemolyticus at the Expense of Infection. mBio 2022; 13:e0162922. [PMID: 35862776 PMCID: PMC9426531 DOI: 10.1128/mbio.01629-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 06/17/2022] [Indexed: 11/23/2022] Open
Abstract
Vibrio parahaemolyticus is among the leading causes of bacterial seafood-borne acute gastroenteritis. Like many intracellular pathogens, V. parahaemolyticus invades host cells during infection by deamidating host small Rho GTPases. The Rho GTPase deamidating activity of VopC, a type 3 secretion system (T3SS) translocated effector, drives V. parahaemolyticus invasion. The intracellular pathogen uropathogenic Escherichia coli (UPEC) invades host cells by secreting a VopC homolog, the secreted toxin cytotoxic necrotizing factor 1 (CNF1). Because of the homology between VopC and CNF1, we hypothesized that topical application of CNF1 during V. parahaemolyticus infection could supplement VopC activity. Here, we demonstrate that CNF1 improves the efficiency of V. parahaemolyticus invasion, a bottleneck in V. parahaemolyticus infection, across a range of doses. CNF1 increases V. parahaemolyticus invasion independent of both VopC and the T3SS altogether but leaves a disproportionate fraction of intracellular bacteria unable to escape the endosome and complete their infection cycle. This phenomenon holds true in the presence or absence of VopC but is particularly pronounced in the absence of a T3SS. The native VopC, by contrast, promotes a far less efficient invasion but permits the majority of internalized bacteria to escape the endosome and complete their infection cycle. These studies highlight the significance of enzymatic specificity during infection, as virulence factors (VopC and CNF1 in this instance) with similarities in function (bacterial uptake), catalytic activity (deamidation), and substrates (Rho GTPases) are not sufficiently interchangeable for mediating a successful invasion for neighboring bacterial pathogens. IMPORTANCE Many species of intracellular bacterial pathogens target host small Rho GTPases to initiate invasion, including the human pathogens Vibrio parahaemolyticus and uropathogenic Escherichia coli (UPEC). The type three secretion system (T3SS) effector VopC of V. parahaemolyticus promotes invasion through the deamidation of Rac1 and CDC42 in the host, whereas the secreted toxin cytotoxic necrotizing factor 1 (CNF1) drives UPEC's internalization through the deamidation of Rac1, CDC42, and RhoA. Despite these similarities in the catalytic activity of CNF1 and VopC, we observed that the two enzymes were not interchangeable. Although CNF1 increased V. parahaemolyticus endosomal invasion, most intracellular V. parahaemolyticus aborted their infection cycle and remained trapped in endosomes. Our findings illuminate how the precise biochemical fine-tuning of T3SS effectors is essential for efficacious pathogenesis. Moreover, they pave the way for future investigations into the biochemical mechanisms underpinning V. parahaemolyticus endosomal escape and, more broadly, the regulation of successful pathogenesis.
Collapse
Affiliation(s)
- Alexander E. Lafrance
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Suneeta Chimalapati
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Nalleli Garcia Rodriguez
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Lisa N. Kinch
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Karan Gautam Kaval
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Kim Orth
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
8
|
YbdO Promotes the Pathogenicity of Escherichia coli K1 by Regulating Capsule Synthesis. Int J Mol Sci 2022; 23:ijms23105543. [PMID: 35628353 PMCID: PMC9141747 DOI: 10.3390/ijms23105543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/12/2022] [Accepted: 05/15/2022] [Indexed: 11/17/2022] Open
Abstract
Escherichia coli K1 is the most popular neonatal meningitis-causing Gram-negative bacterium. As a key virulence determinant, the K1 capsule enhances the survival of E. coli K1 in human brain microvascular endothelial cells (HBMECs) upon crossing the blood–brain barrier; however, the regulatory mechanisms of capsule synthesis during E. coli K1 invasion of HBMECs remain unclear. Here, we identified YbdO as a transcriptional regulator that promotes E. coli K1 invasion of HBMECs by directly activating K1 capsule gene expression to increase K1 capsule synthesis. We found that ybdO deletion significantly reduced HBMEC invasion by E. coli K1 and meningitis occurrence in mice. Additionally, electrophoretic mobility shift assay and chromatin immunoprecipitation–quantitative polymerase chain reaction analysis indicated that YbdO directly activates kpsMT and neuDBACES expression, which encode products involved in K1 capsule transport and synthesis by directly binding to the kpsM promoter. Furthermore, ybdO transcription was directly repressed by histone-like nucleoid structuring protein (H-NS), and we observed that acidic pH similar to that of early and late endosomes relieves this transcriptional repression. These findings demonstrated the regulatory mechanism of YbdO on K1 capsule synthesis, providing further insights into the evolution of E. coli K1 pathogenesis and host–pathogen interaction.
Collapse
|
9
|
Fan Y, Bai J, Xi D, Yang B. RpoE Facilitates Stress-Resistance, Invasion, and Pathogenicity of Escherichia coli K1. Microorganisms 2022; 10:microorganisms10050879. [PMID: 35630325 PMCID: PMC9147696 DOI: 10.3390/microorganisms10050879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 04/20/2022] [Accepted: 04/21/2022] [Indexed: 12/04/2022] Open
Abstract
Escherichia coli K1 is the most common Gram-negative bacterium that causes neonatal meningitis; thus, a better understanding of its pathogenic molecular mechanisms is critical. However, the mechanisms by which E. coli K1 senses the signals of the host and expresses toxins for survival are poorly understood. As an extracytoplasmic function sigma factor, RpoE controls a wide range of pathogenesis-associated pathways in response to environmental stress. We found that the ΔrpoE mutant strain reduced the binding and invasion rate in human brain microvascular endothelial cells (HBMECs) in vitro, level of bacteremia, and percentage of meningitis in vivo. To confirm the direct targets of RpoE in vivo, we performed qRT-PCR and ChIP-qPCR on known toxic genes. RpoE was found to regulate pathogenic target genes, namely, ompA, cnf1, fimB, ibeA, kpsM, and kpsF directly and fimA, aslA, and traJ indirectly. The expression of these genes was upregulated when E. coli K1 was cultured with antibacterial peptides, whereas remained unchanged in the presence of the ΔrpoE mutant strain. Moreover, RpoE reduced IL-6 and IL-8 levels in E. coli K1-infected HBMECs. Altogether, these findings demonstrate that RpoE mediates the host adaptation capacity of E. coli K1 via a regulatory mechanism on virulence factors.
Collapse
Affiliation(s)
- Yu Fan
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin 300457, China; (Y.F.); (J.B.)
- Tianjin Key Laboratory of Microbial Functional Genomics, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin 300457, China
| | - Jing Bai
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin 300457, China; (Y.F.); (J.B.)
- Tianjin Key Laboratory of Microbial Functional Genomics, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin 300457, China
| | - Daoyi Xi
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China;
- Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Bin Yang
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin 300457, China; (Y.F.); (J.B.)
- Tianjin Key Laboratory of Microbial Functional Genomics, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin 300457, China
- Correspondence:
| |
Collapse
|
10
|
The Cytotoxic Necrotizing Factors (CNFs)-A Family of Rho GTPase-Activating Bacterial Exotoxins. Toxins (Basel) 2021; 13:toxins13120901. [PMID: 34941738 PMCID: PMC8709095 DOI: 10.3390/toxins13120901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 11/29/2021] [Accepted: 12/01/2021] [Indexed: 11/17/2022] Open
Abstract
The cytotoxic necrotizing factors (CNFs) are a family of Rho GTPase-activating single-chain exotoxins that are produced by several Gram-negative pathogenic bacteria. Due to the pleiotropic activities of the targeted Rho GTPases, the CNFs trigger multiple signaling pathways and host cell processes with diverse functional consequences. They influence cytokinesis, tissue integrity, cell barriers, and cell death, as well as the induction of inflammatory and immune cell responses. This has an enormous influence on host-pathogen interactions and the severity of the infection. The present review provides a comprehensive insight into our current knowledge of the modular structure, cell entry mechanisms, and the mode of action of this class of toxins, and describes their influence on the cell, tissue/organ, and systems levels. In addition to their toxic functions, possibilities for their use as drug delivery tool and for therapeutic applications against important illnesses, including nervous system diseases and cancer, have also been identified and are discussed.
Collapse
|
11
|
Yang Z, Yang Y, Qi X, Liu N, Wang P, Zhang L, Han M, Han S. Thickening of the walls of deep brain abscesses is associated with macrophage infiltration. Exp Ther Med 2021; 22:1080. [PMID: 34447473 PMCID: PMC8355639 DOI: 10.3892/etm.2021.10514] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 11/11/2020] [Indexed: 12/22/2022] Open
Abstract
The present study aimed to compare the thickness of brain abscesses in the deep and the superficial brain and to investigate the factors that influence the capsule of brain abscesses. The thickness of the brain abscess wall was evaluated on imaging. Bacteriological examination was performed on the abscess pus and wall, and immunohistochemical staining was used to count the number of macrophages. Kaplan-Meier curves were used to analyze overall survival. The results indicated that the wall of deep-brain abscesses was thicker than that of superficial abscesses. There was a difference in the extent of macrophage infiltration of deep- and superficial-brain abscess walls, and differences in the extent of macrophage infiltration in the wall of brain abscesses caused by various microorganisms were statistically significant. Of note, among the brain abscesses caused by Staphylococcus, the extent of macrophage/microglia infiltration and the thickness of the wall of the deep-brain abscesses were greater than those of superficial-brain abscesses and there was a positive correlation between the number of macrophages and the thickness of the abscess wall. The overall survival (OS) of patients with deep-brain abscess was not significantly shorter than that of patients with superficial-brain abscess. Furthermore, OS was not significantly different among groups of patients receiving different types of treatment. In conclusion, the wall of deep-brain abscesses is thicker than that of superficial abscesses and the infiltration of macrophages is abundant. The thick wall of abscesses in the deep brain may be associated with macrophage infiltration.
Collapse
Affiliation(s)
- Zuocheng Yang
- Department of Neurosurgery, Sanbo Brain Hospital, Capital Medical University, Beijing 100093, P.R. China
| | - Yakun Yang
- Department of Neurosurgery, Sanbo Brain Hospital, Capital Medical University, Beijing 100093, P.R. China
| | - Xueling Qi
- Department of Pathology, Sanbo Brain Hospital, Capital Medical University, Beijing 100093, P.R. China
| | - Ning Liu
- Department of Neurosurgery, Sanbo Brain Hospital, Capital Medical University, Beijing 100093, P.R. China
| | - Pengfei Wang
- Department of Neurosurgery, Sanbo Brain Hospital, Capital Medical University, Beijing 100093, P.R. China
| | - Linpeng Zhang
- Department of Neurosurgery, Sanbo Brain Hospital, Capital Medical University, Beijing 100093, P.R. China
| | - Mingyang Han
- Department of Neurosurgery, Sanbo Brain Hospital, Capital Medical University, Beijing 100093, P.R. China
| | - Song Han
- Department of Neurosurgery, Sanbo Brain Hospital, Capital Medical University, Beijing 100093, P.R. China
| |
Collapse
|
12
|
Liu Y, Zhu M, Fu X, Cai J, Chen S, Lin Y, Jiang N, Chen S, Lin Z. Escherichia coli Causing Neonatal Meningitis During 2001-2020: A Study in Eastern China. Int J Gen Med 2021; 14:3007-3016. [PMID: 34234530 PMCID: PMC8254664 DOI: 10.2147/ijgm.s317299] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 06/18/2021] [Indexed: 12/16/2022] Open
Abstract
Background and Objective Neonatal meningitis (NM) caused by Escherichia coli remains a major health problem in industrialized countries. Currently, information on the epidemiology and antimicrobial susceptibility patterns of NM in developing countries such as China is relatively scarce. Therefore, the present study investigated changes in the antimicrobial susceptibility of E. coli causing NM in a perinatal center in eastern China over the past 20 years. Methods This survey was conducted during three periods: 2001–2006, 2007–2012, and 2013–2020. NM was diagnosed according to the number of white blood cells in the cerebrospinal fluid (CSF) and the presence of a single potential pathogenic bacterium in the culture prepared from the blood or CSF of a newborn baby. Changes in the antimicrobial susceptibility of E. coli were analyzed. Results In total, 182 NM cases were identified. E. coli was identified in 69 of these cases, and in 21 of these cases, extended-spectrum beta-lactamase (ESBL) production was detected. E. coli was the main cause of NM identified in this study. The overall susceptibility of E. coli to third-generation cephalosporins such as cefotaxime decreased from 100% during 2001–2006 to 50% during 2007–2012 and, subsequently, increased to 71.0% during 2013–2020. This pattern of change is correlated with bacterial ESBL production. Only 8.3% of E. coli found in samples collected from infants with early onset meningitis (EOM) produced ESBL, while 37.3% of E. coli isolated from children with late-onset meningitis (LOM) produced ESBL. Conclusion E. coli remains the primary pathogen of NM. Compared with that isolated from infants with LOM, the percentage of ESBL-producing multidrug-resistant E. coli isolated from infants with EOM is significantly lower. Clinicians should consider this trend when determining appropriate and effective antibiotics as empirical treatment for NM.
Collapse
Affiliation(s)
- Yanli Liu
- Department of Neonatology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, People's Republic of China
| | - Minli Zhu
- Department of Neonatology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, People's Republic of China
| | - Xiaoqin Fu
- Department of Neonatology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, People's Republic of China
| | - Jiaojiao Cai
- Department of Neonatology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, People's Republic of China
| | - Shangqin Chen
- Department of Neonatology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, People's Republic of China
| | - Yuanyuan Lin
- Department of Neonatology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, People's Republic of China
| | - Na Jiang
- Department of Neonatology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, People's Republic of China
| | - Si Chen
- Department of Neonatology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, People's Republic of China
| | - Zhenlang Lin
- Department of Neonatology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, People's Republic of China
| |
Collapse
|
13
|
Danchin A, Sekowska A, You C. One-carbon metabolism, folate, zinc and translation. Microb Biotechnol 2020; 13:899-925. [PMID: 32153134 PMCID: PMC7264889 DOI: 10.1111/1751-7915.13550] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Accepted: 02/17/2020] [Indexed: 12/16/2022] Open
Abstract
The translation process, central to life, is tightly connected to the one-carbon (1-C) metabolism via a plethora of macromolecule modifications and specific effectors. Using manual genome annotations and putting together a variety of experimental studies, we explore here the possible reasons of this critical interaction, likely to have originated during the earliest steps of the birth of the first cells. Methionine, S-adenosylmethionine and tetrahydrofolate dominate this interaction. Yet, 1-C metabolism is unlikely to be a simple frozen accident of primaeval conditions. Reactive 1-C species (ROCS) are buffered by the translation machinery in a way tightly associated with the metabolism of iron-sulfur clusters, zinc and potassium availability, possibly coupling carbon metabolism to nitrogen metabolism. In this process, the highly modified position 34 of tRNA molecules plays a critical role. Overall, this metabolic integration may serve both as a protection against the deleterious formation of excess carbon under various growth transitions or environmental unbalanced conditions and as a regulator of zinc homeostasis, while regulating input of prosthetic groups into nascent proteins. This knowledge should be taken into account in metabolic engineering.
Collapse
Affiliation(s)
- Antoine Danchin
- AMAbiotics SASInstitut Cochin24 rue du Faubourg Saint‐Jacques75014ParisFrance
- School of Biomedical SciencesLi Ka Shing Faculty of MedicineThe University of Hong KongS.A.R. Hong KongChina
| | - Agnieszka Sekowska
- AMAbiotics SASInstitut Cochin24 rue du Faubourg Saint‐Jacques75014ParisFrance
| | - Conghui You
- Shenzhen Key Laboratory of Microbial Genetic EngineeringCollege of Life Sciences and OceanologyShenzhen University1066 Xueyuan Rd518055ShenzhenChina
| |
Collapse
|
14
|
Virulence Factors of Meningitis-Causing Bacteria: Enabling Brain Entry across the Blood-Brain Barrier. Int J Mol Sci 2019; 20:ijms20215393. [PMID: 31671896 PMCID: PMC6862235 DOI: 10.3390/ijms20215393] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 10/24/2019] [Accepted: 10/25/2019] [Indexed: 12/16/2022] Open
Abstract
Infections of the central nervous system (CNS) are still a major cause of morbidity and mortality worldwide. Traversal of the barriers protecting the brain by pathogens is a prerequisite for the development of meningitis. Bacteria have developed a variety of different strategies to cross these barriers and reach the CNS. To this end, they use a variety of different virulence factors that enable them to attach to and traverse these barriers. These virulence factors mediate adhesion to and invasion into host cells, intracellular survival, induction of host cell signaling and inflammatory response, and affect barrier function. While some of these mechanisms differ, others are shared by multiple pathogens. Further understanding of these processes, with special emphasis on the difference between the blood-brain barrier and the blood-cerebrospinal fluid barrier, as well as virulence factors used by the pathogens, is still needed.
Collapse
|
15
|
Rose R, Häuser S, Stump-Guthier C, Weiss C, Rohde M, Kim KS, Ishikawa H, Schroten H, Schwerk C, Adam R. Virulence factor-dependent basolateral invasion of choroid plexus epithelial cells by pathogenic Escherichia coli in vitro. FEMS Microbiol Lett 2019; 365:5195518. [PMID: 30476042 DOI: 10.1093/femsle/fny274] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 11/20/2018] [Indexed: 12/18/2022] Open
Abstract
Escherichia coli is the most common Gram-negative causative agent of neonatal meningitis and E. coli meningitis is associated with high morbidity and mortality. Previous research has been carried out with regard to the blood-brain barrier and thereby unveiled an assortment of virulence factors involved in E. coli meningitis. Little, however, is known about the role of the blood-cerebrospinal fluid (CSF) barrier (BCSFB), in spite of several studies suggesting that the choroid plexus (CP) is a possible entry point for E. coli into the CSF spaces. Here, we used a human CP papilloma (HIBCPP) cell line that was previously established as valid model for the study of the BCSFB. We show that E. coli invades HIBCPP cells in a polar fashion preferentially from the physiologically relevant basolateral side. Moreover, we demonstrate that deletion of outer membrane protein A, ibeA or neuDB genes results in decreased cell infection, while absence of fimH enhances invasion, although causing reduced adhesion to the apical side of HIBCPP cells. Our findings suggest that the BCSFB might constitute an entry point for E. coli into the central nervous system, and HIBCPP cells are a valuable tool for investigating E. coli entry of the BCSFB.
Collapse
Affiliation(s)
- Rebekah Rose
- Pediatric Infectious Diseases, Department of Pediatrics, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, D-68167 Mannheim, Germany
| | - Svenja Häuser
- Pediatric Infectious Diseases, Department of Pediatrics, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, D-68167 Mannheim, Germany
| | - Carolin Stump-Guthier
- Pediatric Infectious Diseases, Department of Pediatrics, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, D-68167 Mannheim, Germany
| | - Christel Weiss
- Department of Medical Statistics and Biomathematics, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, D-68167 Mannheim, Germany
| | - Manfred Rohde
- Central Facility for Microscopy, Helmholtz Centre for Infection Research, D-38124 Braunschweig, Germany
| | - Kwang Sik Kim
- Division of Pediatric Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Hiroshi Ishikawa
- Laboratory of Clinical Regenerative Medicine, Department of Neurosurgery, Faculty of Medicine, University of Tsukuba, 1-1-1Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Horst Schroten
- Pediatric Infectious Diseases, Department of Pediatrics, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, D-68167 Mannheim, Germany
| | - Christian Schwerk
- Pediatric Infectious Diseases, Department of Pediatrics, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, D-68167 Mannheim, Germany
| | - Rüdiger Adam
- Pediatric Infectious Diseases, Department of Pediatrics, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, D-68167 Mannheim, Germany
| |
Collapse
|
16
|
Liu R, Wu C, Li L, Chi F, Zhang T, Xu Y, Ji L, Chen Z, Hu H, Zhang X, Huang S, Wang L. CD48 and α7 Nicotinic Acetylcholine Receptor Synergistically Regulate FimH-Mediated Escherichia coli K1 Penetration and Neutrophil Transmigration Across Human Brain Microvascular Endothelial Cells. J Infect Dis 2019; 219:470-479. [PMID: 30202861 PMCID: PMC6325351 DOI: 10.1093/infdis/jiy531] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2018] [Accepted: 08/31/2018] [Indexed: 11/12/2022] Open
Abstract
FimH-mediated bacterial invasion and polymorphonuclear neutrophil (PMN) transmigration across human brain microvascular endothelial cells (HBMECs) are required for the pathogenesis of Escherichia coli meningitis. However, the underlying mechanism remains unclear. This study demonstrated that the TnphoA mutant (22A33) and FimH-knockout mutant (ΔFimH) of E coli strain E44, which resulted in inactivation of FimH, were less invasive and less effective in promoting PMN transmigration than their wild-type strain. FimH protein induced PMN transmigration, whereas calmodulin inhibitor significantly blocked this effect. Moreover, immunofluorescence and co-immunoprecipitation analysis indicated that colocalized CD48 and α7 nAChR formed a complex on the surface of HBMECs that is associated with increased cofilin dephosphorylation, which could be remarkably enhanced by FimH+ E44. Our study concluded that FimH-induced E coli K1 invasion and PMN migration across HBMECs may be mediated by the CD48-α7nAChR complex in lipid rafts of HBMEC via Ca2+ signaling and cofilin dephosphorylation.
Collapse
Affiliation(s)
- Rui Liu
- Department of Histology and Embryology, School of Basic Medical Sciences, Wuhan University, China
- Department of Human Anatomy, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China
| | - Chao Wu
- Department of Histology and Embryology, School of Basic Medical Sciences, Wuhan University, China
| | - Li Li
- Kunming Key Laboratory of Children Infection and Immunity, Yunnan Institute of Pediatrics, Kunming Children’s Hospital, China
- Department of Pediatrics, Saban Research Institute, University of Southern California, Childrens Hospital Los Angeles
| | - Feng Chi
- Department of Pediatrics, Saban Research Institute, University of Southern California, Childrens Hospital Los Angeles
| | - Tiesong Zhang
- Kunming Key Laboratory of Children Infection and Immunity, Yunnan Institute of Pediatrics, Kunming Children’s Hospital, China
| | - Yating Xu
- Department of Histology and Embryology, School of Basic Medical Sciences, Wuhan University, China
| | - Lulu Ji
- Department of Histology and Embryology, School of Basic Medical Sciences, Wuhan University, China
| | - Zhiguo Chen
- Department of Histology and Embryology, School of Basic Medical Sciences, Wuhan University, China
| | - Hanyang Hu
- Department of Histology and Embryology, School of Basic Medical Sciences, Wuhan University, China
| | - Xiaoli Zhang
- Department of Ultrasound Imaging, Zhongnan Hospital of Wuhan University, China
| | - Shenghe Huang
- Department of Pediatrics, Saban Research Institute, University of Southern California, Childrens Hospital Los Angeles
- Department of Microbiology, School of Public Health and Tropocal Medicine, Southern Medical University, Guangzhou, China
| | - Lin Wang
- Department of Histology and Embryology, School of Basic Medical Sciences, Wuhan University, China
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, China
| |
Collapse
|
17
|
Legros N, Pohlentz G, Steil D, Müthing J. Shiga toxin-glycosphingolipid interaction: Status quo of research with focus on primary human brain and kidney endothelial cells. Int J Med Microbiol 2018; 308:1073-1084. [PMID: 30224239 DOI: 10.1016/j.ijmm.2018.09.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 08/28/2018] [Accepted: 09/06/2018] [Indexed: 12/21/2022] Open
Abstract
Shiga toxin (Stx)-mediated injury of the kidneys and the brain represent the major extraintestinal complications in humans upon infection by enterohemorrhagic Escherichia coli (EHEC). Damage of renal and cerebral endothelial cells is the key event in the pathogenesis of the life-threatening hemolytic uremic syndrome (HUS). Stxs are AB5 toxins and the B-pentamers of the two clinically important Stx subtypes Stx1a and Stx2a preferentially bind to the glycosphingolipid globotriaosylceramide (Gb3Cer, Galα4Galβ4Glcβ1Cer) and to less extent to globotetraosylceramide (Gb4Cer, GalNAcβ3Galα4Galβ4Glcβ1), which are expected to reside in lipid rafts in the plasma membrane of the human endothelium. This review summarizes the current knowledge on the Stx glycosphingolipid receptors and their lipid membrane ensemble in primary human brain microvascular endothelial cells (pHBMECs) and primary human renal glomerular endothelial cells (pHRGECs). Increasing knowledge on the precise initial molecular mechanisms by which Stxs interact with cellular targets will help to develop specific therapeutics and/or preventive measures to combat EHEC-caused diseases.
Collapse
Affiliation(s)
- Nadine Legros
- Institute for Hygiene, University of Münster, D-48149 Münster, Germany
| | | | - Daniel Steil
- Institute for Hygiene, University of Münster, D-48149 Münster, Germany
| | - Johannes Müthing
- Institute for Hygiene, University of Münster, D-48149 Münster, Germany; Interdisciplinary Center for Clinical Research (IZKF), University of Münster, D-48149 Münster, Germany.
| |
Collapse
|
18
|
Gall-Mas L, Fabbri A, Namini MRJ, Givskov M, Fiorentini C, Krejsgaard T. The Bacterial Toxin CNF1 Induces Activation and Maturation of Human Monocyte-Derived Dendritic Cells. Int J Mol Sci 2018; 19:ijms19051408. [PMID: 29738516 PMCID: PMC5983691 DOI: 10.3390/ijms19051408] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 05/04/2018] [Accepted: 05/04/2018] [Indexed: 11/24/2022] Open
Abstract
Cytotoxic necrotizing factor 1 (CNF1) is a bacterial protein toxin primarily expressed by pathogenic Escherichia coli strains, causing extraintestinal infections. The toxin is believed to enhance the invasiveness of E. coli by modulating the activity of Rho GTPases in host cells, but it has interestingly also been shown to promote inflammation, stimulate host immunity and function as a potent immunoadjuvant. The mechanisms underlying the immunostimulatory properties of CNF1 are, however, poorly characterized, and little is known about the direct effects of the toxin on immune cells. Here, we show that CNF1 induces expression of maturation markers on human immature monocyte-derived dendritic cells (moDCs) without compromising cell viability. Consistent with the phenotypic maturation, CNF1 further triggered secretion of proinflammatory cytokines and increased the capacity of moDCs to stimulate proliferation of allogenic naïve CD4+ T cells. A catalytically inactive form of the toxin did not induce moDC maturation, indicating that the enzymatic activity of CNF1 triggers immature moDCs to undergo phenotypic and functional maturation. As the maturation of dendritic cells plays a central role in initiating inflammation and activating the adaptive immune response, the present findings shed new light on the immunostimulatory properties of CNF1 and may explain why the toxin functions as an immunoadjuvant.
Collapse
Affiliation(s)
- Laura Gall-Mas
- Department of Immunology and Microbiology, University of Copenhagen, Nørre Alle 14, 2200 Copenhagen, Denmark.
| | - Alessia Fabbri
- Italian Center for Global Health, Istituto Superiore di Sanitá; Viale Regina Elena 299, 00161 Rome, Italy.
| | - Martin R J Namini
- Department of Immunology and Microbiology, University of Copenhagen, Nørre Alle 14, 2200 Copenhagen, Denmark.
| | - Michael Givskov
- Costerton Biofilm Center, Department of Immunology and Microbiology, University of Copenhagen, Nørre Alle 14, 2200 Copenhagen, Denmark.
| | - Carla Fiorentini
- Italian Center for Global Health, Istituto Superiore di Sanitá; Viale Regina Elena 299, 00161 Rome, Italy.
| | - Thorbjørn Krejsgaard
- Department of Immunology and Microbiology, University of Copenhagen, Nørre Alle 14, 2200 Copenhagen, Denmark.
| |
Collapse
|
19
|
Cole BK, Scott E, Ilikj M, Bard D, Akins DR, Dyer DW, Chavez-Bueno S. Route of infection alters virulence of neonatal septicemia Escherichia coli clinical isolates. PLoS One 2017; 12:e0189032. [PMID: 29236742 PMCID: PMC5728477 DOI: 10.1371/journal.pone.0189032] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 09/05/2017] [Indexed: 12/03/2022] Open
Abstract
Escherichia coli is the leading cause of Gram-negative neonatal septicemia in the United States. Invasion and passage across the neonatal gut after ingestion of maternal E. coli strains produce bacteremia. In this study, we compared the virulence properties of the neonatal E. coli bacteremia clinical isolate SCB34 with the archetypal neonatal E. coli meningitis strain RS218. Whole-genome sequencing data was used to compare the protein coding sequences among these clinical isolates and 33 other representative E. coli strains. Oral inoculation of newborn animals with either strain produced septicemia, whereas intraperitoneal injection caused septicemia only in pups infected with RS218 but not in those injected with SCB34. In addition to being virulent only through the oral route, SCB34 demonstrated significantly greater invasion and transcytosis of polarized intestinal epithelial cells in vitro as compared to RS218. Protein coding sequences comparisons highlighted the presence of known virulence factors that are shared among several of these isolates, and revealed the existence of proteins exclusively encoded in SCB34, many of which remain uncharacterized. Our study demonstrates that oral acquisition is crucial for the virulence properties of the neonatal bacteremia clinical isolate SCB34. This characteristic, along with its enhanced ability to invade and transcytose intestinal epithelium are likely determined by the specific virulence factors that predominate in this strain.
Collapse
Affiliation(s)
- Bryan K. Cole
- Department of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
| | - Edgar Scott
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
| | - Marko Ilikj
- Department of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
| | - David Bard
- Department of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
| | - Darrin R. Akins
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
| | - David W. Dyer
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
| | - Susana Chavez-Bueno
- Department of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
- * E-mail:
| |
Collapse
|
20
|
Micenková L, Beňová A, Frankovičová L, Bosák J, Vrba M, Ševčíková A, Kmeťová M, Šmajs D. Human Escherichia coli isolates from hemocultures: Septicemia linked to urogenital tract infections is caused by isolates harboring more virulence genes than bacteraemia linked to other conditions. Int J Med Microbiol 2017; 307:182-189. [DOI: 10.1016/j.ijmm.2017.02.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 02/17/2017] [Accepted: 02/24/2017] [Indexed: 12/24/2022] Open
|
21
|
A journey into the brain: insight into how bacterial pathogens cross blood-brain barriers. Nat Rev Microbiol 2017; 15:149-159. [PMID: 28090076 DOI: 10.1038/nrmicro.2016.178] [Citation(s) in RCA: 164] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The blood-brain barrier, which is one of the tightest barriers in the body, protects the brain from insults, such as infections. Indeed, only a few of the numerous blood-borne bacteria can cross the blood-brain barrier to cause meningitis. In this Review, we focus on invasive extracellular pathogens, such as Neisseria meningitidis, Streptococcus pneumoniae, group B Streptococcus and Escherichia coli, to review the obstacles that bacteria have to overcome in order to invade the meninges from the bloodstream, and the specific skills they have developed to bypass the blood-brain barrier. The medical importance of understanding how these barriers can be circumvented is underlined by the fact that we need to improve drug delivery into the brain.
Collapse
|
22
|
Complete Genome Sequence of the Neonatal Meningitis-Causing Escherichia coli Strain NMEC O18. GENOME ANNOUNCEMENTS 2016; 4:4/6/e01239-16. [PMID: 27811114 PMCID: PMC5095484 DOI: 10.1128/genomea.01239-16] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Neonatal meningitis Escherichia coli (NMEC) is a common agent of neonatal bacterial meningitis, causing high neonatal mortality and neurologic sequelae in its victims. Here, we present the complete genome sequence of NMEC O18 (also known as NMEC 58), a highly virulent (O18ac:K1, ST416) strain.
Collapse
|
23
|
Dale AP, Woodford N. Extra-intestinal pathogenic Escherichia coli (ExPEC): Disease, carriage and clones. J Infect 2015; 71:615-26. [PMID: 26409905 DOI: 10.1016/j.jinf.2015.09.009] [Citation(s) in RCA: 111] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 09/16/2015] [Indexed: 10/23/2022]
Abstract
Extra-intestinal pathogenic Escherichia coli (ExPEC) have a complex phylogeny, broad virulence factor (VF) armament and significant genomic plasticity, and are associated with a spectrum of host infective syndromes ranging from simple urinary tract infection to life-threatening bacteraemia. Their importance as pathogens has come to the fore in recent years, particularly in the context of the global emergence of hyper-virulent and antibiotic resistant strains. Despite this, the mechanisms underlying ExPEC transmission dynamics and clonal selection remain poorly understood. Large-scale epidemiological and clinical studies are urgently required to ascertain the mechanisms underlying these processes to enable the development of novel evidence-based preventative and therapeutic strategies. In the current review, we provide a concise summary of the methods utilised for ExPEC phylogenetic delineation before exploring in detail the associations between ExPEC VFs and site-specific disease. We then consider the role of ExPEC as an intestinal colonist and outline known associations between ExPEC clonal variation, specific disease syndromes and antibiotic resistance.
Collapse
Affiliation(s)
- Adam P Dale
- Academic Unit of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton General Hospital, South Academic Block, Tremona Road, Southampton SO16 6YD, UK.
| | - Neil Woodford
- Antimicrobial Resistance and Healthcare Associated Infections (AMRHAI) Reference Unit, Reference Microbiology Services, Public Health England, London NW9 5EQ, UK; The NIHR Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance at Imperial College London, Hammersmith Campus, Du Cane Road, London W12 0HS, UK
| |
Collapse
|
24
|
Mehra A, Jerath G, Ramakrishnan V, Trivedi V. Characterization of ICAM-1 biophore to design cytoadherence blocking peptides. J Mol Graph Model 2015; 57:27-35. [PMID: 25625914 DOI: 10.1016/j.jmgm.2015.01.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Revised: 11/22/2014] [Accepted: 01/06/2015] [Indexed: 01/13/2023]
Abstract
Peptides from natural sources are good starting material to design bioactive agents with desired therapeutic property. IB peptide derived from the ICAM-1 has been studied extensively as an agent to disrupt the non-specific binding of lymphocyte to the endothelial cells. ICAM-1: IB molecular model reveals that IB peptide binds in an extended conformation to the ICAM-1, masking LFA-1 and partially covering PfEMP-1 binding site. Considering the regioselective requirement of ICAM-1: PfEMP1 binding site, IB peptide charge and 3-D conformation are optimized through generation of combinatorial peptide library containing single, double, triple, tetra and quadra amino acid substitutions of IB peptide. Further, truncation of IB peptide followed by molecular modeling studies gave us the biophoric environment of the IB peptide required for its activity. Molecular modeling of these peptides into the binding site indicates that these complexes are fitting well into the site and making extensive interactions with the residues crucial for PfEMP-1 binding. Molecular dynamics simulations were performed for 10ns each under four different temperatures to estimate comparative stability of ICAM1: IB peptide complexes. The designed peptide ICAM1: IBT213 has comparable stability at ambient temperature, while ICAM1: IBT1 shows a greater degree of robustness at higher temperatures. Overall, the study has given useful insights into IB peptide binding site on ICAM1 and its potential in designing novel peptides to disrupt the cytoadherence complex involving ICAM1: PfEMP1.
Collapse
Affiliation(s)
- A Mehra
- Malaria Research Group, Department of Biotechnology, Indian Institute of Technology-Guwahati, Guwahati 781039, Assam, India
| | - Gaurav Jerath
- Molecular Informatics & Design Laboratory, Department of Biotechnology, Indian Institute of Technology-Guwahati, Guwahati 781039, Assam, India
| | - Vibin Ramakrishnan
- Molecular Informatics & Design Laboratory, Department of Biotechnology, Indian Institute of Technology-Guwahati, Guwahati 781039, Assam, India
| | - Vishal Trivedi
- Malaria Research Group, Department of Biotechnology, Indian Institute of Technology-Guwahati, Guwahati 781039, Assam, India.
| |
Collapse
|