1
|
Parenteral Exposure of Mice to Ricin Toxin Induces Fatal Hypoglycemia by Cytokine-Mediated Suppression of Hepatic Glucose-6-Phosphatase Expression. Toxins (Basel) 2022; 14:toxins14120820. [PMID: 36548717 PMCID: PMC9786807 DOI: 10.3390/toxins14120820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/08/2022] [Accepted: 11/14/2022] [Indexed: 11/25/2022] Open
Abstract
Ricin toxin is an agent of biodefense concern and we have been developing countermeasures for ricin threats. In doing so, we sought biomarkers of ricin toxicosis and found that in mice parenteral injection of ricin toxin causes profound hypoglycemia, in the absence of other clinical laboratory abnormalities. We now seek to identify the mechanisms underlying this hypoglycemia. Within the first hours following injection, while still normoglycemic, lymphopenia and pro-inflammatory cytokine secretion were observed, particularly tumor necrosis factor (TNF)-α. The cytokine response evolved over the next day into a complex storm of both pro- and anti-inflammatory cytokines. Evaluation of pancreatic function and histology demonstrated marked islet hypertrophy involving predominantly β-cells, but only mildly elevated levels of insulin secretion, and diminished hepatic insulin signaling. Drops in blood glucose were observed even after destruction of β-cells with streptozotocin. In the liver, we observed a rapid and persistent decrease in the expression of glucose-6-phosphatase (G6Pase) RNA and protein levels, accompanied by a drop in glucose-6-phosphate and increase in glycogen. TNF-α has previously been reported to suppress G6Pase expression. In humans, a genetic deficiency of G6Pase results in glycogen storage disease, type-I (GSD-1), a hallmark of which is potentially fatal hypoglycemia.
Collapse
|
2
|
Kempa J, O’Shea-Stone G, Moss CE, Peters T, Marcotte TK, Tripet B, Eilers B, Bothner B, Copié V, Pincus SH. Distinct Metabolic States Are Observed in Hypoglycemia Induced in Mice by Ricin Toxin or by Fasting. Toxins (Basel) 2022; 14:toxins14120815. [PMID: 36548712 PMCID: PMC9782143 DOI: 10.3390/toxins14120815] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/08/2022] [Accepted: 11/15/2022] [Indexed: 11/23/2022] Open
Abstract
Hypoglycemia may be induced by a variety of physiologic and pathologic stimuli and can result in life-threatening consequences if untreated. However, hypoglycemia may also play a role in the purported health benefits of intermittent fasting and caloric restriction. Previously, we demonstrated that systemic administration of ricin toxin induced fatal hypoglycemia in mice. Here, we examine the metabolic landscape of the hypoglycemic state induced in the liver of mice by two different stimuli: systemic ricin administration and fasting. Each stimulus produced the same decrease in blood glucose and weight loss. The polar metabolome was studied using 1H NMR, quantifying 59 specific metabolites, and untargeted LC-MS on approximately 5000 features. Results were analyzed by multivariate analyses, using both principal component analysis (PCA) and partial least squares-discriminant analysis (PLS-DA), to identify global metabolic patterns, and by univariate analyses (ANOVA) to assess individual metabolites. The results demonstrated that while there were some similarities in the responses to the two stimuli including decreased glucose, ADP, and glutathione, they elicited distinct metabolic states. The metabolite showing the greatest difference was O-phosphocholine, elevated in ricin-treated animals and known to be affected by the pro-inflammatory cytokine TNF-α. Another difference was the alternative fuel source utilized, with fasting-induced hypoglycemia primarily ketotic, while the response to ricin-induced hypoglycemia involves protein and amino acid catabolism.
Collapse
Affiliation(s)
- Jacob Kempa
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717, USA
| | - Galen O’Shea-Stone
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717, USA
| | - Corinne E. Moss
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717, USA
| | - Tami Peters
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717, USA
| | - Tamera K. Marcotte
- Animal Resources Center, Montana State University, Bozeman, MT 59717, USA
| | - Brian Tripet
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717, USA
| | - Brian Eilers
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717, USA
| | - Brian Bothner
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717, USA
| | - Valérie Copié
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717, USA
- Correspondence: (V.C.); (S.H.P.)
| | - Seth H. Pincus
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717, USA
- Correspondence: (V.C.); (S.H.P.)
| |
Collapse
|
3
|
Orsini Delgado ML, Avril A, Prigent J, Dano J, Rouaix A, Worbs S, Dorner BG, Rougeaux C, Becher F, Fenaille F, Livet S, Volland H, Tournier JN, Simon S. Ricin Antibodies' Neutralizing Capacity against Different Ricin Isoforms and Cultivars. Toxins (Basel) 2021; 13:100. [PMID: 33573016 PMCID: PMC7911099 DOI: 10.3390/toxins13020100] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 01/21/2021] [Accepted: 01/25/2021] [Indexed: 12/11/2022] Open
Abstract
Ricin, a highly toxic protein from Ricinus communis, is considered a potential biowarfare agent. Despite the many data available, no specific treatment has yet been approved. Due to their ability to provide immediate protection, antibodies (Abs) are an approach of choice. However, their high specificity might compromise their capacity to protect against the different ricin isoforms (D and E) found in the different cultivars. In previous work, we have shown the neutralizing potential of different Abs (43RCA-G1 (anti ricin A-chain) and RB34 and RB37 (anti ricin B-chain)) against ricin D. In this study, we evaluated their protective capacity against both ricin isoforms. We show that: (i) RB34 and RB37 recognize exclusively ricin D, whereas 43RCA-G1 recognizes both isoforms, (ii) their neutralizing capacity in vitro varies depending on the cultivar, and (iii) there is a synergistic effect when combining RB34 and 43RCA-G1. This effect is also demonstrated in vivo in a mouse model of intranasal intoxication with ricin D/E (1:1), where approximately 60% and 40% of mice treated 0 and 6 h after intoxication, respectively, are protected. Our results highlight the importance of evaluating the effectiveness of the Abs against different ricin isoforms to identify the treatment with the broadest spectrum neutralizing effect.
Collapse
Affiliation(s)
- Maria Lucia Orsini Delgado
- Paris-Saclay University, CEA, INRAE, Medicines and Healthcare Technologies Department (DMTS), SPI, 91191 Gif-sur-Yvette, France; (J.P.); (J.D.); (A.R.); (F.B.); (F.F.); (S.L.); (H.V.)
| | - Arnaud Avril
- Microbiology and Infectious Diseases Department, Anti-Infectious Biotherapies and Immunity Unit, Army Biomedical Research Institute, 91220 Brétigny-sur-Orge, France; (A.A.); (C.R.); (J.-N.T.)
| | - Julie Prigent
- Paris-Saclay University, CEA, INRAE, Medicines and Healthcare Technologies Department (DMTS), SPI, 91191 Gif-sur-Yvette, France; (J.P.); (J.D.); (A.R.); (F.B.); (F.F.); (S.L.); (H.V.)
| | - Julie Dano
- Paris-Saclay University, CEA, INRAE, Medicines and Healthcare Technologies Department (DMTS), SPI, 91191 Gif-sur-Yvette, France; (J.P.); (J.D.); (A.R.); (F.B.); (F.F.); (S.L.); (H.V.)
| | - Audrey Rouaix
- Paris-Saclay University, CEA, INRAE, Medicines and Healthcare Technologies Department (DMTS), SPI, 91191 Gif-sur-Yvette, France; (J.P.); (J.D.); (A.R.); (F.B.); (F.F.); (S.L.); (H.V.)
| | - Sylvia Worbs
- Biological Toxins, Centre for Biological Threats and Special Pathogens, Robert Koch Institute (RKI), 13353 Berlin, Germany; (S.W.); (B.G.D.)
| | - Brigitte G. Dorner
- Biological Toxins, Centre for Biological Threats and Special Pathogens, Robert Koch Institute (RKI), 13353 Berlin, Germany; (S.W.); (B.G.D.)
| | - Clémence Rougeaux
- Microbiology and Infectious Diseases Department, Anti-Infectious Biotherapies and Immunity Unit, Army Biomedical Research Institute, 91220 Brétigny-sur-Orge, France; (A.A.); (C.R.); (J.-N.T.)
| | - François Becher
- Paris-Saclay University, CEA, INRAE, Medicines and Healthcare Technologies Department (DMTS), SPI, 91191 Gif-sur-Yvette, France; (J.P.); (J.D.); (A.R.); (F.B.); (F.F.); (S.L.); (H.V.)
| | - François Fenaille
- Paris-Saclay University, CEA, INRAE, Medicines and Healthcare Technologies Department (DMTS), SPI, 91191 Gif-sur-Yvette, France; (J.P.); (J.D.); (A.R.); (F.B.); (F.F.); (S.L.); (H.V.)
| | - Sandrine Livet
- Paris-Saclay University, CEA, INRAE, Medicines and Healthcare Technologies Department (DMTS), SPI, 91191 Gif-sur-Yvette, France; (J.P.); (J.D.); (A.R.); (F.B.); (F.F.); (S.L.); (H.V.)
| | - Hervé Volland
- Paris-Saclay University, CEA, INRAE, Medicines and Healthcare Technologies Department (DMTS), SPI, 91191 Gif-sur-Yvette, France; (J.P.); (J.D.); (A.R.); (F.B.); (F.F.); (S.L.); (H.V.)
| | - Jean-Nicolas Tournier
- Microbiology and Infectious Diseases Department, Anti-Infectious Biotherapies and Immunity Unit, Army Biomedical Research Institute, 91220 Brétigny-sur-Orge, France; (A.A.); (C.R.); (J.-N.T.)
| | - Stéphanie Simon
- Paris-Saclay University, CEA, INRAE, Medicines and Healthcare Technologies Department (DMTS), SPI, 91191 Gif-sur-Yvette, France; (J.P.); (J.D.); (A.R.); (F.B.); (F.F.); (S.L.); (H.V.)
| |
Collapse
|
4
|
Falach R, Sapoznikov A, Evgy Y, Aftalion M, Makovitzki A, Agami A, Mimran A, Lerer E, Ben David A, Zichel R, Katalan S, Rosner A, Sabo T, Kronman C, Gal Y. Post-Exposure Anti-Ricin Treatment Protects Swine Against Lethal Systemic and Pulmonary Exposures. Toxins (Basel) 2020; 12:toxins12060354. [PMID: 32481526 PMCID: PMC7354453 DOI: 10.3390/toxins12060354] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 05/21/2020] [Accepted: 05/25/2020] [Indexed: 12/04/2022] Open
Abstract
Ricin, a plant-derived toxin originating from the seeds of Ricinus communis (castor bean plant), is one of the most lethal toxins known. To date, there is no approved post-exposure therapy for ricin exposures. This work demonstrates for the first time the therapeutic efficacy of equine-derived anti-ricin F(ab’)2 antibodies against lethal pulmonary and systemic ricin exposures in swine. While administration of the antitoxin at 18 h post-exposure protected more than 80% of both intratracheally and intramuscularly ricin-intoxicated swine, treatment at 24 h post-exposure protected 58% of the intramuscular-exposed swine, as opposed to 26% of the intratracheally exposed animals. Quantitation of the anti-ricin neutralizing units in the anti-toxin preparations confirmed that the disparate protection conferred to swine subjected to the two routes of exposure stems from variance between the two models. Furthermore, dose response experiments showed that approximately 3 times lesser amounts of antibody are needed for high-level protection of the intramuscularly compared to the intratracheally intoxicated swine. This study, which demonstrates the high-level post-exposure efficacy of anti-ricin antitoxin at clinically relevant time-points in a large animal model, can serve as the basis for the formulation of post-exposure countermeasures against ricin poisoning in humans.
Collapse
Affiliation(s)
- Reut Falach
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness-Ziona 76100, Israel; (R.F.); (A.S.); (Y.E.); (M.A.); (T.S.)
| | - Anita Sapoznikov
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness-Ziona 76100, Israel; (R.F.); (A.S.); (Y.E.); (M.A.); (T.S.)
| | - Yentl Evgy
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness-Ziona 76100, Israel; (R.F.); (A.S.); (Y.E.); (M.A.); (T.S.)
| | - Moshe Aftalion
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness-Ziona 76100, Israel; (R.F.); (A.S.); (Y.E.); (M.A.); (T.S.)
| | - Arik Makovitzki
- Department of Biotechnology, Israel Institute for Biological Research, Ness-Ziona 76100, Israel; (A.M.); (A.A.); (A.M.); (E.L.); (A.B.D.); (R.Z.)
| | - Avi Agami
- Department of Biotechnology, Israel Institute for Biological Research, Ness-Ziona 76100, Israel; (A.M.); (A.A.); (A.M.); (E.L.); (A.B.D.); (R.Z.)
| | - Avishai Mimran
- Department of Biotechnology, Israel Institute for Biological Research, Ness-Ziona 76100, Israel; (A.M.); (A.A.); (A.M.); (E.L.); (A.B.D.); (R.Z.)
| | - Elad Lerer
- Department of Biotechnology, Israel Institute for Biological Research, Ness-Ziona 76100, Israel; (A.M.); (A.A.); (A.M.); (E.L.); (A.B.D.); (R.Z.)
| | - Alon Ben David
- Department of Biotechnology, Israel Institute for Biological Research, Ness-Ziona 76100, Israel; (A.M.); (A.A.); (A.M.); (E.L.); (A.B.D.); (R.Z.)
| | - Ran Zichel
- Department of Biotechnology, Israel Institute for Biological Research, Ness-Ziona 76100, Israel; (A.M.); (A.A.); (A.M.); (E.L.); (A.B.D.); (R.Z.)
| | - Shahaf Katalan
- Department of Pharmacology, Israel Institute for Biological Research, Ness-Ziona 76100, Israel;
| | - Amir Rosner
- Veterinary Center for Preclinical Research, Israel Institute for Biological Research, Ness-Ziona 76100, Israel;
| | - Tamar Sabo
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness-Ziona 76100, Israel; (R.F.); (A.S.); (Y.E.); (M.A.); (T.S.)
| | - Chanoch Kronman
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness-Ziona 76100, Israel; (R.F.); (A.S.); (Y.E.); (M.A.); (T.S.)
- Correspondence: (C.K.); (Y.G.); Tel.: +972–8–9381522 (C.K.); +972–8–9381479 (Y.G.)
| | - Yoav Gal
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness-Ziona 76100, Israel; (R.F.); (A.S.); (Y.E.); (M.A.); (T.S.)
- Correspondence: (C.K.); (Y.G.); Tel.: +972–8–9381522 (C.K.); +972–8–9381479 (Y.G.)
| |
Collapse
|
5
|
Yu H, Chang Y, Dong M, Wang Y, Sun C, Liu Z, Wang X, Xu N, Liu W. Neutralization and binding activity of a human single-chain antibody to ricin toxin. FOOD AGR IMMUNOL 2019. [DOI: 10.1080/09540105.2019.1698521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Affiliation(s)
- Haotian Yu
- Institute of Military Veterinary Medicine, Academy of Military Medical Sciences, Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun, 130122, People’s Republic of China
| | - Ying Chang
- Institute of Military Veterinary Medicine, Academy of Military Medical Sciences, Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun, 130122, People’s Republic of China
- Jilin Medical University, Jilin, People’s Republic of China
| | - Mingxin Dong
- Institute of Military Veterinary Medicine, Academy of Military Medical Sciences, Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun, 130122, People’s Republic of China
| | - Yan Wang
- Institute of Military Veterinary Medicine, Academy of Military Medical Sciences, Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun, 130122, People’s Republic of China
| | - Chengbiao Sun
- Institute of Military Veterinary Medicine, Academy of Military Medical Sciences, Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun, 130122, People’s Republic of China
| | - Zhongliang Liu
- College of Life Sciences, Jilin Agricultural University, Changchun, People’s Republic of China
| | - Xin Wang
- College of Life Sciences, Jilin Agricultural University, Changchun, People’s Republic of China
| | - Na Xu
- Jilin Medical University, Jilin, People’s Republic of China
| | - Wensen Liu
- Institute of Military Veterinary Medicine, Academy of Military Medical Sciences, Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun, 130122, People’s Republic of China
| |
Collapse
|
6
|
Ghotloo S, Amiri MM, Khoshnoodi J, Abbasi E, Jeddi-Tehrani M, Golsaz-Shirazi F, Shokri F. Contribution of Fc fragment of monoclonal antibodies to tetanus toxin neutralization. Neurotox Res 2019; 37:578-586. [PMID: 31721050 DOI: 10.1007/s12640-019-00124-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 10/08/2019] [Accepted: 10/11/2019] [Indexed: 01/08/2023]
Abstract
BACKGROUND Monoclonal antibodies (MAbs) against neurotoxin of Clostridium tetani are considered as a novel source of immunoglobulins for passive immunotherapy of tetanus. Toxin neutralization is classically attributed to the Fab and F(ab')2 fragments of antibodies. Herein, we generated Fab and F(ab')2 fragments of three toxin neutralizing mouse MAbs and compared their neutralizing activities to those of their intact molecules. METHODS Fab and F (ab')2 fragments of the antibodies were generated by papain and pepsin digestions, respectively, and their toxin neutralizing activities were compared with those of the intact antibodies in an in vivo toxin neutralization assay. RESULTS While low doses of the intact MAbs were able to fully protect the mice against tetanus toxin, none of the mice which received Fab or F(ab')2 fragments survived until day 14, even at the highest administered dose. All mice receiving human polyclonal anti-tetanus immunoglobulin or their fragments were fully protected. CONCLUSION Reduction in toxin neutralization activities of Fab and F(ab')2 fragments of our MAbs seems to be influenced by their Fc regions. Steric hindrance of the Fc region on the receptor-binding site of the toxin may explain the stronger neutralization of the toxin by the intact MAbs in comparison to their fragments.
Collapse
Affiliation(s)
- Somayeh Ghotloo
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Mehdi Amiri
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Jalal Khoshnoodi
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Ebrahim Abbasi
- Department of Bacterial Vaccines, Razi Vaccine and Serum Research Institute, Karaj, Iran
| | - Mahmood Jeddi-Tehrani
- Monoclonal Antibody Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Forough Golsaz-Shirazi
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Fazel Shokri
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran. .,Monoclonal Antibody Research Center, Avicenna Research Institute, ACECR, Tehran, Iran.
| |
Collapse
|
7
|
Ghotloo S, Golsaz-Shirazi F, Amiri MM, Jeddi-Tehrani M, Shokri F. Epitope Mapping of Tetanus Toxin by Monoclonal Antibodies: Implication for Immunotherapy and Vaccine Design. Neurotox Res 2019; 37:239-249. [PMID: 31410686 DOI: 10.1007/s12640-019-00096-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Revised: 07/27/2019] [Accepted: 08/02/2019] [Indexed: 01/05/2023]
Abstract
Tetanus as a life-threatening disease is characterized by muscle spasm. The disease is caused by the neurotoxin of Clostridium tetani. Active form of tetanus neurotoxin is composed of the light chain (fragment A) and the heavy chain. Fragment A is a zinc metalloprotease, which cleaves the neuronal soluble N-ethylmaleimide-sensitive attachment receptor (SNARE) protein, leading to the blockade of inhibitory neurotransmitter release and subsequent generalized muscular spasm. Two functional domains of the heavy chain are fragment C, which is required for neuronal cell binding of the toxin and subsequent endocytosis into the vesicles, and fragment B, which is important for fragment A translocation across the vesicular membrane into the neuronal cytosol. Currently, polyclonal immunoglobulins against tetanus neurotoxin obtained from human plasma of hyper-immunized donors are utilized for passive immunotherapy of tetanus; however, these preparations have many disadvantages including high lot-to-lot heterogeneity, possibility of transmitting microbial agents, and the adverse reactions to the other proteins in the plasma. Neutralizing anti-tetanus neurotoxin monoclonal antibodies (MAbs) lack these drawbacks and could be considered as a suitable alternative for passive immunotherapy of tetanus. In this review, we provide an overview of the literature discussing epitope mapping of the published neutralizing MAbs against tetanus toxin.
Collapse
Affiliation(s)
- Somayeh Ghotloo
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.,Department of Laboratory Medicine, School of Allied Medical Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Forough Golsaz-Shirazi
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Mehdi Amiri
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahmood Jeddi-Tehrani
- Monoclonal Antibody Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Fazel Shokri
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran. .,Monoclonal Antibody Research Center, Avicenna Research Institute, ACECR, Tehran, Iran.
| |
Collapse
|
8
|
Intracellular Transport and Cytotoxicity of the Protein Toxin Ricin. Toxins (Basel) 2019; 11:toxins11060350. [PMID: 31216687 PMCID: PMC6628406 DOI: 10.3390/toxins11060350] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 06/13/2019] [Accepted: 06/14/2019] [Indexed: 12/17/2022] Open
Abstract
Ricin can be isolated from the seeds of the castor bean plant (Ricinus communis). It belongs to the ribosome-inactivating protein (RIP) family of toxins classified as a bio-threat agent due to its high toxicity, stability and availability. Ricin is a typical A-B toxin consisting of a single enzymatic A subunit (RTA) and a binding B subunit (RTB) joined by a single disulfide bond. RTA possesses an RNA N-glycosidase activity; it cleaves ribosomal RNA leading to the inhibition of protein synthesis. However, the mechanism of ricin-mediated cell death is quite complex, as a growing number of studies demonstrate that the inhibition of protein synthesis is not always correlated with long term ricin toxicity. To exert its cytotoxic effect, ricin A-chain has to be transported to the cytosol of the host cell. This translocation is preceded by endocytic uptake of the toxin and retrograde traffic through the trans-Golgi network (TGN) and the endoplasmic reticulum (ER). In this article, we describe intracellular trafficking of ricin with particular emphasis on host cell factors that facilitate this transport and contribute to ricin cytotoxicity in mammalian and yeast cells. The current understanding of the mechanisms of ricin-mediated cell death is discussed as well. We also comment on recent reports presenting medical applications for ricin and progress associated with the development of vaccines against this toxin.
Collapse
|
9
|
Generation of Highly Efficient Equine-Derived Antibodies for Post-Exposure Treatment of Ricin Intoxications by Vaccination with Monomerized Ricin. Toxins (Basel) 2018; 10:toxins10110466. [PMID: 30424519 PMCID: PMC6267474 DOI: 10.3390/toxins10110466] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 11/04/2018] [Accepted: 11/08/2018] [Indexed: 12/13/2022] Open
Abstract
Ricin, a highly lethal toxin derived from the seeds of Ricinus communis (castor beans) is considered a potential biological threat agent due to its high availability, ease of production, and to the lack of any approved medical countermeasure against ricin exposures. To date, the use of neutralizing antibodies is the most promising post-exposure treatment for ricin intoxication. The aim of this work was to generate anti-ricin antitoxin that confers high level post-exposure protection against ricin challenge. Due to safety issues regarding the usage of ricin holotoxin as an antigen, we generated an inactivated toxin that would reduce health risks for both the immunizer and the immunized animal. To this end, a monomerized ricin antigen was constructed by reducing highly purified ricin to its monomeric constituents. Preliminary immunizing experiments in rabbits indicated that this monomerized antigen is as effective as the native toxin in terms of neutralizing antibody elicitation and protection of mice against lethal ricin challenges. Characterization of the monomerized antigen demonstrated that the irreversibly detached A and B subunits retain catalytic and lectin activity, respectively, implying that the monomerization process did not significantly affect their overall structure. Toxicity studies revealed that the monomerized ricin displayed a 250-fold decreased activity in a cell culture-based functionality test, while clinical signs were undetectable in mice injected with this antigen. Immunization of a horse with the monomerized toxin was highly effective in elicitation of high titers of neutralizing antibodies. Due to the increased potential of IgG-derived adverse events, anti-ricin F(ab')₂ antitoxin was produced. The F(ab')₂-based antitoxin conferred high protection to intranasally ricin-intoxicated mice; ~60% and ~34% survival, when administered 24 and 48 h post exposure to a lethal dose, respectively. In line with the enhanced protection, anti-inflammatory and anti-edematous effects were measured in the antitoxin treated mice, in comparison to mice that were intoxicated but not treated. Accordingly, this anti-ricin preparation is an excellent candidate for post exposure treatment of ricin intoxications.
Collapse
|
10
|
Gal Y, Mazor O, Falach R, Sapoznikov A, Kronman C, Sabo T. Treatments for Pulmonary Ricin Intoxication: Current Aspects and Future Prospects. Toxins (Basel) 2017; 9:E311. [PMID: 28972558 PMCID: PMC5666358 DOI: 10.3390/toxins9100311] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 09/26/2017] [Accepted: 09/29/2017] [Indexed: 12/13/2022] Open
Abstract
Ricin, a plant-derived toxin originating from the seeds of Ricinus communis (castor beans), is one of the most lethal toxins known, particularly if inhaled. Ricin is considered a potential biological threat agent due to its high availability and ease of production. The clinical manifestation of pulmonary ricin intoxication in animal models is closely related to acute respiratory distress syndrome (ARDS), which involves pulmonary proinflammatory cytokine upregulation, massive neutrophil infiltration and severe edema. Currently, the only post-exposure measure that is effective against pulmonary ricinosis at clinically relevant time-points following intoxication in pre-clinical studies is passive immunization with anti-ricin neutralizing antibodies. The efficacy of this antitoxin treatment depends on antibody affinity and the time of treatment initiation within a limited therapeutic time window. Small-molecule compounds that interfere directly with the toxin or inhibit its intracellular trafficking may also be beneficial against ricinosis. Another approach relies on the co-administration of antitoxin antibodies with immunomodulatory drugs, thereby neutralizing the toxin while attenuating lung injury. Immunomodulators and other pharmacological-based treatment options should be tailored according to the particular pathogenesis pathways of pulmonary ricinosis. This review focuses on the current treatment options for pulmonary ricin intoxication using anti-ricin antibodies, disease-modifying countermeasures, anti-ricin small molecules and their various combinations.
Collapse
Affiliation(s)
- Yoav Gal
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness-Ziona 76100, Israel.
| | - Ohad Mazor
- Department of Infectious Diseases, Israel Institute for Biological Research, Ness-Ziona 76100, Israel.
| | - Reut Falach
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness-Ziona 76100, Israel.
| | - Anita Sapoznikov
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness-Ziona 76100, Israel.
| | - Chanoch Kronman
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness-Ziona 76100, Israel.
| | - Tamar Sabo
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness-Ziona 76100, Israel.
| |
Collapse
|
11
|
Torgeman A, Ozeri E, Ben David A, Diamant E, Rosen O, Schwartz A, Barnea A, Makovitzki A, Mimran A, Zichel R. Role of Homologous Fc Fragment in the Potency and Efficacy of Anti-Botulinum Antibody Preparations. Toxins (Basel) 2017; 9:toxins9060180. [PMID: 28555060 PMCID: PMC5488030 DOI: 10.3390/toxins9060180] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 05/24/2017] [Accepted: 05/27/2017] [Indexed: 12/12/2022] Open
Abstract
The only approved treatment for botulism relies on passive immunity which is mostly based on antibody preparations collected from hyper-immune horses. The IgG Fc fragment is commonly removed from these heterologous preparations to reduce the incidence of hyper-sensitivity reactions. New-generation therapies entering the pipeline are based on a combination of humanized monoclonal antibodies (MAbs), which exhibit improved safety and pharmacokinetics. In the current study, a systematic and quantitative approach was applied to measure the direct contribution of homologous Fc to the potency of monoclonal and polyclonal antitoxin preparations in mice. Homologous Fc increased the potency of three individual anti-botulinum toxin MAbs by up to one order of magnitude. Moreover, Fc fragment removal almost completely abolished the synergistic potency obtained from a combined preparation of these three MAbs. The MAb mixture neutralized a 400-mouse median lethal dose (MsLD50) of botulinum toxin, whereas the F(ab′)2 combination failed to neutralize 10 MsLD50 of botulinum toxin. Notably, increased avidity did not compensate for this phenomenon, as a polyclonal, hyper-immune, homologous preparation lost 90% of its potency as well upon Fc removal. Finally, the addition of homologous Fc arms to a heterologous pharmaceutical anti-botulinum toxin polyclonal horse F(ab′)2 preparation improved its efficacy when administered to intoxicated symptomatic mice. Our study extends the aspects by which switching from animal-based to human-based antitoxins will improve not only the safety but also the potency and efficacy of passive immunity against toxins.
Collapse
Affiliation(s)
- Amram Torgeman
- Department of Biotechnology, Israel Institute for Biological Research, Ness Ziona 7410001, Israel.
| | - Eyal Ozeri
- Department of Biotechnology, Israel Institute for Biological Research, Ness Ziona 7410001, Israel.
| | - Alon Ben David
- Department of Biotechnology, Israel Institute for Biological Research, Ness Ziona 7410001, Israel.
| | - Eran Diamant
- Department of Biotechnology, Israel Institute for Biological Research, Ness Ziona 7410001, Israel.
| | - Osnat Rosen
- Department of Biotechnology, Israel Institute for Biological Research, Ness Ziona 7410001, Israel.
| | - Arieh Schwartz
- Department of Biotechnology, Israel Institute for Biological Research, Ness Ziona 7410001, Israel.
| | - Ada Barnea
- Department of Biotechnology, Israel Institute for Biological Research, Ness Ziona 7410001, Israel.
| | - Arik Makovitzki
- Department of Biotechnology, Israel Institute for Biological Research, Ness Ziona 7410001, Israel.
| | - Avishai Mimran
- Department of Biotechnology, Israel Institute for Biological Research, Ness Ziona 7410001, Israel.
| | - Ran Zichel
- Department of Biotechnology, Israel Institute for Biological Research, Ness Ziona 7410001, Israel.
| |
Collapse
|
12
|
Noy-Porat T, Alcalay R, Epstein E, Sabo T, Kronman C, Mazor O. Extended therapeutic window for post-exposure treatment of ricin intoxication conferred by the use of high-affinity antibodies. Toxicon 2017; 127:100-105. [PMID: 28089771 DOI: 10.1016/j.toxicon.2017.01.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 01/09/2017] [Accepted: 01/10/2017] [Indexed: 12/24/2022]
Abstract
The plant toxin ricin is considered a potential bioterror agent against which there is no available antidote. To date, neutralizing antibodies are the most promising post-exposure treatment for ricin intoxication, yet so far they were shown to be effective only when given within several hours post exposure. As part of an ongoing effort to develop efficient ricin-countermeasures, we tested whether high-affinity antibodies that were previously isolated from immunized non-human primates, may confer effective post-exposure therapy for ricin-intoxicated mice treated at late time-points after exposure. While each antibody is capable of providing high protection rate by itself, a formulation consisting of three neutralizing antibodies that target different epitopes was tested to provide therapeutic coverage against different variants of the malicious pathogen. Indeed, the tri-antibody based cocktail was highly effective, its administration resulting in very high survival rates (>70%) when animals were treated as late as 48 h post exposure and significant protection (>30%) even at 72 h. This study establishes for the first time that anti-ricin antibodies can serve as a highly effective antidote at such late time-points after exposure. From the clinical point of view, the extended therapeutic window documented here is of high importance allowing adequate time to accurately identify the causative agent and may permit initiation of life-saving treatment with these antibodies even after the onset of clinical signs.
Collapse
Affiliation(s)
- Tal Noy-Porat
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness-Ziona, Israel
| | - Ron Alcalay
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness-Ziona, Israel
| | - Eyal Epstein
- Department of Biotechnology, Israel Institute for Biological Research, Ness-Ziona, Israel
| | - Tamar Sabo
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness-Ziona, Israel
| | - Chanoch Kronman
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness-Ziona, Israel
| | - Ohad Mazor
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness-Ziona, Israel.
| |
Collapse
|
13
|
Legler PM, Compton JR, Hale ML, Anderson GP, Olson MA, Millard CB, Goldman ER. Stability of isolated antibody-antigen complexes as a predictive tool for selecting toxin neutralizing antibodies. MAbs 2016; 9:43-57. [PMID: 27660893 PMCID: PMC5240650 DOI: 10.1080/19420862.2016.1236882] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Ricin is an A-B ribosome inactivating protein (RIP) toxin composed of an A-chain subunit (RTA) that contains a catalytic N-glycosidase and a B-chain (RTB) lectin domain that binds cell surface glycans. Ricin exploits retrograde transport to enter into the Golgi and the endoplasmic reticulum, and then dislocates into the cytoplasm where it can reach its substrate, the rRNA. A subset of isolated antibodies (Abs) raised against the RTA subunit protect against ricin intoxication, and RTA-based vaccine immunogens have been shown to provide long-lasting protective immunity against the holotoxin. Anti-RTA Abs are unlikely to cross a membrane and reach the cytoplasm to inhibit the enzymatic activity of the A-chain. Moreover, there is not a strict correlation between the apparent binding affinity (Ka) of anti-RTA Abs and their ability to successfully neutralize ricin toxicity. Some anti-RTA antibodies are toxin-neutralizing, whereas others are not. We hypothesize that neutralizing anti-RTA Abs may interfere selectively with conformational change(s) or partial unfolding required for toxin internalization. To test this hypothesis, we measured the melting temperatures (Tm) of neutralizing single-domain Ab (sdAb)-antigen (Ag) complexes relative to the Tm of the free antigen (Tm-shift = Tmcomplex – TmAg), and observed increases in the Tmcomplex of 9–20 degrees. In contrast, non-neutralizing sdAb-Ag complexes shifted the TmComplex by only 6–7 degrees. A strong linear correlation (r2 = 0.992) was observed between the magnitude of the Tm-shift and the viability of living cells treated with the sdAb and ricin holotoxin. The Tm-shift of the sdAb-Ag complex provided a quantitative biophysical parameter that could be used to predict and rank-order the toxin-neutralizing activities of Abs. We determined the first structure of an sdAb-RTA1-33/44-198 complex, and examined other sdAb-RTA complexes. We found that neutralizing sdAb bound to regions involved in the early stages of unfolding. These Abs likely interfere with steps preceding or following endocytosis that require conformational changes. This method may have utility for the characterization or rapid screening of other Ab that act to prevent conformational changes or unfolding as part of their mechanism of action.
Collapse
Affiliation(s)
| | | | - Martha L Hale
- c US Army Medical Research Institute of Infectious Diseases , Frederick , MD , USA
| | | | - Mark A Olson
- c US Army Medical Research Institute of Infectious Diseases , Frederick , MD , USA
| | - Charles B Millard
- c US Army Medical Research Institute of Infectious Diseases , Frederick , MD , USA
| | | |
Collapse
|
14
|
Vance DJ, Mantis NJ. Progress and challenges associated with the development of ricin toxin subunit vaccines. Expert Rev Vaccines 2016; 15:1213-22. [PMID: 26998662 PMCID: PMC5193006 DOI: 10.1586/14760584.2016.1168701] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The past several years have seen major advances in the development of a safe and efficacious ricin toxin vaccine, including the completion of two Phase I clinical trials with two different recombinant A subunit (RTA)-based vaccines: RiVax™ and RVEc™ adsorbed to aluminum salt adjuvant, as well as a non-human primate study demonstrating that parenteral immunization with RiVax elicits a serum antibody response that was sufficient to protect against a lethal dose aerosolized ricin exposure. One of the major obstacles moving forward is assessing vaccine efficacy in humans, when neither ricin-specific serum IgG endpoint titers nor toxin-neutralizing antibody levels are accepted as definitive predictors of protective immunity. In this review we summarize ongoing efforts to leverage recent advances in our understanding of RTA-antibody interactions at the structural level to develop novel assays to predict vaccine efficacy in humans.
Collapse
Affiliation(s)
- David J. Vance
- Division of Infectious Disease, Wadsworth Center, New York State Department of Health, Albany, New York, USA
| | - Nicholas J. Mantis
- Division of Infectious Disease, Wadsworth Center, New York State Department of Health, Albany, New York, USA
- Department of Biomedical Sciences, University at Albany, Albany, New York, USA
| |
Collapse
|
15
|
Noy-Porat T, Rosenfeld R, Ariel N, Epstein E, Alcalay R, Zvi A, Kronman C, Ordentlich A, Mazor O. Isolation of Anti-Ricin Protective Antibodies Exhibiting High Affinity from Immunized Non-Human Primates. Toxins (Basel) 2016; 8:toxins8030064. [PMID: 26950154 PMCID: PMC4810209 DOI: 10.3390/toxins8030064] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Revised: 02/25/2016] [Accepted: 02/26/2016] [Indexed: 11/16/2022] Open
Abstract
Ricin, derived from the castor bean plant Ricinus communis, is one of the most potent and lethal toxins known, against which there is no available antidote. To date, the use of neutralizing antibodies is the most promising post-exposure treatment for ricin intoxication. The aim of this study was to isolate high affinity anti-ricin antibodies that possess potent toxin-neutralization capabilities. Two non-human primates were immunized with either a ricin-holotoxin- or subunit-based vaccine, to ensure the elicitation of diverse high affinity antibodies. By using a comprehensive set of primers, immune scFv phage-displayed libraries were constructed and panned. A panel of 10 antibodies (five directed against the A subunit of ricin and five against the B subunit) was isolated and reformatted into a full-length chimeric IgG. All of these antibodies were found to neutralize ricin in vitro, and several conferred full protection to ricin-intoxicated mice when given six hours after exposure. Six antibodies were found to possess exceptionally high affinity toward the toxin, with KD values below pM (koff < 1 × 10−7 s−1) that were well correlated with their ability to neutralize ricin. These antibodies, alone or in combination, could be used for the development of a highly-effective therapeutic preparation for post-exposure treatment of ricin intoxication.
Collapse
Affiliation(s)
- Tal Noy-Porat
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness-Ziona 76100, Israel.
| | - Ronit Rosenfeld
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness-Ziona 76100, Israel.
| | - Naomi Ariel
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness-Ziona 76100, Israel.
| | - Eyal Epstein
- Department of Biotechnology, Israel Institute for Biological Research, Ness-Ziona 76100, Israel.
| | - Ron Alcalay
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness-Ziona 76100, Israel.
| | - Anat Zvi
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness-Ziona 76100, Israel.
| | - Chanoch Kronman
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness-Ziona 76100, Israel.
| | - Arie Ordentlich
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness-Ziona 76100, Israel.
| | - Ohad Mazor
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness-Ziona 76100, Israel.
| |
Collapse
|
16
|
Brey RN, Mantis NJ, Pincus SH, Vitetta ES, Smith LA, Roy CJ. Recent advances in the development of vaccines against ricin. Hum Vaccin Immunother 2016; 12:1196-201. [PMID: 26810367 DOI: 10.1080/21645515.2015.1124202] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
Several promising subunit vaccines against ricin toxin (RT) have been developed during the last decade and are now being tested for safety and immunogenicity in humans and for efficacy in nonhuman primates. The incentive to develop a preventive vaccine as a countermeasure against RT use as a bioweapon is based on the high toxicity of RT after aerosol exposure, its environmental stability, abundance, and ease of purification. RT is the second most lethal biological toxin and is considered a "universal toxin" because it can kill all eukaryotic cells through binding to ubiquitous cell surface galactosyl residues. RT has two subunits conjoined by a single disulfide linkage: RTB, which binds galactosyl residues and RTA which enzymatically inactivates ribosomes intracellularly by cleavage ribosomal RNA. Attenuation of toxicity by elimination of the active site or introduction of other structural mutations of RTA has generated two similar clinical subunit vaccine candidates which induce antibodies in both humans and nonhuman primates. In rhesus macaques, inhaled RT causes rapid lung necrosis and fibrosis followed by death. After parenteral vaccination with RTA vaccine, macaques can be protected against aerosol RT exposure, suggesting that circulating antibodies can protect lung mucosa. Vaccination induces RT-neutralizing antibodies, the most likely correlate of protection. Macaques responded to conformational determinants in an RTA vaccine formulation, indicating preservation of RTA structure during initial manufacture. Comparative mapping studies have also demonstrated that macaques and humans recognize the same epitopes, significant in the study of macaques as a model during development of vaccines which cannot be tested for efficacy in humans.
Collapse
Affiliation(s)
| | - Nicholas J Mantis
- b Division of Infectious Disease , Wadsworth Center, New York State Department of Health, Albany, NY, USA Department of Biomedical Sciences, University of Albany School of Public Health , Albany , NY , USA
| | - Seth H Pincus
- c Departments of Pediatrics and Microbiology , Louisiana State University School of Medicine, Children's Hospital , New Orleans , LA , USA
| | - Ellen S Vitetta
- d Departments of Immunology and Microbiology , The University of Texas Southwestern Medical Center , Dallas , TX , USA
| | - Leonard A Smith
- e Medical Countermeasures Technology, US Army Medical Research Institute of Infectious Diseases , Fort Detrick , MD , USA
| | - Chad J Roy
- f Division of Microbiology, Tulane National Primate Research Center , Covington , LA , USA.,g Department of Microbiology and Immunology , Tulane School of Medicine , New Orleans , LA , USA
| |
Collapse
|
17
|
Sabo T, Kronman C, Mazor O. Ricin-Holotoxin-Based Vaccines: Induction of Potent Ricin-Neutralizing Antibodies. Methods Mol Biol 2016; 1403:683-694. [PMID: 27076160 DOI: 10.1007/978-1-4939-3387-7_38] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Ricin is one of the most potent and lethal toxins known to which there is no available antidote. Currently, the most promising therapy is based on neutralizing antibodies elicited by active vaccination or given passively. Here, detailed protocols are provided for the production of two ricin holotoxin-based vaccines: monomerized subunit-based vaccine, and a formaldehyde-based ricin toxoid vaccine. Both vaccines were found to be stable with no toxic activity reversion even after long-term storage while eliciting high anti-ricin antibody titers possessing a potent neutralizing activity. The use of these vaccines is highly suitable for both the production of sera that can be used in passive protection experiments and immunization aimed to isolate potent anti-ricin monoclonal antibodies.
Collapse
Affiliation(s)
- Tamar Sabo
- The Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness-Ziona, 74100, Israel
| | - Chanoch Kronman
- The Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness-Ziona, 74100, Israel
| | - Ohad Mazor
- The Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness-Ziona, 74100, Israel.
| |
Collapse
|
18
|
Characterization and epitope mapping of the polyclonal antibody repertoire elicited by ricin holotoxin-based vaccination. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2014; 21:1534-40. [PMID: 25209559 DOI: 10.1128/cvi.00510-14] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Ricin, one of the most potent and lethal toxins known, is classified by the Centers for Disease Control and Prevention (CDC) as a select agent. Currently, there is no available antidote against ricin exposure, and the most promising therapy is based on neutralizing antibodies elicited by active vaccination or that are given passively. The aim of this study was to characterize the repertoire of anti-ricin antibodies generated in rabbits immunized with ricin toxoid. These anti-ricin antibodies exhibit an exceptionally high avidity (thiocyanate-based avidity index, 9 M) toward ricin and an apparent affinity of 1 nM. Utilizing a novel tissue culture-based assay that enables the determination of ricin activity within a short time period, we found that the anti-ricin antibodies also possess a very high neutralizing titer. In line with these findings, these antibodies conferred mice with full protection against pulmonary ricinosis when administered as a passive vaccination. Epitope mapping analysis using phage display random peptide libraries revealed that the polyclonal serum contains four immunodominant epitopes, three of which are located on the A subunit and one on the B subunit of ricin. Only two of the four epitopes were found to have a significant role in ricin neutralization. To the best of our knowledge, this is the first work that characterizes these immunological aspects of the polyclonal response to ricin holotoxin-based vaccination. These findings provide useful information and a possible strategy for the development and design of an improved ricin holotoxin-based vaccine.
Collapse
|