1
|
Maher A, Miśkiewicz K, Rosicka-Kaczmarek J, Nowak A. Detoxification of Acrylamide by Potentially Probiotic Strains of Lactic Acid Bacteria and Yeast. Molecules 2024; 29:4922. [PMID: 39459290 PMCID: PMC11510321 DOI: 10.3390/molecules29204922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/11/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024] Open
Abstract
Some potentially probiotic strains of lactic acid bacteria (LAB) and yeast that inhabit the digestive tract of humans are known to detoxify xenobiotics, including acrylamide (AA). The objective of the subsequent research was to evaluate the AA-detoxification capability of LAB and yeast isolated from various sources. Namely, the effect of AA was tested on the growth of LAB and yeast strains, as well in the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Subsequently, the AA-binding ability of LAB and yeast was investigated in various environments, including the pH, incubation temperature, cell density, and with inanimate cells. The ability of selected LAB and yeast to reduce the genotoxicity of AA was tested on Caco-2 and Hep-G2 cell lines. The results showed that all tested strains exhibited strong resistance to AA at concentrations of 5, 10, and 50 µg/mL. Also, AA was detected in the intracellular and membrane extracts of tested strains. The most effective binding strain was Pediococcus acidilactici 16 at pH = 5, cell density = 109 CFU/mL, and incubation temperature = 37 °C (87.6% of AA removed). Additionally, all tested strains reduced the genotoxicity of AA, with the greatest reduction observed at the highest concentration of 50 µg/mL. The phenomena of detoxification by potentially probiotic strains could reduce the toxic and harmful effects of AA exposure to humans every day.
Collapse
Affiliation(s)
- Agnieszka Maher
- Department of Environmental Biotechnology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Wolczanska 171/173, 90-530 Lodz, Poland;
| | - Karolina Miśkiewicz
- Institute of Food Technology and Analysis, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Stefanowskiego 2/22, 90-537 Lodz, Poland; (K.M.); (J.R.-K.)
| | - Justyna Rosicka-Kaczmarek
- Institute of Food Technology and Analysis, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Stefanowskiego 2/22, 90-537 Lodz, Poland; (K.M.); (J.R.-K.)
| | - Adriana Nowak
- Department of Environmental Biotechnology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Wolczanska 171/173, 90-530 Lodz, Poland;
| |
Collapse
|
2
|
Vaičiulienė G, Jovaišienė J, Falkauskas R, Paškevičius A, Sutkevičienė N, Rekešiūtė A, Sorkytė Š, Baliukonienė V. Exploring the Efficacy of Using Geotrichum fermentans, Rhodotorula rubra, Kluyveromyce marxiamus, Clay Minerals, and Walnut Nutshells for Mycotoxin Remediation. Toxins (Basel) 2024; 16:281. [PMID: 38922175 PMCID: PMC11209154 DOI: 10.3390/toxins16060281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/06/2024] [Accepted: 06/17/2024] [Indexed: 06/27/2024] Open
Abstract
The aim of this study was to evaluate the effectiveness of nine different biological compounds to reduce mycotoxins concentrations. The hypothesis of this study was that a static in vitro gastrointestinal tract model, as an initial screening tool, can be used to simulate the efficacy of Geotrichum fermentans, Rhodotorula rubra, Kluyveromyce marxiamus yeast cell walls and their polysaccharides, red and white clay minerals, and walnuts nutshells claiming to detoxify AFB1, ZEA, DON, and T-2 toxin mycotoxins. Mycotoxin concentrations were analyzed using high-performance liquid chromatography (HPLC) with fluorescent (FLD) and ultraviolet detectors (UV). The greatest effects on reducing mycotoxin concentrations were determined as follows: for AFB1, inserted G. fermentans cell wall polysaccharides and walnut nutshells; for ZEA, inserted R. rubra and G. fermentans cell walls and red clay minerals; for DON, R. rubra cell wall polysaccharides and red clay minerals; and for T-2 toxin, R. rubra cell walls, K. marxianus, and G. fermentans cell wall polysaccharides and walnut nutshells. The present study indicated that selected mycotoxin-detoxifying biological compounds can be used to decrease mycotoxin concentrations.
Collapse
Affiliation(s)
- Gintarė Vaičiulienė
- Animal Reproduction Laboratory, Large Animal Clinic, Veterinary Academy, Lithuanian University of Health Sciences, Tilzes Str. 18, LT-47181 Kaunas, Lithuania; (N.S.); (A.R.); (Š.S.)
| | - Jurgita Jovaišienė
- Department of Food Safety and Quality, Veterinary Academy, Lithuanian University of Health Sciences, Tilzes Str. 18, LT-47181 Kaunas, Lithuania; (J.J.); (V.B.)
| | - Rimvydas Falkauskas
- National Food and Veterinary Risk Assessment Institute, J. Kairiukscio Str. 10, LT-08411 Vilnius, Lithuania;
| | - Algimantas Paškevičius
- Laboratory of Biodeterioration Research, Institute of Botany, Nature Research Centre, Akademijos Str. 2, LT-08412 Vilnius, Lithuania;
| | - Neringa Sutkevičienė
- Animal Reproduction Laboratory, Large Animal Clinic, Veterinary Academy, Lithuanian University of Health Sciences, Tilzes Str. 18, LT-47181 Kaunas, Lithuania; (N.S.); (A.R.); (Š.S.)
| | - Audronė Rekešiūtė
- Animal Reproduction Laboratory, Large Animal Clinic, Veterinary Academy, Lithuanian University of Health Sciences, Tilzes Str. 18, LT-47181 Kaunas, Lithuania; (N.S.); (A.R.); (Š.S.)
| | - Šarūnė Sorkytė
- Animal Reproduction Laboratory, Large Animal Clinic, Veterinary Academy, Lithuanian University of Health Sciences, Tilzes Str. 18, LT-47181 Kaunas, Lithuania; (N.S.); (A.R.); (Š.S.)
| | - Violeta Baliukonienė
- Department of Food Safety and Quality, Veterinary Academy, Lithuanian University of Health Sciences, Tilzes Str. 18, LT-47181 Kaunas, Lithuania; (J.J.); (V.B.)
| |
Collapse
|
3
|
Zjalic S, Markov K, Loncar J, Jakopovic Z, Beccaccioli M, Reverberi M. Biocontrol of Occurrence Ochratoxin A in Wine: A Review. Toxins (Basel) 2024; 16:277. [PMID: 38922171 PMCID: PMC11209579 DOI: 10.3390/toxins16060277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 05/29/2024] [Accepted: 06/01/2024] [Indexed: 06/27/2024] Open
Abstract
Viticulture has been an important economic sector for centuries. In recent decades, global wine production has fluctuated between 250 and almost 300 million hectoliters, and in 2022, the value of wine exports reached EUR 37.6 billion. Climate change and the associated higher temperatures could favor the occurrence of ochratoxin A (OTA) in wine. OTA is a mycotoxin produced by some species of the genera Aspergillus and Penicillium and has nephrotoxic, immunotoxic, teratogenic, hepatotoxic, and carcinogenic effects on animals and humans. The presence of this toxin in wine is related to the type of wine-red wines are more frequently contaminated with OTA-and the geographical location of the vineyard. In Europe, the lower the latitude, the greater the risk of OTA contamination in wine. However, climate change could increase the risk of OTA contamination in wine in other regions. Due to their toxic effects, the development of effective and environmentally friendly methods to prevent, decontaminate, and degrade OTA is essential. This review summarises the available research on biological aspects of OTA prevention, removal, and degradation.
Collapse
Affiliation(s)
- Slaven Zjalic
- Department of Ecology, Agronomy and Aquaculture, University of Zadar, Trg kneza Viseslava 9, 23000 Zadar, Croatia;
| | - Ksenija Markov
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia; (K.M.); (Z.J.)
| | - Jelena Loncar
- Department of Ecology, Agronomy and Aquaculture, University of Zadar, Trg kneza Viseslava 9, 23000 Zadar, Croatia;
| | - Zeljko Jakopovic
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia; (K.M.); (Z.J.)
| | - Marzia Beccaccioli
- Department of Environmental Biology, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy;
| | - Massimo Reverberi
- Department of Environmental Biology, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy;
| |
Collapse
|
4
|
Lee HJ, Park BR, Chewaka LS. A Comparative Study of Composition and Soluble Polysaccharide Content between Brewer's Spent Yeast and Cultured Yeast Cells. Foods 2024; 13:1567. [PMID: 38790867 PMCID: PMC11121356 DOI: 10.3390/foods13101567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/07/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024] Open
Abstract
Yeast, crucial in beer production, holds great potential owing to its ability to transform into a valuable by-product resource, known as brewer's spent yeast (BSY), with potentially beneficial physiological effects. This study aimed to compare the composition and soluble polysaccharide content of Brewer's spent yeast with those of cultured yeast strains, namely Saccharomyces cerevisiae (SC) and S. boulardii (SB), to facilitate the utilization of BSY as an alternative source of functional polysaccharides. BSY exhibited significantly higher carbohydrate content and lower crude protein content than SC and SB cells. The residues recovered through autolysis were 53.11%, 43.83%, and 44.99% for BSY, SC, and SB, respectively. Notably, the polysaccharide content of the BSY residue (641.90 μg/mg) was higher than that of SC (553.52 μg/mg) and SB (591.56 μg/mg). The yields of alkali-extracted water-soluble polysaccharides were 33.62%, 40.76%, and 42.97% for BSY, SC, and SB, respectively, with BSY comprising a comparable proportion of water-soluble saccharides made with SC and SB, including 49.31% mannan and 20.18% β-glucan. Furthermore, BSY demonstrated antioxidant activities, including superoxide dismutase (SOD), ABTS, and DPPH scavenging potential, suggesting its ability to mitigate oxidative stress. BSY also exhibited a significantly higher total phenolic compound content, indicating its potential to act as an effective functional food material.
Collapse
Affiliation(s)
| | | | - Legesse Shiferaw Chewaka
- Department of Agro-Food Resource, National Institute of Agricultural Science, Rural Development Administration (RDA), Jeonju 54875, Republic of Korea; (H.J.L.); (B.-R.P.)
| |
Collapse
|
5
|
Gallissot M, Rodriguez MA, Devreese M, Van herteryck I, Molist F, Santos RR. An Algoclay-Based Decontaminant Decreases Exposure to Aflatoxin B 1, Ochratoxin A, and Deoxynivalenol in a Toxicokinetic Model, as well as Supports Intestinal Morphology, and Decreases Liver Oxidative Stress in Broiler Chickens Fed a Diet Naturally Contaminated with Deoxynivalenol. Toxins (Basel) 2024; 16:207. [PMID: 38787059 PMCID: PMC11125753 DOI: 10.3390/toxins16050207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/22/2024] [Accepted: 04/24/2024] [Indexed: 05/25/2024] Open
Abstract
The aims of this study were (i) to determine the effect of an algoclay-based decontaminant on the oral availability of three mycotoxins (deoxynivalenol; DON, ochratoxin A; OTA, and aflatoxin B1; AFB1) using an oral bolus model and (ii) to determine the effect of this decontaminant on the performance, intestinal morphology, liver oxidative stress, and metabolism, in broiler chickens fed a diet naturally contaminated with DON. In experiment 1, sixteen 27-day-old male chickens (approximately 1.6 kg body weight; BW) were fasted for 12 h and then given a bolus containing either the mycotoxins (0.5 mg DON/kg BW, 0.25 mg OTA/kg BW, and 2.0 mg AFB1/kg BW) alone (n = 8) or combined with the decontaminant (2.5 g decontaminant/kg feed; circa 240 mg/kg BW) (n = 8). Blood samples were taken between 0 h (before bolus administration) and 24 h post-administration for DON-3-sulphate, OTA, and AFB1 quantification in plasma. The algoclay decontaminant decreased the relative oral bioavailability of DON (39.9%), OTA (44.3%), and AFB1 (64.1%). In experiment 2, one-day-old male Ross broilers (n = 600) were divided into three treatments with ten replicates. Each replicate was a pen with 20 birds. The broiler chickens were fed a control diet with negligible levels of DON (0.19-0.25 mg/kg) or diets naturally contaminated with moderate levels of DON (2.60-2.91 mg/kg), either supplemented or not with an algoclay-based decontaminant (2 g/kg diet). Jejunum villus damage was observed on day 28, followed by villus shortening on d37 in broiler chickens fed the DON-contaminated diet. This negative effect was not observed when the DON-contaminated diet was supplemented with the algoclay-based decontaminant. On d37, the mRNA expression of glutathione synthetase was significantly increased in the liver of broiler chickens fed the DON-contaminated diet. However, its expression was similar to the control when the birds were fed the DON-contaminated diet supplemented with the algoclay-based decontaminant. In conclusion, the algoclay-based decontaminant reduced the systemic exposure of broiler chickens to DON, OTA, and AFB1 in a single oral bolus model. This can be attributed to the binding of the mycotoxins in the gastrointestinal tract. Moreover, dietary contamination with DON at levels between 2.69 and 2.91 mg/kg did not impair production performance but had a negative impact on broiler chicken intestinal morphology and the liver redox system. When the algoclay-based decontaminant was added to the diet, the harm caused by DON was no longer observed. This correlates with the results obtained in the toxicokinetic assay and can be attributed to a decreased absorption of DON.
Collapse
Affiliation(s)
| | | | - Mathias Devreese
- Department of Pathobiology, Pharmacology and Zoological Medicine, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium; (M.D.); (I.V.h.)
| | - Isis Van herteryck
- Department of Pathobiology, Pharmacology and Zoological Medicine, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium; (M.D.); (I.V.h.)
| | - Francesc Molist
- Department of Research and Development, Schothorst Feed Research, Meerkoetenweg 26, 8218 NA Lelystad, The Netherlands; (F.M.); (R.R.S.)
| | - Regiane R. Santos
- Department of Research and Development, Schothorst Feed Research, Meerkoetenweg 26, 8218 NA Lelystad, The Netherlands; (F.M.); (R.R.S.)
| |
Collapse
|
6
|
Tseng HS, Lin BY, Wang YF, Liao YF. Ochratoxin A detoxification potentials of basil, chan, and chia seeds. Lett Appl Microbiol 2024; 77:ovae018. [PMID: 38414284 DOI: 10.1093/lambio/ovae018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 02/05/2024] [Accepted: 02/26/2024] [Indexed: 02/29/2024]
Abstract
The most toxic of the ochratoxins is ochratoxin A (OTA), which is primarily produced by species of Aspergillus and Penicillium that can be found in maize, wheat, coffee, red wine, and various grains. OTA induces immunotoxicity, nephrotoxicity, hepatotoxicity, teratogenicity, and carcinogenicity in both animals and humans. Thus, there is a need to identify mycotoxin detoxification agents that can effectively decontaminate OTA. Seeds of basil (Ocimum basilicum L.), chan (Hyptis suaveolens L.), and chia (Salvia hispanica L.) are functional foods capable of eliminating harmful substances. Despite this potential, the impact of these seeds on OTA detoxification remains unclear. This study reveals that milled basil, chan, and chia seeds adsorb significant levels of OTA, with chia demonstrating the highest adsorption capacity, followed by chan and basil seeds showing the least efficiency. Furthermore, milled basil, chan, and chia seeds effectively reduced OTA residues in artificial gastric and intestinal fluids, where they achieved up to 93% OTA adsorption in the former. In addition, these milled seeds were able to remove OTAs from canned, drip, and instant coffee. This study is the first to report the OTA elimination potential of basil, chan, and chia seeds.
Collapse
Affiliation(s)
- Hsin-Shun Tseng
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung 402202, Taiwan
- Comprehensive Breast Cancer Center, Changhua Christian Hospital, Changhua 500010, Taiwan
| | - Bing-Yi Lin
- Department of Applied Chemistry, Chaoyang University of Technology, Taichung 413310, Taiwan
| | - Yu-Fen Wang
- Cancer Research Center, Department of Research, Changhua Christian Hospital, Changhua 500010, Taiwan
| | - Ya-Fan Liao
- Department of Applied Chemistry, Chaoyang University of Technology, Taichung 413310, Taiwan
- Asia Mycotoxin Analysis Center, Chaoyang University of Technology, Taichung 413310, Taiwan
| |
Collapse
|
7
|
Mirseyed PS, Kheirabadi S, Anbarteh R, H Ghaffari M. Assessment of mycotoxin sequestration efficacy in Saccharomyces cerevisiae by-products cultured in wheat bran and whey protein medium. Sci Rep 2024; 14:3101. [PMID: 38326556 PMCID: PMC10850169 DOI: 10.1038/s41598-024-53633-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 02/03/2024] [Indexed: 02/09/2024] Open
Abstract
Mycotoxins are metabolic products of fungi found in feed for farm animals and pose a major threat to food safety due to their adverse health effects. The development of strategies to reduce their bioavailability is crucial. In this context, the cell wall components of Saccharomyces cerevisiae (YCW), especially β-D-glucans and Mannan-oligosaccharide, have been recognized as potent mycotoxin binders. The objective of this research was to develop a novel culture medium to increase the biomass yield of S. cerevisiae and optimize cell disruption by stepwise physical lysis and hydrolytic preconditioning. This process resulted in a yield of approximately 56% reducing saccharides and 28.54% protein. Subsequently, the β-glucan was extracted after cell wall sequestration. The isolated YCW and extracted β-glucan were characterized both individually and synergistically to evaluate their antibacterial properties and analyze their Fourier transform infrared (FTIR) spectra. In vitro evaluation of antibacterial activity revealed that a concentration greater than 250 μg/mL of YCW-β-glucan blend significantly inhibited the growth of Gram-negative bacteria. In addition, this blend showed good adsorption of various mycotoxins, including Aflatoxin B1, Ochratoxin A, and Zearalenone, the latter of which exhibited a remarkable adsorption rate of 80.85%. This study highlights the promising potential of a combination of YCW and β-glucan as a robust strategy to address the pervasive problem of mycotoxin contamination in feed.
Collapse
Affiliation(s)
| | - Shahpour Kheirabadi
- Department of Animal Science, College of Agriculture and Natural Resources, University of Tehran, Karaj, Alborz, Iran
| | - Rojin Anbarteh
- Antimicrobial Resistance Research Center, Institute of Immunology and Infectious Disease, Iran University of Medical Sciences, Tehran, Iran
| | | |
Collapse
|
8
|
Kim DY, Kim M, Sung JS, Koduru JR, Nile SH, Syed A, Bahkali AH, Seth CS, Ghodake GS. Extracellular synthesis of silver nanoparticle using yeast extracts: antibacterial and seed priming applicationss. Appl Microbiol Biotechnol 2024; 108:150. [PMID: 38240838 DOI: 10.1007/s00253-023-12920-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/21/2023] [Accepted: 10/04/2023] [Indexed: 01/23/2024]
Abstract
The evolution and rapid spread of multidrug-resistant (MDR) bacterial pathogens have become a major concern for human health and demand the development of alternative antimicrobial agents to combat this emergent threat. Conventional intracellular methods for producing metal nanoparticles (NPs) using whole-cell microorganisms have limitations, including binding of NPs to cellular components, potential product loss, and environmental contamination. In contrast, this study introduces a green, extracellular, and sustainable methodology for the bio-materialization of silver NPs (AgNPs) using renewable resource cell-free yeast extract. These extracts serve as a sustainable, biogenic route for both reducing the metal precursor and stabilizing the surface of AgNPs. This method offers several advantages such as cost-effectiveness, environment-friendliness, ease of synthesis, and scalability. HR-TEM imaging of the biosynthesized AgNPs revealed an isotropic growth route, resulting in an average size of about ~ 18 nm and shapes ranging from spherical to oval. Further characterization by FTIR and XPS results revealed various functional groups, including carboxyl, hydroxyl, and amide contribute to enhanced colloidal stability. AgNPs exhibited potent antibacterial activity against tested MDR strains, showing particularly high efficacy against Gram-negative bacteria. These findings suggest their potential role in developing alternative treatments to address the growing threat of antimicrobial resistance. Additionally, seed priming experiments demonstrated that pre-sowing treatment with AgNPs improves both the germination rate and survival of Sorghum jowar and Zea mays seedlings. KEY POINTS: •Yeast extract enables efficient, cost-effective, and eco-friendly AgNP synthesis. •Biosynthesized AgNPs showed strong antibacterial activity against MDR bacteria. •AgNPs boost seed germination and protect against seed-borne diseases.
Collapse
Affiliation(s)
- Dae-Young Kim
- Department of Biological and Environmental Science, Dongguk University-Seoul, Ilsandong-Gu, Goyang-Si, 10326, Gyeonggi-Do, Republic of Korea
| | - Min Kim
- Department of Life Science, Dongguk University-Seoul, Biomedical Campus, 32 Dongguk-Ro, Ilsanadong-Gu, Goyang-Si, 10326, Gyeonggi-Do, Republic of Korea
| | - Jung-Suk Sung
- Department of Life Science, Dongguk University-Seoul, Biomedical Campus, 32 Dongguk-Ro, Ilsanadong-Gu, Goyang-Si, 10326, Gyeonggi-Do, Republic of Korea
| | - Janardhan Reddy Koduru
- Department of Environmental Engineering, Kwangwoon University, Seoul, 01897, Republic of Korea
| | - Shivraj Hariram Nile
- Division of Food and Nutrition, DBT-National Agri-Food Biotechnology Institute, Mohali, Sahibzada Ajit Singh Nagar, 140308, Punjab, India
| | - Asad Syed
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, 11451, Riyadh, Saudi Arabia
| | - Ali H Bahkali
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, 11451, Riyadh, Saudi Arabia
| | | | - Gajanan Sampatrao Ghodake
- Department of Biological and Environmental Science, Dongguk University-Seoul, Ilsandong-Gu, Goyang-Si, 10326, Gyeonggi-Do, Republic of Korea.
| |
Collapse
|
9
|
Zaineldin AI, Elsebaey E, Habotta OA, Abdo WS, Basuini MFE, Dawood MAO. Mitigating Aflatoxin B 1-Induced Growth Impairment and Hepatic Stress in Nile Tilapia (Oreochromis niloticus): Comparative Efficacy of Saccharomyces cerevisiae and Silicate-Based Detoxifiers. Probiotics Antimicrob Proteins 2024:10.1007/s12602-023-10210-2. [PMID: 38175392 DOI: 10.1007/s12602-023-10210-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/21/2023] [Indexed: 01/05/2024]
Abstract
The objective of this study was to detect the effects of acute aflatoxin B1 (AFB1) exposure in Nile tilapia (Oreochromis niloticus) and the effectiveness of Saccharomyces cerevisiae and silicate in reducing these effects. Two hundred and forty Nile tilapia fingerlings (16 ± 0.5 g) were randomly assigned to four experimental groups, each with 60 fish and three replicates. Control basal diet (Diet 1) and three test diets were formulated, where Diet 2 was supplemented with 200 ppb AFB1. Diets 3 and 4 were intoxicated with AFB1 (200 ppb) and supplemented with 0.5% S. cerevisiae or 0.5%, respectively. After 60 days, Diet 1 had considerably greater growth characteristics than the other groups (p < 0.05). Diet 2 revealed a reduced (p < 0.05) survival rate after 1 month of exposure. In addition, Diet 1 showed higher (p < 0.05) total protein and albumin levels than Diets 3 and 4. AFB1 residues were detected in the liver in fish-fed Diet 2, Diet 4, and Diet 3. Alanine aminotransferase, aspartate aminotransferase, creatinine, and urea levels increased (p < 0.05) in fish-fed Diet 2. The glutathione peroxidase, lysozyme, and catalase activity were decreased (p < 0.05) in the fish-fed Diet 2. The malondialdehyde level was significantly higher in fish given Diet 2 (p < 0.05) than in fish-fed Diets 3 and 4. Histopathological investigation of fish-fed Diet 2 revealed impaired liver and spleen; however, both treatments (Diets 3 and 4) successfully lowered inflammation and preserved liver and spleen integrities. In conclusion, AFB1 impaired growth performance and posed a severe health risk to Nile tilapia. Furthermore, S. cerevisiae alleviated the contamination of AFB1 effects more efficiently than silicate employed for toxin adsorption.
Collapse
Affiliation(s)
- Amr I Zaineldin
- Agriculture Research Center, Animal Health Research Institute (AHRI-DOKI), Kafrelsheikh, Egypt.
| | - Ehab Elsebaey
- Agriculture Research Center, Animal Health Research Institute (AHRI-DOKI), Kafrelsheikh, Egypt
| | - Ola A Habotta
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Walied S Abdo
- Department of Pathology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh, 33516, Egypt
| | - Mohammed F El Basuini
- Faculty of Agriculture, Tanta University, Tanta, 31527, Egypt
- King Salman International University, El Tor, South Sinai, Nuweiba, 46618, Egypt
| | - Mahmoud A O Dawood
- Department of Animal Production, Faculty of Agriculture, Kafrelsheikh University, Kafrelsheikh, 33516, Egypt
- The Centre for Applied Research On the Environment and Sustainability, The American University in Cairo, Cairo, Egypt
| |
Collapse
|
10
|
Atta-Allah AA, Ahmed RF, Shahin AAM, Hassan EA, El-Bialy HAA, El-Fouly MZ. Optimizing the synthesis of yeast Beta-glucan via response surface methodology for nanotechnology application. BMC Microbiol 2023; 23:110. [PMID: 37081407 PMCID: PMC10116484 DOI: 10.1186/s12866-023-02845-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 04/02/2023] [Indexed: 04/22/2023] Open
Abstract
BACKGROUND The production of biopolymers from waste resources is a growing trend, especially in high-population countries like Egypt. Beta-glucan (β-glucan) belongs to natural polysaccharides that are derived from plant and microbial origins. In this study, following increasing demands for β-glucan owing to its bioactive properties, a statistical model to enhance microbial β-glucan production was evaluated for its usefulness to the food and pharmaceutical industries. In addition, a trial to convert β-glucan polymer to nanostructure form was done to increase its bioactivity. RESULTS Ingredients of low-cost media based on agro-industrial wastes were described using Plackett-Burman and central composite design of response surface methodology for optimizing yeast β-glucan. Minerals and vitamin concentrations significantly influenced β-glucan yield for Kluyveromyces lactis and nitrogen and phosphate sources for Meyerozyma guilliermondii. The maximum predicted yields of β-glucan recovered from K. lactis and M. guilliermondii after optimizing the medium ingredients were 407 and 1188 mg/100 ml; respectively. For the first time, yeast β-glucan nanoparticles (βGN) were synthesized from the β-glucan polymer using N-dimethylformamide as a stabilizer and characterized using UV-vis spectroscopy, transmission electron microscope (TEM), dynamic light scattering (DLS) and Fourier transform infrared spectroscopy (FT-IR). The average size of βGN was about 300 nm as determined by DLS. The quantitative variation of functional groups between β-glucan polymer and βGN was evaluated by FT-IR for explaining the difference in their biological activity against Normal Homo sapiens-Hela contaminant and Hepatic cancer cell lines. CONCLUSIONS Enriching the low-cost media based on agro-industrial wastes with nutritional ingredients improves the yield of yeast β-glucan. The present study succeeds to form β-glucan nanoparticles by a simple method.
Collapse
Affiliation(s)
- Alshimaa A Atta-Allah
- Radiation Microbiology Department, National Center for Radiation Research and Technology, Egyptian Atomic Energy Authority, Cairo, Egypt
| | - Rania F Ahmed
- Agricultural Microbiology Department, Faculty of Agriculture, Ain Shams University, Cairo, Egypt
| | - Azza A M Shahin
- Radiation Microbiology Department, National Center for Radiation Research and Technology, Egyptian Atomic Energy Authority, Cairo, Egypt
| | - Enas A Hassan
- Agricultural Microbiology Department, Faculty of Agriculture, Ain Shams University, Cairo, Egypt
| | - Heba Abd-Alla El-Bialy
- Radiation Microbiology Department, National Center for Radiation Research and Technology, Egyptian Atomic Energy Authority, Cairo, Egypt.
| | - Mohie Z El-Fouly
- Radiation Microbiology Department, National Center for Radiation Research and Technology, Egyptian Atomic Energy Authority, Cairo, Egypt
| |
Collapse
|
11
|
Mwabulili F, Xie Y, Li Q, Sun S, Yang Y, Ma W. Research progress of ochratoxin a bio-detoxification. Toxicon 2023; 222:107005. [PMID: 36539080 DOI: 10.1016/j.toxicon.2022.107005] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 11/30/2022] [Accepted: 12/16/2022] [Indexed: 12/23/2022]
Abstract
Ochratoxins (OTs) is an extremely toxic mycotoxin in which Ochratoxin A (OTA) is the most toxic and prevalent in the ochratoxin family. OTA is among the five most critical mycotoxins that are subject to legal regulations. Animals and humans may be exposed to OTA through dietary intake, inhalation, and dermal contact. OTA is considered nephrotoxic, genotoxic, cytotoxic, teratogenic, carcinogenic, mutagenic, immunotoxic, and myelotoxic. So, intake of OTA contaminated foods and feeds can impact the productivity of animals and health of people. According to this review, several studies have reported on the approaches that have been established for OTA removal. This review focused on the control approaches to mitigate OTA contamination, OTA bio-detoxification materials and their applicable techniques, recombinant strains for OTA bio-detoxification, and their detoxification effects, recombinant OTA-degrading enzymes and their sources, recombinant fusion enzymes for OTA, ZEN and AFB1 mycotoxins detoxification, as well as the current application and commercialized OTA bio-detoxification products. However, there is no single technique that has been approved to detoxify OTA by 100% to date. Some preferred current strategies for OTA bio-detoxification have been recombinant degrading enzymes and genetic engineering technology due to their efficiency and safety. Therefore, prospective studies should focus on standardizing pure enzymes from genetically engineered microbial strains that have great potential for OTA detoxification.
Collapse
Affiliation(s)
- Fred Mwabulili
- College of Food Science and Engineering, Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control, Henan University of Technology, Zhengzhou, Henan, 450001, China; Department of Applied Sciences, Mbeya University of Science and Technology, P.O.Box 131, Mbeya, Tanzania
| | - Yanli Xie
- College of Food Science and Engineering, Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control, Henan University of Technology, Zhengzhou, Henan, 450001, China.
| | - Qian Li
- College of Food Science and Engineering, Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control, Henan University of Technology, Zhengzhou, Henan, 450001, China
| | - Shumin Sun
- College of Food Science and Engineering, Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control, Henan University of Technology, Zhengzhou, Henan, 450001, China
| | - Yuhui Yang
- College of Food Science and Engineering, Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control, Henan University of Technology, Zhengzhou, Henan, 450001, China
| | - Weibin Ma
- College of Food Science and Engineering, Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control, Henan University of Technology, Zhengzhou, Henan, 450001, China
| |
Collapse
|
12
|
Yang Q, Dhanasekaran S, Ngea GLN, Tian S, Li B, Zhang H. Unveiling ochratoxin a controlling and biodetoxification molecular mechanisms: Opportunities to secure foodstuffs from OTA contamination. Food Chem Toxicol 2022; 169:113437. [PMID: 36165818 DOI: 10.1016/j.fct.2022.113437] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 08/21/2022] [Accepted: 09/14/2022] [Indexed: 01/10/2023]
Abstract
Anarchic growth of ochratoxin A (OTA) producing fungi during crop production, prolonged storage, and processing results in OTA contamination in foodstuffs. OTA in food exacerbates the risk of health and economic problems for consumers and farmers worldwide. Although the toxic effects of OTA on human health have not been well established, comprehensive preventive and remedial measures will be essential to eliminate OTA from foodstuffs. Strict regulations, controlling OTA at pre- or post-harvest stage, and decontamination of OTA have been adopted to prevent human and animal OTA exposure. Biological control of OTA and bio-decontamination are the most promising strategies due to their safety, specificity and nutritional value. This review addresses the current understanding of OTA biodegradation mechanisms and recent developments in OTA control and bio-decontamination strategies. Additionally, this review analyses the strength and weaknesses of different OTA control methods and the contemporary approaches to enhance the efficiency of biocontrol agents. Overall, this review will support the implementation of new strategies to effectively control OTA in food sectors. Further studies on efficacy-related issues, production issues and cost-effectiveness of OTA biocontrol are to be carried out to improve the knowledge, develop improved delivery technologies and safeguard the durability of OTA biocontrol approaches.
Collapse
Affiliation(s)
- Qiya Yang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | | | - Guillaume Legrand Ngolong Ngea
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China; Département de Transformation et Contrôle de qualité des Produits Halieutiques, Institut des Sciences Halieutiques, Université de Douala à Yabassi, PO. Box. 7236, Douala-Bassa, Cameroon
| | - Shiping Tian
- Institute of Botany, Chinese Academy of Sciences, Xiangshan Nanxincun 20, Haidian District, Beijing, 100093, China
| | - Boqiang Li
- Institute of Botany, Chinese Academy of Sciences, Xiangshan Nanxincun 20, Haidian District, Beijing, 100093, China.
| | - Hongyin Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China.
| |
Collapse
|
13
|
Bikmurzin R, Bandzevičiūtė R, Maršalka A, Maneikis A, Kalėdienė L. FT-IR Method Limitations for β-Glucan Analysis. Molecules 2022; 27:molecules27144616. [PMID: 35889491 PMCID: PMC9318380 DOI: 10.3390/molecules27144616] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/13/2022] [Accepted: 07/18/2022] [Indexed: 02/04/2023] Open
Abstract
β-glucans are known as biological response modifiers. However, different sources can result in structural differences and as a result differences in their biological activity. The hot water extraction method allows to obtain, high molecular weight β-glucans without altering their structure by using strong chemicals, such as alkalis or acids. Analysis of β-glucans by FT-IR and NMR spectroscopy in solid state is superior to analysis in solution as it allows researchers to study the preserved structure of the extracted polysaccharides. FT-IR spectroscopy was used in this study to make side-by-side comparison analysis of hot water extracted β-glucans from different yeast sources. NMR spectroscopy was used to confirm findings made by FT-IR spectroscopy. Extracted β-glucans exhibit characteristic structure of β-1,3/1,6-linked glucans with noticeable levels of proteins, possibly in a form of oligopeptides, chitin and other impurities. β-glucans obtained from C. guilliermondii, P. pastoris and S. pastorianus exhibited higher protein content. Differences in mannan, chitin and α-glucan content were also observed; however, the species-specific structure of obtained β-glucans could not be confirmed without additional studies. Structural analysis of high molecular weight β-glucans in solid state by FT-IR spectroscopy is difficult or limited due to band intensity changes and overlapping originating from different molecules.
Collapse
Affiliation(s)
- Ruslan Bikmurzin
- Department of Microbiology and Biotechnology, Institute of Biosciences, Life Sciences Center, Vilnius University, Sauletekio av. 7, LT-10257 Vilnius, Lithuania;
- Department of Medical Technology and Dietethics, Faculty of Health Care, Vilnius University of Applied Sciences, Didlaukio str. 45, LT-08303 Vilnius, Lithuania
- Correspondence:
| | - Rimantė Bandzevičiūtė
- Institute of Chemical Physics, Faculty of Physics, Vilnius University, Saulėtekio av. 3, LT-10257 Vilnius, Lithuania; (R.B.); (A.M.)
| | - Arūnas Maršalka
- Institute of Chemical Physics, Faculty of Physics, Vilnius University, Saulėtekio av. 3, LT-10257 Vilnius, Lithuania; (R.B.); (A.M.)
| | - Andrius Maneikis
- Department of Computer Science and Communications Technologies, Vilnius Gediminas Technical University, Saulėtekio av. 11, LT-10221 Vilnius, Lithuania;
| | - Lilija Kalėdienė
- Department of Microbiology and Biotechnology, Institute of Biosciences, Life Sciences Center, Vilnius University, Sauletekio av. 7, LT-10257 Vilnius, Lithuania;
| |
Collapse
|
14
|
Takalloo Z, Nemati R, Kazemi M, Ghafari H, HasanSajedi R. Acceleration of Yeast Autolysis by Addition of Fatty Acids, Ethanol and Alkaline Protease. IRANIAN JOURNAL OF BIOTECHNOLOGY 2022; 20:e3036. [PMID: 36381284 PMCID: PMC9618019 DOI: 10.30498/ijb.2022.282895.3036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
BACKGROUND Autolysate products from yeast origin are very interesting for food, feed, cosmetic, pharmaceutical, and fermentation industries. The lysis process greatly influences the quality and efficiency of the final autolysates. OBJECTIVES Here, we have compared four lysis methods based on autolysis, plasmolysis (with ethanol 1.5% (v/v) and coconut fatty acids 1% (w/w)) and hydrolysis (with alkaline protease 0.4 % (v/w)) on degrading the baker's yeast Saccharomyces cerevisiae. MATERIALS AND METHODS The efficiency of processes was evaluated according to the recovered solid and protein contents, release of intracellular materials, cell viability, microscopy imaging, degree of hydrolysis and electrophoresis studies. RESULTS Results showed that the increased recovered solids and proteins, as well as a higher degree of hydrolysis (DH) were obtained for the enzymatic hydrolyzed cells using alkaline protease. SDS-PAGE analysis also confirmed the results. Further, functionality of the final products by agglutination test showed that the hydrolyzed cells could effectively bind pathogenic bacteria compared to the other cell lysates. CONCLUSIONS In conclusion, this work provides adequate evidence for efficiency of alkaline protease for producing the nutritional cell lysates from baker's S. cerevisiae used in food, feed, cosmetic, and pharmaceutical applications. Moreover, this was the first report on using coconut fatty acids and alkaline protease in lysis of baker's yeast.
Collapse
Affiliation(s)
- Zeinab Takalloo
- Kimiazyme Company, Modares Science & Technology Park, Tarbiat Modares University, Tehran, Iran
| | - Robabeh Nemati
- Kimiazyme Company, Modares Science & Technology Park, Tarbiat Modares University, Tehran, Iran
| | - Marjan Kazemi
- Kimiazyme Company, Modares Science & Technology Park, Tarbiat Modares University, Tehran, Iran
| | - Hadi Ghafari
- Department of Microbiology, Faculty of Veterinary Medicine, Karaj Branch, Islamic Azad University, Alborz, Iran
| | - Reza HasanSajedi
- Kimiazyme Company, Modares Science & Technology Park, Tarbiat Modares University, Tehran, Iran
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
15
|
Li J, Hu K, Hu L, Hou X, Li Q, Liu A, Chen S, Ao X, Hu X, He L, Tang H, Huang D, Yang Y, Zou L, Liu S. Adsorption Behavior of 3-phenoxybenzoic Acid by Lactobacillus Plantarum and Its Potential Application in Simulated Digestive Juices. Int J Mol Sci 2022; 23:ijms23105809. [PMID: 35628620 PMCID: PMC9146835 DOI: 10.3390/ijms23105809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/13/2022] [Accepted: 05/19/2022] [Indexed: 12/03/2022] Open
Abstract
3-PBA is a major degradation intermediate of pyrethroids. Its widespread existence in the environment poses a severe threat to the ecosystem and human health. This study evaluated the adsorption capacity of L. plantarum RS20 toward 3-PBA. Batch adsorption experiments indicated that the optimal adsorption conditions were a temperature of 37 °C and initial pH of 6.0–8.0, under which the removal rate was positively correlated with the cell concentration. In addition, there was no link between the incubation time and adsorption rate. The kinetic study showed that the adsorption process fitted well with the pseudo-second-order model, and the adsorption isotherms could be described by both Langmuir and Freundlich equations. Heat and acid treatments showed that the ability of strain RS20 in removing 3-PBA was independent of microbial vitality. Indeed, it was involved with chemisorption and physisorption via the cell walls. The cell walls made the highest contribution to 3-PBA removal, according to the adsorption experiments using different cellular components. This finding was further reconfirmed by SEM. FTIR spectroscopy analysis indicated that carboxyl, hydroxyl, amino groups, and –C–N were the functional sites for the binding of 3-PBA. The co-culture experiments showed that the adsorption of strain RS20 enhanced the degradation of 3-PBA by strain SC-1. Strain RS20 could also survive and effectively remove 3-PBA in simulated digestive juices. Collectively, strain RS20 could be employed as a biological detoxification agent for humans and animals by eliminating 3-PBA from foods, feeds, and the digestive tract in the future.
Collapse
Affiliation(s)
- Jianlong Li
- College of Food Science, Sichuan Agricultural University, Ya’an 625014, China; (J.L.); (K.H.); (L.H.); (X.H.); (Q.L.); (A.L.); (S.C.); (X.A.); (X.H.); (L.H.); (Y.Y.)
| | - Kaidi Hu
- College of Food Science, Sichuan Agricultural University, Ya’an 625014, China; (J.L.); (K.H.); (L.H.); (X.H.); (Q.L.); (A.L.); (S.C.); (X.A.); (X.H.); (L.H.); (Y.Y.)
| | - Lu Hu
- College of Food Science, Sichuan Agricultural University, Ya’an 625014, China; (J.L.); (K.H.); (L.H.); (X.H.); (Q.L.); (A.L.); (S.C.); (X.A.); (X.H.); (L.H.); (Y.Y.)
| | - Xiaoyan Hou
- College of Food Science, Sichuan Agricultural University, Ya’an 625014, China; (J.L.); (K.H.); (L.H.); (X.H.); (Q.L.); (A.L.); (S.C.); (X.A.); (X.H.); (L.H.); (Y.Y.)
- Institute of Food Processing and Safety, Sichuan Agricultural University, Ya’an 625014, China
| | - Qin Li
- College of Food Science, Sichuan Agricultural University, Ya’an 625014, China; (J.L.); (K.H.); (L.H.); (X.H.); (Q.L.); (A.L.); (S.C.); (X.A.); (X.H.); (L.H.); (Y.Y.)
| | - Aiping Liu
- College of Food Science, Sichuan Agricultural University, Ya’an 625014, China; (J.L.); (K.H.); (L.H.); (X.H.); (Q.L.); (A.L.); (S.C.); (X.A.); (X.H.); (L.H.); (Y.Y.)
| | - Shujuan Chen
- College of Food Science, Sichuan Agricultural University, Ya’an 625014, China; (J.L.); (K.H.); (L.H.); (X.H.); (Q.L.); (A.L.); (S.C.); (X.A.); (X.H.); (L.H.); (Y.Y.)
| | - Xiaolin Ao
- College of Food Science, Sichuan Agricultural University, Ya’an 625014, China; (J.L.); (K.H.); (L.H.); (X.H.); (Q.L.); (A.L.); (S.C.); (X.A.); (X.H.); (L.H.); (Y.Y.)
- Institute of Food Processing and Safety, Sichuan Agricultural University, Ya’an 625014, China
| | - Xinjie Hu
- College of Food Science, Sichuan Agricultural University, Ya’an 625014, China; (J.L.); (K.H.); (L.H.); (X.H.); (Q.L.); (A.L.); (S.C.); (X.A.); (X.H.); (L.H.); (Y.Y.)
| | - Li He
- College of Food Science, Sichuan Agricultural University, Ya’an 625014, China; (J.L.); (K.H.); (L.H.); (X.H.); (Q.L.); (A.L.); (S.C.); (X.A.); (X.H.); (L.H.); (Y.Y.)
| | - Huaqiao Tang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China;
| | - Daomei Huang
- Integrated Agricultural Development Research Institute, Guizhou Academy of Agricultural Sciences, Guiyang 550006, China;
| | - Yong Yang
- College of Food Science, Sichuan Agricultural University, Ya’an 625014, China; (J.L.); (K.H.); (L.H.); (X.H.); (Q.L.); (A.L.); (S.C.); (X.A.); (X.H.); (L.H.); (Y.Y.)
- Institute of Food Processing and Safety, Sichuan Agricultural University, Ya’an 625014, China
| | - Likou Zou
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China;
| | - Shuliang Liu
- College of Food Science, Sichuan Agricultural University, Ya’an 625014, China; (J.L.); (K.H.); (L.H.); (X.H.); (Q.L.); (A.L.); (S.C.); (X.A.); (X.H.); (L.H.); (Y.Y.)
- Institute of Food Processing and Safety, Sichuan Agricultural University, Ya’an 625014, China
- Correspondence: ; Tel.: +86-0835-2882187
| |
Collapse
|
16
|
Nahle S, El Khoury A, Savvaidis I, Chokr A, Louka N, Atoui A. Detoxification approaches of mycotoxins: by microorganisms, biofilms and enzymes. INTERNATIONAL JOURNAL OF FOOD CONTAMINATION 2022. [DOI: 10.1186/s40550-022-00089-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
AbstractMycotoxins are generally found in food, feed, dairy products, and beverages, subsequently presenting serious human and animal health problems. Not surprisingly, mycotoxin contamination has been a worldwide concern for many research studies. In this regard, many biological, chemical, and physical approaches were investigated to reduce and/or remove contamination from food and feed products. Biological detoxification processes seem to be the most promising approaches for mycotoxins removal from food. The current review details the newest progress in biological detoxification (adsorption and metabolization) through microorganisms, their biofilms, and enzymatic degradation, finally describing the detoxification mechanism of many mycotoxins by some microorganisms. This review also reports the possible usage of microorganisms as mycotoxins’ binders in various food commodities, which may help produce mycotoxins-free food and feed.
Collapse
|
17
|
Industrial-Scale Production of Mycotoxin Binder from the Red Yeast Sporidiobolus pararoseus KM281507. J Fungi (Basel) 2022; 8:jof8040353. [PMID: 35448584 PMCID: PMC9029514 DOI: 10.3390/jof8040353] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 03/24/2022] [Accepted: 03/28/2022] [Indexed: 02/06/2023] Open
Abstract
Red yeast Sporidiobolus pararoseus KM281507 has been recognized as a potential feed additive. Beyond their nutritional value (carotenoids and lipids), red yeast cells (RYCs) containing high levels of β-glucan can bind mycotoxins. This study investigated the industrial feasibility of the large-scale production of RYCs, along with their ability to act as a mycotoxin binder. Under a semi-controlled pH condition in a 300 L bioreactor, 28.70-g/L biomass, 8.67-g/L lipids, and 96.10-mg/L total carotenoids were obtained, and the RYCs were found to contain 5.73% (w/w) β-glucan. The encapsulated RYC was in vitro tested for its mycotoxin adsorption capacity, including for aflatoxin B1 (AFB1), zearalenone (ZEA), ochratoxin A (OTA), T-2 toxin (T-2) and deoxynivalenol (DON). The RYCs had the highest binding capacity for OTA and T-2 at concentrations of 0.31–1.25 and 0.31–2.5 µg/mL, respectively. The mycotoxin adsorption capacity was further tested using a gastrointestinal poultry model. The adsorption capacities of the RYCs and a commercial mycotoxin binder (CMB) were comparable. The RYCs not only are rich in lipids and carotenoids but also play an important role in mycotoxin binding. Since the industrial-scale production and downstream processing of RYCs were successfully demonstrated, RYCs could be applied as possible feed additives.
Collapse
|
18
|
Pompa-Monroy DA, Iglesias AL, Dastager SG, Thorat MN, Olivas-Sarabia A, Valdez-Castro R, Hurtado-Ayala LA, Cornejo-Bravo JM, Pérez-González GL, Villarreal-Gómez LJ. Comparative Study of Polycaprolactone Electrospun Fibers and Casting Films Enriched with Carbon and Nitrogen Sources and Their Potential Use in Water Bioremediation. MEMBRANES 2022; 12:327. [PMID: 35323802 PMCID: PMC8951516 DOI: 10.3390/membranes12030327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 03/04/2022] [Accepted: 03/11/2022] [Indexed: 12/02/2022]
Abstract
Augmenting bacterial growth is of great interest to the biotechnological industry. Hence, the effect of poly (caprolactone) fibrous scaffolds to promote the growth of different bacterial strains of biological and industrial interest was evaluated. Furthermore, different types of carbon (glucose, fructose, lactose and galactose) and nitrogen sources (yeast extract, glycine, peptone and urea) were added to the scaffold to determinate their influence in bacterial growth. Bacterial growth was observed by scanning electron microscopy; thermal characteristics were also evaluated; bacterial cell growth was measured by ultraviolet-visible spectrophotometry at 600-nm. Fibers produced have an average diameter between 313 to 766 nm, with 44% superficial porosity of the scaffolds, a glass transition around ~64 °C and a critical temperature of ~338 °C. The fibrous scaffold increased the cell growth of Escherichia coli by 23% at 72 h, while Pseudomonas aeruginosa and Staphylococcus aureus increased by 36% and 95% respectively at 48 h, when compared to the normal growth of their respective bacterial cultures. However, no significant difference in bacterial growth between the scaffolds and the casted films could be observed. Cell growth depended on a combination of several factors: type of bacteria, carbon or nitrogen sources, casted films or 3D scaffolds. Microscopy showed traces of a biofilm formation around 3 h in culture of P. aeruginosa. Water bioremediation studies showed that P. aeruginosa on poly (caprolactone)/Glucose fibers was effective in removing 87% of chromium in 8 h.
Collapse
Affiliation(s)
- Daniella Alejandra Pompa-Monroy
- Facultad de Ciencias de la Ingeniería y Tecnología, Universidad Autónoma de Baja California, Tijuana 21500, Baja California, Mexico; (D.A.P.-M.); (A.L.I.); (G.L.P.-G.)
- Facultad de Ciencias Químicas e Ingeniería, Universidad Autónoma de Baja California, Tijuana 22260, Baja California, Mexico; (L.A.H.-A.); (J.M.C.-B.)
| | - Ana Leticia Iglesias
- Facultad de Ciencias de la Ingeniería y Tecnología, Universidad Autónoma de Baja California, Tijuana 21500, Baja California, Mexico; (D.A.P.-M.); (A.L.I.); (G.L.P.-G.)
| | - Syed Gulam Dastager
- National Collection of Industrial Microorganism (NCIM), CSIR-National Chemical Laboratory, Pune 41008, Maharashtra, India; (S.G.D.); (M.N.T.)
| | - Meghana Namdeo Thorat
- National Collection of Industrial Microorganism (NCIM), CSIR-National Chemical Laboratory, Pune 41008, Maharashtra, India; (S.G.D.); (M.N.T.)
| | - Amelia Olivas-Sarabia
- Centro de Nanociencias y Nanotecnología, Universidad Nacional Autónoma de México, Ensenada 22860, Baja California, Mexico; (A.O.-S.); (R.V.-C.)
| | - Ricardo Valdez-Castro
- Centro de Nanociencias y Nanotecnología, Universidad Nacional Autónoma de México, Ensenada 22860, Baja California, Mexico; (A.O.-S.); (R.V.-C.)
| | - Lilia Angélica Hurtado-Ayala
- Facultad de Ciencias Químicas e Ingeniería, Universidad Autónoma de Baja California, Tijuana 22260, Baja California, Mexico; (L.A.H.-A.); (J.M.C.-B.)
| | - José Manuel Cornejo-Bravo
- Facultad de Ciencias Químicas e Ingeniería, Universidad Autónoma de Baja California, Tijuana 22260, Baja California, Mexico; (L.A.H.-A.); (J.M.C.-B.)
| | - Graciela Lizeth Pérez-González
- Facultad de Ciencias de la Ingeniería y Tecnología, Universidad Autónoma de Baja California, Tijuana 21500, Baja California, Mexico; (D.A.P.-M.); (A.L.I.); (G.L.P.-G.)
- Facultad de Ciencias Químicas e Ingeniería, Universidad Autónoma de Baja California, Tijuana 22260, Baja California, Mexico; (L.A.H.-A.); (J.M.C.-B.)
| | - Luis Jesús Villarreal-Gómez
- Facultad de Ciencias de la Ingeniería y Tecnología, Universidad Autónoma de Baja California, Tijuana 21500, Baja California, Mexico; (D.A.P.-M.); (A.L.I.); (G.L.P.-G.)
- Facultad de Ciencias Químicas e Ingeniería, Universidad Autónoma de Baja California, Tijuana 22260, Baja California, Mexico; (L.A.H.-A.); (J.M.C.-B.)
| |
Collapse
|
19
|
Podgórska-Kryszczuk I, Solarska E, Kordowska-Wiater M. Reduction of the Fusarium Mycotoxins: Deoxynivalenol, Nivalenol and Zearalenone by Selected Non-Conventional Yeast Strains in Wheat Grains and Bread. Molecules 2022; 27:1578. [PMID: 35268678 PMCID: PMC8911760 DOI: 10.3390/molecules27051578] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/24/2022] [Accepted: 02/24/2022] [Indexed: 11/17/2022] Open
Abstract
Mycotoxins, toxic secondary metabolites produced by fungi, are important contaminants in food and agricultural industries around the world. These toxins have a multidirectional toxic effect on living organisms, causing damage to the kidneys and liver, and disrupting the functions of the digestive tract and the immune system. In recent years, much attention has been paid to the biological control of pathogens and the mycotoxins they produce. In this study, selected yeasts were used to reduce the occurrence of deoxynivalenol (DON), nivalenol (NIV), and zearalenone (ZEA) produced by Fusarium culmorum, F. graminearum, and F. poae on wheat grain and bread. In a laboratory experiment, an effective reduction in the content of DON, NIV, and ZEA was observed in bread prepared by baking with the addition of an inoculum of the test yeast, ranging from 16.4% to 33.4%, 18.5% to 36.2% and 14.3% to 35.4%, respectively. These results indicate that the selected yeast isolates can be used in practice as efficient mycotoxin decontamination agents in the food industry.
Collapse
Affiliation(s)
- Izabela Podgórska-Kryszczuk
- Department of Analysis and Food Quality Assessment, University of Life Sciences in Lublin, Skromna 8, 20-704 Lublin, Poland;
| | - Ewa Solarska
- Department of Biotechnology, Microbiology and Human Nutrition, University of Life Sciences in Lublin, Skromna 8, 20-704 Lublin, Poland;
| | - Monika Kordowska-Wiater
- Department of Biotechnology, Microbiology and Human Nutrition, University of Life Sciences in Lublin, Skromna 8, 20-704 Lublin, Poland;
| |
Collapse
|
20
|
Zeng L, Huang J, Feng P, Zhao X, Si Z, Long X, Cheng Q, Yi Y. Transcriptomic analysis of formic acid stress response in Saccharomyces cerevisiae. World J Microbiol Biotechnol 2022; 38:34. [PMID: 34989900 DOI: 10.1007/s11274-021-03222-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Accepted: 12/26/2021] [Indexed: 12/23/2022]
Abstract
Formic acid is a representative small molecule acid in lignocellulosic hydrolysate that can inhibit the growth of Saccharomyces cerevisiae cells during alcohol fermentation. However, the mechanism of formic acid cytotoxicity remains largely unknown. In this study, RNA-Seq technology was used to study the response of S. cerevisiae to formic acid stress at the transcriptional level. Scanning electron microscopy and Fourier transform infrared spectroscopy were conducted to observe the surface morphology of yeast cells. A total of 1504 genes were identified as being differentially expressed, with 797 upregulated and 707 downregulated genes. Transcriptomic analysis showed that most genes related to glycolysis, glycogen synthesis, protein degradation, the cell cycle, the MAPK signaling pathway, and redox regulation were significantly induced under formic acid stress and were involved in protein translation and synthesis amino acid synthesis genes were significantly suppressed. Formic acid stress can induce oxidative stress, inhibit protein biosynthesis, cause cells to undergo autophagy, and activate the intracellular metabolic pathways of energy production. The increase of glycogen and the decrease of energy consumption metabolism may be important in the adaptation of S. cerevisiae to formic acid. In addition, formic acid can also induce sexual reproduction and spore formation. This study through transcriptome analysis has preliminarily reveal the molecular response mechanism of S. cerevisiae to formic acid stress and has provided a basis for further research on methods used to improve the tolerance to cell inhibitors in lignocellulose hydrolysate.
Collapse
Affiliation(s)
- Lingjie Zeng
- College of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou, 545006, China
- Guangxi Key Laboratory of Green Processing of Sugar Resources, Liuzhou, 545006, China
| | - Jinxiang Huang
- College of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou, 545006, China
- Guangxi Key Laboratory of Green Processing of Sugar Resources, Liuzhou, 545006, China
| | - Pixue Feng
- College of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou, 545006, China
- Guangxi Key Laboratory of Green Processing of Sugar Resources, Liuzhou, 545006, China
| | - Xuemei Zhao
- College of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou, 545006, China
- Guangxi Key Laboratory of Green Processing of Sugar Resources, Liuzhou, 545006, China
| | - Zaiyong Si
- College of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou, 545006, China
- Guangxi Key Laboratory of Green Processing of Sugar Resources, Liuzhou, 545006, China
| | - Xiufeng Long
- College of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou, 545006, China
- Guangxi Key Laboratory of Green Processing of Sugar Resources, Liuzhou, 545006, China
| | - Qianwei Cheng
- College of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou, 545006, China
- Guangxi Key Laboratory of Green Processing of Sugar Resources, Liuzhou, 545006, China
| | - Yi Yi
- College of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou, 545006, China.
- Guangxi Key Laboratory of Green Processing of Sugar Resources, Liuzhou, 545006, China.
| |
Collapse
|
21
|
Bruinenberg PG, Castex M. Evaluation of a Yeast Hydrolysate from a Novel Strain of Saccharomyces cerevisiae for Mycotoxin Mitigation using In Vitro and In Vivo Models. Toxins (Basel) 2021; 14:toxins14010007. [PMID: 35050984 PMCID: PMC8779798 DOI: 10.3390/toxins14010007] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 12/07/2021] [Accepted: 12/17/2021] [Indexed: 11/25/2022] Open
Abstract
Mycotoxicoses in animals are caused by exposure to mycotoxin-contaminated feeds. Disease risk is managed using dietary adsorbing agents which reduce oral bioavailability. The objective of this work was to evaluate the efficacy of three selected yeast products as mycotoxin binders using in vitro and in vivo models. Their capacity to adsorb deoxynivalenol (DON), zearalenone (ZEA), and ochratoxin A (OTA) was evaluated using an in vitro model designed to simulate the pH conditions during gastric passage in a monogastric animal. Results showed that only one product, an enzymatic yeast hydrolysate (YHY) of a novel strain Saccharomyces cerevisiae, adsorbed about 45% of DON in solution. Next, we determined the effect of YHY on oral absorption of a DON, ZEA, and OTA mixture using a toxicokinetic model in swine. Toxicokinetic modeling of the plasma concentration-time profiles of DON, OTA, and zearalenone-glucuronide (ZEA-GlcA) showed that YHY tended to reduce the maximal plasma concentration of OTA by 17%. YHY did not reduce oral bioavailability of OTA, DON, and ZEA-GlcA. Within the context of this experiment, and despite some positive indications from both the in vitro and in vivo models employed, we conclude that the YHY prototype was not an effective agent for multiple mycotoxin adsorption.
Collapse
Affiliation(s)
- Paul Gerard Bruinenberg
- Trouw Nutrition R&D, Stationsstraat 77, 3811 MH Amersfoort, The Netherlands
- Correspondence: ; Tel.: +31-622482661
| | - Mathieu Castex
- Lallemand SAS, 19 rue des Briquetiers, BP 59, CEDEX, 31702 Blagnac, France;
| |
Collapse
|
22
|
Utama GL, Dio C, Sulistiyo J, Yee Chye F, Lembong E, Cahyana Y, Kumar Verma D, Thakur M, Patel AR, Singh S. Evaluating comparative β-glucan production aptitude of Saccharomyces cerevisiae, Aspergillus oryzae, Xanthomonas campestris, and Bacillus natto. Saudi J Biol Sci 2021; 28:6765-6773. [PMID: 34866975 PMCID: PMC8626220 DOI: 10.1016/j.sjbs.2021.07.051] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 07/13/2021] [Accepted: 07/16/2021] [Indexed: 11/26/2022] Open
Abstract
β-glucan is a natural polysaccharide derivative composed of a group of glucose monomers with β-glycoside bonds that can be synthesized intra- or extra-cellular by various microorganisms such as yeasts, bacteria, and moulds. The study aimed to discover the potential of various microorganisms such as Saccharomyces cerevisiae, Aspergillus oryzae, Xanthomonas campestris, and Bacillus natto in producing β-glucan. The experimental method used and the data were analyzed descriptively. The four microorganisms above were cultured under a submerged state in Yeast glucose (YG) broth for 120 h at 30 °C with 200 rpm agitation. During the growth, several parameters were examined including total population by optical density, the pH, and glucose contents of growth media. β-glucan was extracted using acid-alkaline methods from the growth media then the weight was measured. The results showed that S. cerevisiae, A. oryzae X. campestris, and B. natto were prospective for β-glucans production in submerged fermentation up to 120 h. The highest β-glucans yield was shown by B. natto (20.38%) with the β-glucans mass of 1.345 ± 0.08 mg and globular diameter of 600 μm. The highest β-glucan mass was achieved by A. oryzae of 82.5 ± 0.03 mg with the total population in optical density of 0.1246, a final glucose level of 769 ppm, the pH of 6.67, and yield of 13.97% with a globular diameter of 1400 μm.
Collapse
Affiliation(s)
- Gemilang Lara Utama
- Faculty of Agro-Industrial Technology, Universitas Padjadjaran, Sumedang 45363, Indonesia.,Center for Environment and Sustainability Science, UniversitasPadjadjaran, Bandung 40132, Indonesia
| | - Casey Dio
- Faculty of Agro-Industrial Technology, Universitas Padjadjaran, Sumedang 45363, Indonesia
| | - Joko Sulistiyo
- Faculty of Food Science and Nutrition, Universiti Malaysia Sabah, Kota Kinabalu, Malaysia
| | - Fook Yee Chye
- Faculty of Food Science and Nutrition, Universiti Malaysia Sabah, Kota Kinabalu, Malaysia
| | - Elazmanawati Lembong
- Faculty of Agro-Industrial Technology, Universitas Padjadjaran, Sumedang 45363, Indonesia
| | - Yana Cahyana
- Faculty of Agro-Industrial Technology, Universitas Padjadjaran, Sumedang 45363, Indonesia
| | - Deepak Kumar Verma
- Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India
| | - Mamta Thakur
- Department of Food Engineering and Technology, Sant Longowal Institute of Engineering and Technology, Longowal 148106, Punjab, India
| | - Ami R Patel
- Division of Dairy Microbiology, Mansinhbhai Institute of Dairy & Food Technology-MIDFT, Dudhsagar Dairy Campus, Mehsana384 002, Gujarat State, India
| | - Smita Singh
- Department of Life Sciences (Food Technology), Graphic Era (Deemed to be) University, Dehradun, Uttarakhand 248002, India
| |
Collapse
|
23
|
Kępińska-Pacelik J, Biel W. Alimentary Risk of Mycotoxins for Humans and Animals. Toxins (Basel) 2021; 13:822. [PMID: 34822606 PMCID: PMC8622594 DOI: 10.3390/toxins13110822] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/19/2021] [Accepted: 11/19/2021] [Indexed: 01/20/2023] Open
Abstract
Mycotoxins can be found in many foods consumed by humans and animals. These substances are secondary metabolites of some fungi species and are resistant to technological processes (cooking, frying, baking, distillation, fermentation). They most often contaminate products of animal (beef, pork, poultry, lamb, fish, game meat, milk) and plant origin (cereals, processed cereals, vegetables, nuts). It is estimated that about 25% of the world's harvest may be contaminated with mycotoxins. These substances damage crops and may cause mycotoxicosis. Many mycotoxins can be present in food, together with mold fungi, increasing the exposure of humans and animals to them. In this review we characterized the health risks caused by mycotoxins found in food, pet food and feed. The most important groups of mycotoxins are presented in terms of their toxicity and occurrence.
Collapse
Affiliation(s)
| | - Wioletta Biel
- Department of Monogastric Animal Sciences, Division of Animal Nutrition and Food, West Pomeranian University of Technology in Szczecin, Klemensa Janickiego 29, 71-270 Szczecin, Poland;
| |
Collapse
|
24
|
Piotrowska M. Microbiological Decontamination of Mycotoxins: Opportunities and Limitations. Toxins (Basel) 2021; 13:toxins13110819. [PMID: 34822603 PMCID: PMC8619243 DOI: 10.3390/toxins13110819] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/12/2021] [Accepted: 11/18/2021] [Indexed: 02/07/2023] Open
Abstract
The contamination of food and feeds with mycotoxins poses a global health risk to humans and animals, with major economic consequences. Good agricultural and manufacturing practices can help control mycotoxin contamination. Since these actions are not always effective, several methods of decontamination have also been developed, including physical, chemical, and biological methods. Biological decontamination using microorganisms has revealed new opportunities. However, these biological methods require legal regulations and more research before they can be used in food production. Currently, only selected biological methods are acceptable for the decontamination of feed. This review discusses the literature on the use of microorganisms to remove mycotoxins and presents their possible mechanisms of action. Special attention is given to Saccharomyces cerevisiae yeast and lactic acid bacteria, and the use of yeast cell wall derivatives.
Collapse
Affiliation(s)
- Małgorzata Piotrowska
- Faculty of Biotechnology and Food Sciences, Institute of Fermentation Technology and Microbiology, Lodz University of Technology, Wólczańska 171/173, 90-530 Lodz, Poland
| |
Collapse
|
25
|
|
26
|
Antifungal and Aflatoxin-Reducing Activity of β-Glucan Isolated from Pichia norvegensis Grown on Tofu Wastewater. Foods 2021; 10:foods10112619. [PMID: 34828900 PMCID: PMC8618602 DOI: 10.3390/foods10112619] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 10/17/2021] [Accepted: 10/19/2021] [Indexed: 12/02/2022] Open
Abstract
Yeast can be isolated from tofu wastewater and the cell wall in the form of β-glucan can act as a natural decontaminant agent. This study aimed to isolate and characterize native yeast from tofu wastewater, which can be extracted to obtain β-glucan and then identify the yeast and its β-glucan activity regarding antifungal ability against Aspergillus flavus and aflatoxin-reducing activity towards aflatoxin B1 (AFB1) and B2 (AFB2). Tofu wastewater native yeast was molecularly identified, and the growth observed based on optical density for 96 h and the pH also measured. β-glucan was extracted from native yeast cell walls with the acid-base method and then the inhibition activity towards A. flavus was tested using the well diffusion method and microscopic observation. AFB1 and AFB2 reduction were identified using HPLC LC-MS/MS. The results showed that the native yeast isolated was Pichia norvegensis with a β-glucan yield of 6.59%. Pichia norvegensis and its β-glucan showed an inhibition zone against Aspergillus flavus of 11.33 ± 4.93 and 7.33 ± 3.51 mm, respectively. Total aflatoxin-reducing activity was also shown by Pichia norvegensis of 26.85 ± 2.87%, and β-glucan of 27.30 ± 1.49%, while AFB1- and AFB2-reducing activity by Pichia norvegensis was 36.97 ± 3.07% and 27.13 ± 1.69%, and β-glucan was 27.13 ± 1.69% and 32.59 ± 4.20%, respectively.
Collapse
|
27
|
Diversity of Mycobiota in Spanish Grape Berries and Selection of Hanseniaspora uvarum U1 to Prevent Mycotoxin Contamination. Toxins (Basel) 2021; 13:toxins13090649. [PMID: 34564653 PMCID: PMC8473298 DOI: 10.3390/toxins13090649] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 09/10/2021] [Accepted: 09/11/2021] [Indexed: 12/02/2022] Open
Abstract
The occurrence of mycotoxins on grapes poses a high risk for food safety; thus, it is necessary to implement effective prevention methods. In this work, a metagenomic approach revealed the presence of important mycotoxigenic fungi in grape berries, including Aspergillus flavus, Aspergillus niger aggregate species, or Aspergillus section Circumdati. However, A. carbonarius was not detected in any sample. One of the samples was not contaminated by any mycotoxigenic species, and, therefore, it was selected for the isolation of potential biocontrol agents. In this context, Hanseniaspora uvarum U1 was selected for biocontrol in vitro assays. The results showed that this yeast is able to reduce the growth rate of the main ochratoxigenic and aflatoxigenic Aspergillus spp. occurring on grapes. Moreover, H. uvarum U1 seems to be an effective detoxifying agent for aflatoxin B1 and ochratoxin A, probably mediated by the mechanisms of adsorption to the cell wall and other active mechanisms. Therefore, H. uvarum U1 should be considered in an integrated approach to preventing AFB1 and OTA in grapes due to its potential as a biocontrol and detoxifying agent.
Collapse
|
28
|
Lu D, Tang S, Li Y, Cong Z, Zhang X, Wu S. Magnetic-Propelled Janus Yeast Cell Robots Functionalized with Metal-Organic Frameworks for Mycotoxin Decontamination. MICROMACHINES 2021; 12:mi12070797. [PMID: 34357207 PMCID: PMC8307641 DOI: 10.3390/mi12070797] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 07/02/2021] [Accepted: 07/02/2021] [Indexed: 01/11/2023]
Abstract
Cell robots that transform natural cells into active platforms hold great potential to enrich the biomedical prospects of artificial microrobots. Here, we present Janus yeast cell microrobots (JYC-robots) prepared by asymmetrically coating Fe3O4 nanoparticles (NPs) and subsequent in situ growth of zeolitic imidazolate framework-67 (ZIF-67) on the surface of yeast cells. The magnetic actuation relies on the Fe3O4 NPs wrapping. As the compositions of cell robots, the cell wall with abundant polysaccharide coupling with porous and oxidative ZIF-67 can concurrently remove mycotoxin (e.g., zearalenone (ZEN)). The magnetic propulsion accelerates the decontamination efficiency of JYC-robots against ZEN. Although yeast cells with fully coating of Fe3O4 NPs and ZIF-67 (FC-yeasts) show faster movement than JYC-robots, higher toxin-removal efficacy is observed for JYC-robots compared with that of FC-yeasts, reflecting the vital factor of the yeast cell wall in removing mycotoxin. Such design with Janus modification of magnetic NPs (MNPs) and entire coating of ZIF-67 generates active cell robot platform capable of fuel-free propulsion and enhanced detoxification, offering a new formation to develop cell-based robotics system for environmental remediation.
Collapse
Affiliation(s)
- Dongdong Lu
- Medical School, Anhui University of Science and Technology, Huainan 232001, China;
- Institute of Urology, The Third Affiliated Hospital of Shenzhen University, Shenzhen 518000, China; (Y.L.); (Z.C.)
- Shenzhen Following Precision Medical Research Institute, Luohu Hospital Group, Shenzhen 518000, China
| | - Songsong Tang
- Research Center for Bioengineering and Sensing Technology, Beijing Key Laboratory for Bioengineering and Sensing Technology, Department of Chemistry & Biological Engineering, University of Science & Technology Beijing, Beijing 100083, China;
- Correspondence: (S.T.); (S.W.)
| | - Yangyang Li
- Institute of Urology, The Third Affiliated Hospital of Shenzhen University, Shenzhen 518000, China; (Y.L.); (Z.C.)
| | - Zhaoqing Cong
- Institute of Urology, The Third Affiliated Hospital of Shenzhen University, Shenzhen 518000, China; (Y.L.); (Z.C.)
| | - Xueji Zhang
- Research Center for Bioengineering and Sensing Technology, Beijing Key Laboratory for Bioengineering and Sensing Technology, Department of Chemistry & Biological Engineering, University of Science & Technology Beijing, Beijing 100083, China;
| | - Song Wu
- Medical School, Anhui University of Science and Technology, Huainan 232001, China;
- Institute of Urology, The Third Affiliated Hospital of Shenzhen University, Shenzhen 518000, China; (Y.L.); (Z.C.)
- Shenzhen Following Precision Medical Research Institute, Luohu Hospital Group, Shenzhen 518000, China
- Correspondence: (S.T.); (S.W.)
| |
Collapse
|
29
|
García-Béjar B, Owens RA, Briones A, Arévalo-Villena M. Proteomic profiling and glycomic analysis of the yeast cell wall in strains with Aflatoxin B 1 elimination ability. Environ Microbiol 2021; 23:5305-5319. [PMID: 34029450 DOI: 10.1111/1462-2920.15606] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 05/18/2021] [Indexed: 11/27/2022]
Abstract
The use of microorganisms for Aflatoxin B1 elimination has been studied as a new alternative tool and it is known that cell wall carried out a critical role. For that reason, cell wall and soluble intracellular fraction of eight yeasts with AFB1 detoxification capability were analysed. The quantitative and qualitative comparative label-free proteomic allowed the identification of diverse common constituent proteins, which revealed that putative cell wall proteins entailed less than 10% of the total proteome. It was possible to characterize different enzymes linked to cell wall polysaccharides biosynthesis as well as other proteins related with the cell wall organization and regulation. Additionally, the concentration of the principal polysaccharides was determined which permitted us to observe that β-glucans concentration was higher than mannans in most of the samples. In order to better understand the biosorption role of the cell wall against the AFB1 , an antimycotic (Caspofungin) was used to damage the cell wall structure. This assay allowed the observation of an effect on the normal growth of those yeasts with damaged cell walls that were exposed to AFB1 . This effect was not observed in yeast with intact cell walls, which may reveal a protective role of this structure against mycotoxins.
Collapse
Affiliation(s)
- Beatriz García-Béjar
- Department of Analytical Chemistry and Food Technology, University of Castilla-La Mancha, Ciudad Real, 13071, Spain
| | - Rebecca A Owens
- Department of Biology, Maynooth University, Maynooth, Co. Kildare, Ireland
| | - Ana Briones
- Department of Analytical Chemistry and Food Technology, University of Castilla-La Mancha, Ciudad Real, 13071, Spain
| | - María Arévalo-Villena
- Department of Analytical Chemistry and Food Technology, University of Castilla-La Mancha, Ciudad Real, 13071, Spain
| |
Collapse
|
30
|
Sohrabi Balsini M, Edalatian Dovom MR, Kadkhodaee R, Habibi Najafi MB, Yavarmanesh M. Effect of digestion and thermal processing on the stability of microbial cell-aflatoxin B1 complex. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.110994] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
31
|
Mahmoud Amer E, Saber SH, Abo Markeb A, Elkhawaga AA, Mekhemer IMA, Zohri ANA, Abujamel TS, Harakeh S, Abd-Allah EA. Enhancement of β-Glucan Biological Activity Using a Modified Acid-Base Extraction Method from Saccharomyces cerevisiae. Molecules 2021; 26:2113. [PMID: 33917024 PMCID: PMC8067753 DOI: 10.3390/molecules26082113] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 03/12/2021] [Accepted: 03/19/2021] [Indexed: 12/12/2022] Open
Abstract
Beta glucan (β-glucan) has promising bioactive properties. Consequently, the use of β-glucan as a food additive is favored with the dual-purpose potential of increasing the fiber content of food products and enhancing their health properties. Our aim was to evaluate the biological activity of β-glucan (antimicrobial, antitoxic, immunostimulatory, and anticancer) extracted from Saccharomyces cerevisiae using a modified acid-base extraction method. The results demonstrated that a modified acid-base extraction method gives a higher biological efficacy of β-glucan than in the water extraction method. Using 0.5 mg dry weight of acid-base extracted β-glucan (AB extracted) not only succeeded in removing 100% of aflatoxins, but also had a promising antimicrobial activity against multidrug-resistant bacteria, fungi, and yeast, with minimum inhibitory concentrations (MIC) of 0.39 and 0.19 mg/mL in the case of resistant Staphylococcus aureus (MRSA) and Pseudomonas aeruginosa, respectively. In addition, AB extract exhibited a positive immunomodulatory effect, mediated through the high induction of TNFα, IL-6, IFN-γ, and IL-2. Moreover, AB extract showed a greater anticancer effect against A549, MDA-MB-232, and HepG-2 cells compared to WI-38 cells, at high concentrations. By studying the cell death mechanism using flow-cytometry, AB extract was shown to induce apoptotic cell death at higher concentrations, as in the case of MDA-MB-231 and HePG-2 cells. In conclusion, the use of a modified AB for β-glucan from Saccharomyces cerevisiae exerted a promising antimicrobial, immunomodulatory efficacy, and anti-cancer potential. Future research should focus on evaluating β-glucan in various biological systems and elucidating the underlying mechanism of action.
Collapse
Affiliation(s)
- Enas Mahmoud Amer
- Botany and Microbiology Department, Faculty of Science, Assiut University, Assiut 71515, Egypt; (E.M.A.); (A.-N.A.Z.)
| | - Saber H. Saber
- Laboratory of Molecular Cell Biology, Department of Zoology, Faculty of Science, Assiut University, Assiut 71515, Egypt;
| | - Ahmad Abo Markeb
- Chemistry Department, Faculty of Science, Assiut University, Assiut 71515, Egypt; (A.A.M.); (I.M.A.M.)
| | - Amal A. Elkhawaga
- Medical Microbiology and Immunology Department, Faculty of Medicine, Assiut University, Assiut 71515, Egypt;
| | - Islam M. A. Mekhemer
- Chemistry Department, Faculty of Science, Assiut University, Assiut 71515, Egypt; (A.A.M.); (I.M.A.M.)
| | - Abdel-Naser A. Zohri
- Botany and Microbiology Department, Faculty of Science, Assiut University, Assiut 71515, Egypt; (E.M.A.); (A.-N.A.Z.)
| | - Turki S. Abujamel
- Vaccines and Immunotherapy Unit, King Fahd Medical Research Center (KFMRC), King Abdulaziz University (KAU), Jeddah 21589, Saudi Arabia;
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University (KAU), Jeddah 21589, Saudi Arabia
| | - Steve Harakeh
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University (KAU), Jeddah 21589, Saudi Arabia
- Special Infectious Agents Unit, King Fahd Medical Research Center and Yousef Abdullatif Jameel Chair of Prophetic Medicine Application, Faculty of Medicine, King Abdulaziz University (KAU), Jeddah 21589, Saudi Arabia
| | - Elham A. Abd-Allah
- Zoology Department, Faculty of Science, New Valley University, El-Kharga 72511, Egypt;
| |
Collapse
|
32
|
Zhang M, Wen Y, Luo X, Wang X, Li J, Liu A, He L, Chen S, Ao X, Yang Y, Zou L, Liu S. Characterization, mechanism of cypermethrin biosorption by Saccharomyces cerevisiae strains YS81 and HP and removal of cypermethrin from apple and cucumber juices by inactive cells. JOURNAL OF HAZARDOUS MATERIALS 2021; 407:124350. [PMID: 33176957 DOI: 10.1016/j.jhazmat.2020.124350] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 10/15/2020] [Accepted: 10/19/2020] [Indexed: 06/11/2023]
Abstract
Cypermethrin is a common food contaminant and environmental pollutant that cause health threats to animals and humans. In this study, the characterization, mechanism, and application of cypermethrin removal by Saccharomyces cerevisiae were investigated. The binding of cypermethrin by the strains S. cerevisiae YS81 and HP was rapid and reached equilibrium at 2-8 h. The removal efficiency was dependent on incubation temperature and yeast concentration, whereas cypermethrin binding was not affected by pH. Heat and acid treatments enhanced the binding ability. Both strains survived in simulated digestion juices and removed cypermethrin effectively under simulated gastrointestinal conditions. Among the strains tested, the YS81 strain was the better candidate for cypermethrin concentration reduction. For the two S. cerevisiae strains, the biosorption kinetics and isotherm followed the pseudo-second-order model and Langmuir model well. The cell walls and the protoplasts were the main yeast cell components involved in cypermethrin binding. Fourier transformed infrared spectroscopy analysis revealed that -OH, -NH, -C-N, -COO-, and -C-O played a major role in binding cypermethrin. Inactive cells effectively removed cypermethrin from apple and cucumber juices and did not affect the physico-chemical properties. Therefore, S. cerevisiae strains YS81 and HP may be used for cypermethrin reduction in food or feed.
Collapse
Affiliation(s)
- Mengmei Zhang
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan 625014, People's Republic of China
| | - Yunling Wen
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan 625014, People's Republic of China
| | - Xiaoli Luo
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan 625014, People's Republic of China
| | - Xingjie Wang
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan 625014, People's Republic of China
| | - Jianlong Li
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan 625014, People's Republic of China
| | - Aiping Liu
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan 625014, People's Republic of China
| | - Li He
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan 625014, People's Republic of China
| | - Shujuan Chen
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan 625014, People's Republic of China
| | - Xiaolin Ao
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan 625014, People's Republic of China; Institute of Food Processing and Safety, Sichuan Agricultural University, Ya'an, Sichuan 625014, People's Republic of China
| | - Yong Yang
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan 625014, People's Republic of China; Institute of Food Processing and Safety, Sichuan Agricultural University, Ya'an, Sichuan 625014, People's Republic of China
| | - Likou Zou
- College of Resources, Sichuan Agricultural University, Chengdu, Sichuan 611130, People's Republic of China
| | - Shuliang Liu
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan 625014, People's Republic of China; Institute of Food Processing and Safety, Sichuan Agricultural University, Ya'an, Sichuan 625014, People's Republic of China.
| |
Collapse
|
33
|
Jia LL, Brough L, Weber JL. Saccharomyces cerevisiae Yeast-Based Supplementation as a Galactagogue in Breastfeeding Women? A Review of Evidence from Animal and Human Studies. Nutrients 2021; 13:nu13030727. [PMID: 33668808 PMCID: PMC7996189 DOI: 10.3390/nu13030727] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 02/21/2021] [Indexed: 11/16/2022] Open
Abstract
Perceived insufficient milk production (PIM) adversely affects breastfeeding duration. Women sometimes use galactagogues with the intent to increase breast milk production and support lactation. Saccharomyces cerevisiae yeast-based supplement (SCYS) is an inactive form of Saccharomyces cerevisiae yeast (SCY) either obtained from the fermentation process or grown on molasses. Anecdotal evidence suggests SCYS is a galactagogue. SCYS is promoted on the internet as a galactagogue in various forms and doses. Dietary supplementation with SCYS during gestation and lactation significantly increases milk yield in ruminants. No human study has evaluated efficacy of SCYS as a galactagogue. SCYS is rich in B vitamins, beta-glucan, mannan oligosaccharides and bioavailable chromium; these may impact breast milk production or composition, thus may alleviate PIM. The safety of taking SCYS during lactation is not well studied. Studies have reported contamination of SCYS with ochratoxin A (OTA) as well as minor side effects from SCYS. Studies are needed to evaluate the efficacy of SCYS on breast milk production and composition and to assess the safety of taking SCYS during lactation in humans.
Collapse
|
34
|
Hajhosseini A, Doroud D, Sharifan A, Eftekhari Z. Stress response and characterization of oil-in-water emulsions stabilized with Kluyveromyces marxianus mannoprotein. J Food Sci 2021; 86:454-462. [PMID: 33438241 DOI: 10.1111/1750-3841.15584] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 11/23/2020] [Accepted: 12/06/2020] [Indexed: 11/30/2022]
Abstract
This study was intended to investigate physico-chemical, rheological, and emulsifying properties of oil-in-water emulsions prepared from the Kluyveromyces marxianus mannoprotein (KMM). Also, the stress-response function of the KMM emulsions was compared with that of the whey protein concentrate (WPC) emulsions in terms of zeta potential, size, and rheology. The stress experiments were conducted at different pH (3 to 9), ionic composition (0 to 500 mM NaCl), and temperatures (30 to 90 °C). The extracted KMM with a molecular weight of 107.2 kDa had 28.8% proteins and 68.22% carbohydrates. With increasing the KMM concentration to 1.5% (w/w), the zeta potential, droplet size, and apparent viscosity of the emulsions reached -35 mV, ∼1 μ, and ∼9 mPa·s, respectively. After applying pH, ionic composition, and temperature, the KMM emulsions were more stable than the WPC emulsions. In conclusion, KMM can be used as a bioemulsifier and be more effective in stabilizing emulsions than WPC. PRACTICAL APPLICATION: Yeasts are a rich source of natural materials. In this study, we extracted mannoproteins from the yeast cell wall and evaluated their functional properties to be used as an emulsifier in oil-in-water emulsions. The results of this study confirm that the yeast-derived mannoproteins are good at stabilizing these emulsions either in the presence or absence of different environmental conditions.
Collapse
Affiliation(s)
- Ashraf Hajhosseini
- Department of Food Science and Technology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Delaram Doroud
- Production and Research Complex, Pasteur Institute of Iran, Tehran, Iran
| | - Anousheh Sharifan
- Department of Food Science and Technology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Zohreh Eftekhari
- Quality Control Department, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
35
|
Vahidimehr A, Khiabani MS, Mokarram RR, Kafil HS, Ghiasifar S, Vahidimehr A. Saccharomyces cerevisiae and Lactobacillus rhamnosus cell walls immobilized on nano-silica entrapped in alginate as aflatoxin M 1 binders. Int J Biol Macromol 2020; 164:1080-1086. [PMID: 32693128 DOI: 10.1016/j.ijbiomac.2020.07.089] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 06/24/2020] [Accepted: 07/09/2020] [Indexed: 12/01/2022]
Abstract
Aflatoxins are common fungal toxins in foods that cause health problems for humans. The aim of this study was to use Saccharomyces cerevisiae and Lactobacillus rhamnosus cell walls immobilized on nano-silica entrapped in alginate as aflatoxin M1 (AFM1) binders. In this study, microbial walls were disrupted using a three-step mechanical technique including autoclave, thermal shock, and ultrasound. Dynamic light scattering (DLS) results proved size reduction in microbial walls ranging 75.8-91.4 nm. Disrupted walls were immobilized on nano-silica to enhance the efficiency of AFM1 adsorption. Then, to prevent the release of the nano-silica or cell walls into the reaction medium, they were entrapped into alginate gel beads. Fourier transform infrared spectrometer (FT-IR) and scanning electron microscopy (SEM) micrographs confirmed the immobilization and entrapment process. Individual and mixtures of free cell walls, immobilized-entrapped walls, alginate bead and nano-silica were contacted with AFM1 for 15 min and 24 h. AFM1 reduction ability was evaluated using high performance liquid chromatography (HPLC). The results showed an AFM1 reduction ranging 53-87% for free cell walls mixture at 15 min and alginate bead respectively. Also, it was possible to reuse immobilized-entrapped walls as binders with an efficiency of about 85%.
Collapse
Affiliation(s)
- Amin Vahidimehr
- Department of Food Science and Technology, Faculty of Agriculture, University of Tabriz, P.O. Box 51666-16471, Tabriz, Iran
| | - Mahmood Sowti Khiabani
- Department of Food Science and Technology, Faculty of Agriculture, University of Tabriz, P.O. Box 51666-16471, Tabriz, Iran.
| | - Reza Rezaei Mokarram
- Department of Food Science and Technology, Faculty of Agriculture, University of Tabriz, P.O. Box 51666-16471, Tabriz, Iran.
| | - Hossein Samadi Kafil
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shiva Ghiasifar
- Department of Food Science and Technology, Faculty of Agriculture, University of Tabriz, P.O. Box 51666-16471, Tabriz, Iran
| | - Amir Vahidimehr
- Department of Food Science and Technology, Faculty of Agriculture, University of Tabriz, P.O. Box 51666-16471, Tabriz, Iran
| |
Collapse
|
36
|
Malekinezhad P, Ellestad LE, Afzali N, Farhangfar SH, Omidi A, Mohammadi A. Evaluation of berberine efficacy in reducing the effects of aflatoxin B1 and ochratoxin A added to male broiler rations. Poult Sci 2020; 100:797-809. [PMID: 33518134 PMCID: PMC7858088 DOI: 10.1016/j.psj.2020.10.040] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 09/23/2020] [Accepted: 10/20/2020] [Indexed: 12/14/2022] Open
Abstract
Many types of mycotoxins are found in food sources contaminated with fungi, and if these are ingested in large quantities or over a long period, they can affect the health of humans and domestic animals. Berberine (BBR) is a plant alkaloid with multiple pharmacological functions. This study aimed to investigate the effect of different levels of the plant alkaloid BBR on reducing toxic effects of aflatoxin B1 (AFB) and ochratoxin A (OTA) in broilers by examining performance characteristics, blood biochemistry, antioxidant systems, ileum morphology, and histopathology of the liver. The experiment was performed with 288 Ross 308 broilers reared in floor pens for 42 d in a randomized design with 9 treatments. Each treatment was replicated 4 times, and each replicate contained 8 chicks. Experimental treatments included (1) negative control diet with no additives (NC); (2) NC + 2 ppm AFB (positive control AFB; PCAFB); (3) NC + 2 ppm OTA (positive control OTA; PCOTA); (4) PCAFB + 200 mg/kg BBR; (5) PCAFB + 400 mg/kg BBR; (6) PCAFB + 600 mg/kg BBR; (7) PCOTA + 200 mg/kg BBR; (8) PCOTA + 400 mg/kg BBR; and (9) PCOTA + 600 mg/kg BBR. Compared with NC, feeding PCAFB and PCOTA diets reduced average daily feed intake, weight gain, serum concentrations of superoxide dismutase, glutathione peroxidase, and the length and width of ileum villi (P < 0.05). At the same time, these parameters increased in birds fed PCAFB or PCOTA diets supplemented with 600 mg/kg of BBR (P < 0.05). Feeding PCAFB and PCOTA diets increased feed conversion ratio (FCR), serum aspartate aminotransferase (AST), lactate dehydrogenase (LDH), alanine aminotransferase (ALT), and gamma-glutamyl transferase (GGT) activities, serum urea, and liver lesions compared with NC. By contrast, compared with PCAFB and PCOTA, adding 600 mg/kg BBR decreased FCR, AST, LDH, ALT, and GGT activities, urea, and liver lesions (P < 0.05). Overall, supplementation with 600 mg/kg BBR may improve growth performance, liver function, and antioxidant status of broilers fed diets contaminated with AFB and OTA.
Collapse
Affiliation(s)
- Pouyan Malekinezhad
- Department of Animal Sciences, Faculty of Agriculture, University of Birjand, Birjand, Iran; Department of Poultry Science, University of Georgia, Athens, GA, USA
| | - Laura E Ellestad
- Department of Poultry Science, University of Georgia, Athens, GA, USA
| | - Nazar Afzali
- Department of Animal Sciences, Faculty of Agriculture, University of Birjand, Birjand, Iran.
| | | | - Arash Omidi
- Department of Animal Health Management, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Abbas Mohammadi
- Department of Plant Pathology, Faculty of Agriculture, University of Birjand, Birjand, Iran
| |
Collapse
|
37
|
Abstract
A relevant trend in winemaking is to reduce the use of chemical compounds in both the vineyard and winery. In organic productions, synthetic chemical fertilizers, pesticides, and genetically modified organisms must be avoided, aiming to achieve the production of a “safer wine”. Safety represents a big threat all over the world, being one of the most important goals to be achieved in both Western society and developing countries. An occurrence in wine safety results in the recovery of a broad variety of harmful compounds for human health such as amines, carbamate, and mycotoxins. The perceived increase in sensory complexity and superiority of successful uninoculated wine fermentations, as well as a thrust from consumers looking for a more “natural” or “organic” wine, produced with fewer additives, and perceived health attributes has led to more investigations into the use of non-Saccharomyces yeasts in winemaking, namely in organic wines. However, the use of copper and sulfur-based molecules as an alternative to chemical pesticides, in organic vineyards, seems to affect the composition of grape microbiota; high copper residues can be present in grape must and wine. This review aims to provide an overview of organic wine safety, when using indigenous and/or non-Saccharomyces yeasts to perform fermentation, with a special focus on some metabolites of microbial origin, namely, ochratoxin A (OTA) and other mycotoxins, biogenic amines (BAs), and ethyl carbamate (EC). These health hazards present an increased awareness of the effects on health and well-being by wine consumers, who also enjoy wines where terroir is perceived and is a characteristic of a given geographical area. In this regard, vineyard yeast biota, namely non-Saccharomyces wine-yeasts, can strongly contribute to the uniqueness of the wines derived from each specific region.
Collapse
|
38
|
Autolysis, plasmolysis and enzymatic hydrolysis of baker's yeast (Saccharomyces cerevisiae): a comparative study. World J Microbiol Biotechnol 2020; 36:68. [PMID: 32328815 DOI: 10.1007/s11274-020-02840-3] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 04/09/2020] [Indexed: 01/01/2023]
Abstract
Saccharomyces cerevisiae is being used for long as a rich source of proteins, sugars, nucleotides, vitamins and minerals. Autolyzed and hydrolyzed yeast biomass has found numerous applications in the health food industry as well as livestock feeds. Here, we have compared three lysis methods for production of yeast lysates using autolysis, plasmolysis (ethyl acetate 1.5%), and enzymatic hydrolysis (Alcalase 0.2%). The efficiency of each process was compared according to soluble solid and protein contents, cell lysis monitoring, and release of intracellular materials, cell viability and microscopic analysis. Results showed that plasmolysis by ethyl acetate was found to be more efficient compared to autolysis, with a higher recovery of yeast extract (YE) content. In comparison, the content of released solids and proteins were higher during the enzymatic hydrolysis using Alcalase compared to autolysis and plasmolysis treatments. The highest decrease in optical density of 600 nm was monitored for the hydrolyzed cells. Besides, we defined "Degree of Leakage (DL)" as a new index of the lysis process, referring to the percentage of total released proteins from the cells and it was estimated to about 65.8%, which represents an appropriate indicator of the cell lysis. The biochemical and biophysical properties of the hydrolyzed yeast product as well as its biological activity (free radical scavenging activity and bacterial binding capacity) suggest that Alcalase could be used to accelerate the lysis of yeast cells and release the valuable intracellular components used for foodstuffs, feed and fermentation media applications. Production of baker's yeast lysates using autolysis, plasmolysis, and enzymatic hydrolysis methods.
Collapse
|
39
|
Utama GL, Irena F, Lembong E, Kayaputri IL, Tensiska T, Balia RL. The Utilization of Vegetable and Fruit Wastes for Saccharomyces cerevisieae Cell Wall Based β-Glucan Production with Antioxidant Activity. ACTA UNIVERSITATIS AGRICULTURAE ET SILVICULTURAE MENDELIANAE BRUNENSIS 2020. [DOI: 10.11118/actaun202068010119] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
40
|
The Biodegradation Role of Saccharomyces cerevisiae against Harmful Effects of Mycotoxin Contaminated Diets on Broiler Performance, Immunity Status, and Carcass characteristics. Animals (Basel) 2020; 10:ani10020238. [PMID: 32028628 PMCID: PMC7070355 DOI: 10.3390/ani10020238] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Revised: 02/01/2020] [Accepted: 02/01/2020] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Over the past two decades, the use of agents for the biodegradation of mycotoxins has led to a reduction in their accumulation and toxicity in the digestive tract of animals. Thus, mycotoxin decontaminating agents are very useful in the prevention of aflatoxicosis. The present feeding trial aimed to evaluate the biodegradation role of Saccharomyces cerevisiae in the prevention of the harmful effects of a mycotoxin contaminated diet on broiler performance, immunity, and carcass traits. The obtained results revealed significant improvements in broiler growth performance parameters, carcass traits, and antibody titer against infected diseases as an effect of the dietary inclusion of Saccharomyces cerevisiae up to 3.75 g kg−1. Consequentially, it could be used in broiler contaminated diets without negatively affecting bird health. Abstract A feeding trial (35 days) was carried out to investigate the effect of Saccharomyces cerevisiae cell wall as a mycotoxin biodegradation agent on the performance, feed efficiency, carcass traits, and immunity response against diseases in broilers fed aflatoxin B1 contaminated diets. For this purpose, 200 one day old broilers were randomly allotted into four groups, each with five replicates (10 birds per replicate). Four starter and finisher experimental rations were formulated by using (A) 0, (B) 1.25, (C) 2.5, and (D) 3.75 g kg−1 of Saccharomyces cerevisiae. Experimental diets were contaminated with aflatoxin B1 (100 ppb kg−1 diet). The experimental chicks were kept under standard managerial conditions, and the vaccination program was followed against infectious bursal disease (IBD), infectious bronchitis (IB), and Newcastle disease (ND) diseases. At the end of the feeding trial, carcass, organ weight, and blood samples were collected randomly to determine the carcass traits and antibody titer against ND and IBD viruses. Throughout the experiment, the addition of 3.75 g kg−1 of the Saccharomyces cerevisiae cell wall (Group-D) in feed resulted in the highest weight gain, final weight, feed intake, and the lowest FCR values followed by C group compared with the other groups. All carcass traits were significantly (p > 0.05) improved by increasing the inclusion levels of Saccharomyces cerevisiae in broiler diets. It could be concluded that the broiler diet supplemented with 2.5 or 3.75 g kg−1 of Saccharomyces cerevisiae as a biodegrading agent resulted in improved growth performance, immunity activity and carcass traits, and supplementation with Saccharomyces cerevisiae at these levels can be used effectively in broiler diets without negatively affecting bird health status.
Collapse
|
41
|
Terpou A, Dimopoulou M, Belka A, Kallithraka S, Nychas GJE, Papanikolaou S. Effect of Myclobutanil Pesticide on the Physiological Behavior of Two Newly Isolated Saccharomyces cerevisiae Strains during Very-High-Gravity Alcoholic Fermentation. Microorganisms 2019; 7:E666. [PMID: 31835377 PMCID: PMC6956295 DOI: 10.3390/microorganisms7120666] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 11/28/2019] [Accepted: 12/02/2019] [Indexed: 12/31/2022] Open
Abstract
Yeasts are able to act as biosorbents, as their cell wall includes several components capable of binding organic xenobiotic compounds that can potentially be removed during various fermentation processes. In the present investigation, two novel Saccharomyces cerevisiae strains (LMBF-Y 16 and LMBF-Y-18), previously isolated from grapes, were studied regarding their physiological behavior (dry cell weight-DCW production, substrate uptake, and ethanol and glycerol biosynthesis) during fermentations of grape must, in some cases enriched with commercial glucose and fructose (initial total sugar concentration approximately 150 and 250 g/L, respectively). Myclobutanil (a chiral triazole fungicide broadly used as a protective agent of vine) was also added to the culture media at various concentrations in order to assess the ability of the yeasts to simultaneously perform alcoholic fermentations and detoxify the medium (i.e., to remove the fungicide). In the first set of experiments and for both tested strains, trials were carried out in either 250 mL or 2.0 L agitated shake flasks in either synthetic glucose-based experiments or grape musts. Since the results obtained in the trials where the cultures were placed in 2.0 L flasks with grape musts as substrates were superior in terms of both DCW and ethanol production, these experimental conditions were selected for the subsequent studies. Both strains showed high fermentative efficiency, producing high amounts of DCW (9.5-10.5 g/L) in parallel with high ethanol production, which in some cases achieved values very close to the maximum theoretical ethanol production yield (≈0.49 g of ethanol per g of sugar). When using grape must with initial total sugars at approximately 250 g/L (very high gravity fermentation media, close to winemaking conditions), significantly high ethanol quantities (i.e., ranging between 105 and 123 g/L) were produced. Myclobutanil addition slightly negatively affected sugar conversion into ethanol; however, in all cases, ethanol production was very satisfactory. A non-negligible myclobutanil removal during fermentation, which ranged between 5%-27%, as a result of the adsorptive or degradative capacity of the yeast was also reported. The presence of myclobutanil had no effect on DCW production and resulted in no significant differences in the biosynthesis of glycerol. Therefore, these newly isolated yeast strains could be excellent candidates for simultaneous high ethanol production and parallel pesticide removal in a general biorefinery concept demonstrating many environmental benefits.
Collapse
Affiliation(s)
| | | | | | | | | | - Seraphim Papanikolaou
- Department of Food Science and Human Nutrition, Agricultural University of Athens, 75 Iera Odos, 11855 Athens, Greece; (A.T.); (M.D.); (A.B.); (S.K.); (G.-J.E.N.)
| |
Collapse
|
42
|
Effect of Aspergillus carbonarius on ochratoxin a levels, volatile profile and antioxidant activity of the grapes and respective wines. Food Res Int 2019; 126:108687. [PMID: 31732020 DOI: 10.1016/j.foodres.2019.108687] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 09/13/2019] [Accepted: 09/16/2019] [Indexed: 02/07/2023]
Abstract
Aspergillus carbonarius can produce a possibly carcinogenic mycotoxin named ochratoxin A (OTA). The metabolism of this fungus can also impact grape and wine quality as it influences the volatile and phenolic profiles, which are related to aroma and antioxidant activity, respectively. The objective of this study was to evaluate the effect of A. carbonarius on OTA levels and for the first time on volatile profile and antioxidant activity of grapes and their respective wines. Cabernet Sauvignon (CS, red) grapes presented higher susceptibility to A. carbonarius than Moscato Italico (MI, white) grapes and OTA levels in their respective musts were in accordance with this same trend. However, vinification of red grapes resulted in 67% reduction of OTA, while the reduction observed with white wines was 45%. The presence of acids (hexanoic, octanoic, nonanoic and decanoic, fatty odor) was found to be an indicative of the fungus incidence in grapes. These acids were precursors of esters that might impart negative aroma (methyl nonanoate and isoamyl octanoate, fatty odor) or provide desirable fruity characteristics (ethyl hexanoate, ethyl octanoate and methyl octanoate) for wine. In addition, terpenes were detected only in wines produced with grapes (CS and MI) inoculated with A. carbonarius. The presence of A. carbonarius increased the antioxidant activity of CS grapes. For MI grapes and both wines (CS and MI) no differences were verified in the antioxidant activity of the samples affected or not affected by this fungus. Although A. carbonarius occurrence has shown no influence on the antioxidant activity of wines, it produced OTA and has negatively influenced the wine odor profile, due to the production of some volatiles that impart a deleterious effect on wine aroma.
Collapse
|
43
|
|
44
|
Freire L, Furtado MM, Guerreiro TM, da Graça JS, da Silva BS, Oliveira DN, Catharino RR, Sant'Ana AS. The presence of ochratoxin A does not influence Saccharomyces cerevisiae growth kinetics but leads to the formation of modified ochratoxins. Food Chem Toxicol 2019; 133:110756. [PMID: 31408721 DOI: 10.1016/j.fct.2019.110756] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 08/07/2019] [Accepted: 08/08/2019] [Indexed: 01/28/2023]
Abstract
Yeasts are able to reduce the levels of ochratoxin A in fermentative processes; and, through their enzymatic complex, these micro-organisms are also capable of forming modified mycotoxins. These mycotoxins are often underreported, and may increase health risks after ingestion of contaminated food. In this sense, this study aims to evaluate whether the presence of ochratoxin A influences yeast growth kinetic parameters and to elucidate the formation of modified ochratoxin by Saccharomyces cerevisiae strains during fermentation. Three S. cerevisiae strains (12 M, 01 PP, 41 PP) were exposed to OTA at the concentrations of 10, 20 and 30 μg/L. The Baranyi model was fitted to the growth data (Log CFU/mL), and the identification of modified ochratoxins was performed through High Resolution Mass Spectrometry. The presence of ochratoxin A did not influence the growth of S. cerevisiae strains. Four pathways were proposed for the metabolization of OTA: dechlorination, hydrolysis, hydroxylation, and conjugation. Among the elected targets, the following were identified: ochratoxin α, ochratoxin β, ochratoxin α methyl ester, ochratoxin B methyl ester, ethylamide ochratoxin A, ochratoxin C, hydroxy-ochratoxin A, hydroxy-ochratoxin A methyl ester, and ochratoxin A cellobiose ester. These derivatives formed from yeast metabolism may contribute to the occurrence of underreporting levels of total mycotoxin in fermented products.
Collapse
Affiliation(s)
- Luísa Freire
- Department of Food Science, Faculty of Food Engineering, University of Campinas, Campinas, SP, Brazil
| | - Marianna M Furtado
- Department of Food Science, Faculty of Food Engineering, University of Campinas, Campinas, SP, Brazil
| | - Tatiane M Guerreiro
- Innovare Biomarkers Laboratory, Faculty of Pharmaceutical Sciences, University of Campinas, Campinas, SP, Brazil
| | - Juliana S da Graça
- Department of Food Science, Faculty of Food Engineering, University of Campinas, Campinas, SP, Brazil
| | - Beatriz S da Silva
- Department of Food Science, Faculty of Food Engineering, University of Campinas, Campinas, SP, Brazil
| | - Diogo N Oliveira
- Innovare Biomarkers Laboratory, Faculty of Pharmaceutical Sciences, University of Campinas, Campinas, SP, Brazil
| | - Rodrigo R Catharino
- Innovare Biomarkers Laboratory, Faculty of Pharmaceutical Sciences, University of Campinas, Campinas, SP, Brazil
| | - Anderson S Sant'Ana
- Department of Food Science, Faculty of Food Engineering, University of Campinas, Campinas, SP, Brazil.
| |
Collapse
|
45
|
Davoudi Moghadam H, Shahidi F, Tabatabaei Yazdi F, Sarabi Jamab M, Eshaghi Z. Biological detoxification of Monascus purpureus pigments by heat-treated Saccharomyces cerevisiae. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2019; 99:4439-4444. [PMID: 30866050 DOI: 10.1002/jsfa.9680] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 03/05/2019] [Accepted: 03/07/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND Today, there is an increasing concern about the consumption of synthetic colorants in food because of their possible health hazards. Monascus purpureus has attracted a great deal of attention as it produces various coloured pigments with high chemical stability, but it also produces citrinin, a secondary toxic metabolite, along with the pigments. This study aims to investigate the amount of pigment and citrinin reduction by different treatments with Saccharomyces cerevisiae such as heat treatment and suspension concentration. RESULTS The results indicated that the ability of S. cerevisiae regarding citrinin adsorption increased with increase of temperature and yeast concentration. The maximum extent of citrinin adsorption was related to heat treatment at 121 °C and a yeast concentration of 105 cells mL-1 , for which citrinin reduced from 4.43 mg L-1 in control to 0.1 mg L-1 . Heat treatment of 103 cells mL-1 suspension of S. cerevisiae cells at 50 °C, with 0.56 mg L-1 citrinin remaining in the medium, showed the lowest ability for citrinin binding. The optimum absorbance of all red, orange and yellow pigments was observed for the heat treatment at 50 °C and yeast concentrations of 103 and 104 cells mL-1 which was greater than that for the control. CONCLUSIONS We can conclude from this study that heat treatment with S. cerevisiae can be a useful way to reduce citrinin to below the standard limits. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
| | - Fakhri Shahidi
- Department of Food Science and Technology, Ferdowsi University of Mashhad, Mashhad, Iran
| | | | - Mahboobe Sarabi Jamab
- Department of Biotechnology, Research Institute of Food Science and Technology, Mashhad, Iran
| | - Zarrin Eshaghi
- Department of Chemistry, Payame Noor University, Mashhad, Iran
| |
Collapse
|
46
|
Markowiak P, Śliżewska K, Nowak A, Chlebicz A, Żbikowski A, Pawłowski K, Szeleszczuk P. Probiotic microorganisms detoxify ochratoxin A in both a chicken liver cell line and chickens. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2019; 99:4309-4318. [PMID: 30828814 DOI: 10.1002/jsfa.9664] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Revised: 02/22/2019] [Accepted: 02/26/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND The administration of probiotics and prebiotics (synbiotics) is a promising method for detoxification of ochratoxin A (OTA) in animals. The aim of this study was to investigate the ability of five probiotic strains of lactic acid bacteria (LAB) and one Saccharomyces cerevisiae yeast strain, from three different synbiotics for poultry, to detoxify OTA. In addition, we also investigated the genotoxicity of faecal water (FW) of chickens after administering OTA and/or synbiotics for 42 days. RESULTS All tested LAB and yeast strains had the ability to detoxify OTA by significant (P < 0.05) reducing its concentration (by 31.3-47.7% and 31.9%, respectively, after 24 h incubation) and genotoxicity (by 22.6-51.8% and 52.7%, respectively). Synbiotics composed of four and five probiotic strains significantly (P < 0.05) decreased FW genotoxicity of chicks, after exposure to OTA, to the level seen in the control group (21.8% ± 1.7%) and were more effective than synbiotics composed of three probiotic strains (31.5%). CONCLUSION These results showed that there was a beneficial effect of the synbiotics on the gastrointestinal tract of animals. Furthermore, synbiotic preparations containing four or five of tested strains can be considered as preventive agents in the contamination of poultry with OTA. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Paulina Markowiak
- Institute of Fermentation Technology and Microbiology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Lodz, Poland
| | - Katarzyna Śliżewska
- Institute of Fermentation Technology and Microbiology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Lodz, Poland
| | - Adriana Nowak
- Institute of Fermentation Technology and Microbiology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Lodz, Poland
| | - Agnieszka Chlebicz
- Institute of Fermentation Technology and Microbiology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Lodz, Poland
| | - Artur Żbikowski
- Department of Pathology and Veterinary Diagnostics, Faculty of Veterinary Medicine, Warsaw University of Life Sciences - SGGW, Warsaw, Poland
| | - Karol Pawłowski
- Department of Pathology and Veterinary Diagnostics, Faculty of Veterinary Medicine, Warsaw University of Life Sciences - SGGW, Warsaw, Poland
| | - Piotr Szeleszczuk
- Department of Pathology and Veterinary Diagnostics, Faculty of Veterinary Medicine, Warsaw University of Life Sciences - SGGW, Warsaw, Poland
| |
Collapse
|
47
|
Markov K, Frece J, Pleadin J, Bevardi M, Barišić L, Kljusurić JG, Vulić A, Jakopović Ž, Mrvčić J. Gluconobacter oxydans – potential biological agent for binding or biotransformation of mycotoxins. WORLD MYCOTOXIN J 2019. [DOI: 10.3920/wmj2018.2324] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The potential application of viable and heat-treated cells of Gluconobacter oxydans for binding or degradation of aflatoxin B1 (AFB1), citrinin (CIT), ochratoxin A (OTA) and patulin (PAT) in liquid matrix was investigated. Experiments were conducted using uncontaminated and toxin-containing YPM (yeast-peptone-mannitol) medium and inoculated with a bacterium suspension of either viable or heat-treated cells (108 cfu/ml) and incubated at 28 °C for 24 h. The unbound AFB1 and OTA were quantified by liquid chromatography tandem mass spectrometry (LC-MS/MS), whereas CIT and PAT were quantified by high performance liquid chromatography (HPLC). Obtained results suggest that G. oxydans is able to bind various mycotoxins by 26 to 94%. Viable cells showed the best binding ability towards OTA and PAT (80.8 and 93.8%, respectively), while heat-treated cells bound less than 50% of tested mycotoxins. Fourier transform infrared spectroscopy (FTIR) showed that partial removal of mycotoxins involves physical binding of the toxin to the proteins and polysaccharides constituting the bacterial cell wall. Since mycotoxins contain numerous functional groups that multiply the IR spectra upon binding to bacteria, the precision of FTIR monitoring of bacteria-mycotoxin interactions is limited.
Collapse
Affiliation(s)
- K. Markov
- Department of Biochemical Engineering, Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia
| | - J. Frece
- Department of Biochemical Engineering, Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia
| | - J. Pleadin
- Laboratory for Analytical Chemistry, Croatian Veterinary Institute, Savska 143, 10000 Zagreb, Croatia
| | - M. Bevardi
- Dr. Andrija-Štampar Institute of Public Health, Mirogojska St. 16, 10000 Zagreb, Croatia
| | - L. Barišić
- Department of Chemistry and Biochemistry, Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia
| | - J. Gajdoš Kljusurić
- Department of Process Engineering, Laboratory for Measurement, Control and Automatisation, Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia
| | - A. Vulić
- Laboratory for Analytical Chemistry, Croatian Veterinary Institute, Savska 143, 10000 Zagreb, Croatia
| | - Ž. Jakopović
- Department of Biochemical Engineering, Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia
| | - J. Mrvčić
- Department of Food Engineering, Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia
| |
Collapse
|
48
|
Bzducha-Wróbel A, Bryła M, Gientka I, Błażejak S, Janowicz M. Candida utilis ATCC 9950 Cell Walls and β(1,3)/(1,6)-Glucan Preparations Produced Using Agro-Waste as a Mycotoxins Trap. Toxins (Basel) 2019; 11:E192. [PMID: 30935045 PMCID: PMC6521628 DOI: 10.3390/toxins11040192] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 03/06/2019] [Accepted: 03/29/2019] [Indexed: 11/24/2022] Open
Abstract
Mycotoxins are harmful contaminants of food and feed worldwide. Feed additives with the abilities to trap mycotoxins are considered substances which regulate toxin transfer from feed to tissue, reducing its absorption in animal digestive tract. Market analysis emphasizes growing interest of feed producers in mycotoxins binders obtained from yeast biomass. The aim of the study was to prescreen cell walls (CW) and β(1,3)/(1,6)-glucan (β-G) preparations isolated from Candida utilis ATCC 9950 cultivated on waste potato juice water with glycerol as adsorbents for aflatoxin B1 (AFB1), zearalenone (ZEN), ochratoxin A (OTA), deoxynivalenol (DON), nivalenol (NIV), T-2 toxin (T-2) and fumonisin B1 (FB1). The adsorption was studied in single concentration tests at pH 3.0 and 6.0 in the presence of 1% of the adsorbent and 500 ng/mL of individual toxin. Evaluated CW and β-G preparations had the potential to bind ZEN, OTA and AFB1 rather than DON, NIV, T-2 toxin and FB1. The highest percentage of adsorption (about 83%), adsorption capacity (approx. 41 µg/ g preparation) and distribution coefficient (458.7mL/g) was found for zearalenone when CW preparation was used under acidic conditions. Higher protein content in CW and smaller particles sizes of the formulation could influence more efficient binding of ZEN, OTA, DON and T-2 toxin at appropriate pH compared to purified β-G. Obtained results show the possibility to transform the waste potato juice water into valuable Candida utilis ATCC 9950 preparation with mycotoxins adsorption properties. Further research is important to improve the binding capacity of studied preparations by increasing the active surface of adsorption.
Collapse
Affiliation(s)
- Anna Bzducha-Wróbel
- Faculty of Food Science, Department of Biotechnology, Microbiology and Food Evaluation, Warsaw University of Life Sciences-SGGW, Nowoursynowska Str. 159c, 02-776 Warsaw, Poland.
| | - Marcin Bryła
- Prof. Waclaw Dabrowski Institute of Agricultural and Food Biotechnology, Department of Food Analysis, Rakowiecka Str. 36, 02-532 Warsaw, Poland.
| | - Iwona Gientka
- Faculty of Food Science, Department of Biotechnology, Microbiology and Food Evaluation, Warsaw University of Life Sciences-SGGW, Nowoursynowska Str. 159c, 02-776 Warsaw, Poland.
| | - Stanisław Błażejak
- Faculty of Food Science, Department of Biotechnology, Microbiology and Food Evaluation, Warsaw University of Life Sciences-SGGW, Nowoursynowska Str. 159c, 02-776 Warsaw, Poland.
| | - Monika Janowicz
- Faculty of Food Science, Department of Food Engineering and Process Management, Warsaw University of Life Sciences-SGGW, Nowoursynowska Str. 159c, 02-776 Warsaw, Poland.
| |
Collapse
|
49
|
Pleadin J, Frece J, Markov K. Mycotoxins in food and feed. ADVANCES IN FOOD AND NUTRITION RESEARCH 2019; 89:297-345. [PMID: 31351529 DOI: 10.1016/bs.afnr.2019.02.007] [Citation(s) in RCA: 101] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
Mycotoxins represent secondary fungal metabolites not essential to the normal growth and reproduction of a fungus, but capable of causing biochemical, physiological and pathological changes in many species. Harmful effects of mycotoxins observed in humans and animals include carcinogenicity, teratogenicity, immune toxicity, neurotoxicity, hepatotoxicity, nephrotoxicity, reproductive and developmental toxicity, indigestion and so forth. These substances can be found in a variety of very important agricultural and food products, primarily dependent of product moisture content, and its water activity, relative air humidity, temperature, pH value, composition of the food matrix, the degree of its physical damage, and the presence of mold spores. Given that industrial processing has no significant effect on their reduction and in order to be able to vouch for the absence of mycotoxins, it is necessary to process foodstuffs under standardized and well-controlled conditions and to control each and every loop of the food production and storage chain. Preventative measures capable of reducing the contamination to the minimum must be in place and should be exercised by all means. In case that contamination does happen, methods for mycotoxin reduction or elimination should be implemented in dependence on a number of parameters such as properties of food or feed. Further research is needed in order to identify conditions that facilitate the growth of mycotoxin-producing fungi and develop effective preventative measures that can reduce contamination of food and feed as also to recognize possible synergistic effects of different mycotoxins in organism.
Collapse
Affiliation(s)
- Jelka Pleadin
- Croatian Veterinary Institute, Laboratory for Analytical Chemistry, Zagreb, Croatia.
| | - Jadranka Frece
- Faculty of Food Technology and Biotechnology, University of Zagreb, Zagreb, Croatia
| | - Ksenija Markov
- Faculty of Food Technology and Biotechnology, University of Zagreb, Zagreb, Croatia
| |
Collapse
|
50
|
Anthocyanins enhance yeast’s adsorption of Ochratoxin A during the alcoholic fermentation. Eur Food Res Technol 2018. [DOI: 10.1007/s00217-018-3162-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|