1
|
Koletsi P, Wiegertjes GF, Graat EAM, de Kool M, Lyons P, Schrama JW. Individual and combined effects of deoxynivalenol (DON) with other Fusarium mycotoxins on rainbow trout (Oncorhynchus mykiss) growth performance and health. Mycotoxin Res 2023; 39:405-420. [PMID: 37470898 PMCID: PMC10635917 DOI: 10.1007/s12550-023-00496-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/23/2023] [Accepted: 06/19/2023] [Indexed: 07/21/2023]
Abstract
This study assessed whether the toxicological effects of deoxynivalenol (DON) produced by Fusarium graminearum in rainbow trout (Oncorhynchus mykiss) are altered by the co-exposure to a mixture of toxins produced by Fusarium verticillioides (FUmix). This FUmix contained fusaric acid and fumonisin B1, B2 and B3. Four diets were formulated according to a 2 × 2 factorial design: CON-CON; CON-FUmix; DON-CON; and DON-FUmix. Diets with and without DON contained on average 2700 and 0 µg/kg feed, respectively. The sum of the analysed FUmix toxins was 12,700 and 100 µg/kg feed in the diets with and without FUmix, respectively. The experiment consisted of a 6-week restrictive feeding period immediately followed by a 2-week ad libitum feeding period. Growth performance measurements were taken per feeding period. Histopathological measurements in the liver and gastrointestinal tract (pyloric caeca, midgut and hindgut) were assessed at the end of week 1 and week 6 of the restrictive feeding period and at week 8, the last day of the ad libitum feeding period. During both restrictive and ad libitum feeding, the effects of FUmix and DON on growth performance were additive (no interaction effect; p > 0.05). During the restrictive feeding period, exposure to DON (p ≤ 0.001) and FUmix (p ≤ 0.01) inhibited growth and increased feed conversion ratio (FCR). During this period, DON exposure decreased the protein (p ≤ 0.001) and energy retention (p ≤ 0.05) in the trout. During the ad libitum feeding period, FUmix affected HSI (p ≤ 0.01), while DON exposure reduced feed intake (p ≤ 0.001) and growth (p ≤ 0.001) and increased FCR (p ≤ 0.01). In general, for both liver and intestinal tissue measurements, no interaction effects between DON and FUmix were observed. In the liver, histopathological analysis revealed mild alterations, increased necrosis score by DON (p ≤ 0.01), increased glycogen vacuolization by FUmix (p ≤ 0.05) and decreased percentage of pleomorphic nuclei by FUmix (p ≤ 0.01). DON had a minor impact on the intestinal histological measurements. Over time, some of the liver (glycogen vacuolization score, pleomorphic nuclei; p ≤ 0.01) and intestinal measurements (mucosal fold and enterocyte width; p ≤ 0.01) were aggravated in fish fed the FUmix contaminated diets, with the most severe alterations being noted at week 8. Overall, the co-exposure to FUmix and DON gave rise to additive effects but showed no synergistic or antagonistic effects for the combination of DON with other Fusarium mycotoxins.
Collapse
Affiliation(s)
- Paraskevi Koletsi
- Aquaculture and Fisheries Group, Wageningen University and Research, 6708 WD, Wageningen, The Netherlands.
- Alltech Biotechnology Inc, Dunboyne, A86 X006, Ireland.
| | - Geert F Wiegertjes
- Aquaculture and Fisheries Group, Wageningen University and Research, 6708 WD, Wageningen, The Netherlands
| | - Elisabeth A M Graat
- Adaptation Physiology Group, Wageningen University and Research, 6708 WD, Wageningen, The Netherlands
| | - Marijn de Kool
- Aquaculture and Fisheries Group, Wageningen University and Research, 6708 WD, Wageningen, The Netherlands
| | - Philip Lyons
- Alltech Biotechnology Inc, Dunboyne, A86 X006, Ireland
| | - Johan W Schrama
- Aquaculture and Fisheries Group, Wageningen University and Research, 6708 WD, Wageningen, The Netherlands
| |
Collapse
|
2
|
Koletsi P, Wiegertjes GF, Graat EAM, Lyons P, Schrama J. Time- and Dose-Dependent Effects of Dietary Deoxynivalenol (DON) in Rainbow Trout ( Oncorhynchus mykiss) at Organism and Tissue Level. Toxins (Basel) 2022; 14:toxins14110810. [PMID: 36422984 PMCID: PMC9697072 DOI: 10.3390/toxins14110810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/13/2022] [Accepted: 11/18/2022] [Indexed: 11/22/2022] Open
Abstract
This study with juvenile rainbow trout evaluated the effects of dietary exposure to deoxynivalenol (DON) at industrially relevant doses (up to 1.6 mg/kg) on growth performance, the liver, and the gastrointestinal tract. Fifteen groups of 30 fish each were given one of five dietary treatments in triplicate: (1) control diet (CON; DON < 100 µg/kg feed), (2) naturally DON-contaminated diet (ND1) with a DON content of 700 µg/kg in the feed, (3) ND2 with a DON content of 1200 µg/kg feed, (4) a pure DON-contaminated diet (PD1) with 800 µg/kg of DON in the feed, and (5) PD2 with DON at a concentration of 1600 µg/kg in the feed. The feeding trial lasted eight weeks: six weeks of restrictive feeding followed by two weeks of ad libitum feeding. Exposure to DON during restrictive feeding for six weeks did not affect the growth performance of trout but did lead to a reduction in retained protein in fish fed with higher doses of DON in the ND2 and PD2 groups. During the two following weeks of ad libitum feeding, feed intake was similar among all groups, but body weight gain was lower in the ND2 and PD2 groups and feed efficiency was higher in PD2 (week 8). Histopathological assessment revealed liver damage, including altered nuclear characteristics and haemorrhages, in groups fed higher doses of natural DON (ND2) after just one week of restrictive feeding. Liver damage (necrosis and haemorrhage presence in ND2) was alleviated over time (week 6) but was again aggravated after ad libitum exposure (week 8). In contrast, gastrointestinal tract damage was generally mild with only a few histopathological alterations, and the absence of an inflammatory cytokine response was demonstrated by PCR at week 8. In conclusion, ad libitum dietary exposure of rainbow trout to either natural or pure DON resulted in reduced growth (dose-dependent), while restrictive exposure revealed time-dependent effects of natural DON in terms of liver damage.
Collapse
Affiliation(s)
- Paraskevi Koletsi
- Aquaculture and Fisheries Group, Wageningen University and Research, 6708 WD Wageningen, The Netherlands
- Correspondence:
| | - Geert F. Wiegertjes
- Aquaculture and Fisheries Group, Wageningen University and Research, 6708 WD Wageningen, The Netherlands
| | - Elisabeth A. M. Graat
- Adaptation Physiology Group, Wageningen University and Research, 6708 WD Wageningen, The Netherlands
| | - Philip Lyons
- Alltech Biotechnology Inc., A86 X006 Dunboyne, Ireland
| | - Johan Schrama
- Aquaculture and Fisheries Group, Wageningen University and Research, 6708 WD Wageningen, The Netherlands
| |
Collapse
|
3
|
Gomes AL, de Godoy SH, de Castro Burbarelli MF, Chaguri MP, de Sousa RL, Fernandes AM. Fish feed mycobiota and aflatoxins in round fish tissues. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:1391-1396. [PMID: 34370875 DOI: 10.1002/jsfa.11471] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 07/29/2021] [Accepted: 08/09/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Round fish is one of the most consumed fish in Brazil. Farmed fish feed is based mainly on grains, which are susceptible to contamination by mold and mycotoxins. Aspergillus spp., Penicillium spp. and Fusarium spp. are the major mycotoxins producers. The presence of potentially toxigenic fungi in the diet is a concern due to the possibility of cumulative toxins in fish tissues, becoming a risk to food safety. This study aims to assess the mycobiota of fish feed and the occurrence of aflatoxin residues in round fish tissues. Feed and fish samples were collected from fish farming and fish pay properties. Feed was submitted to mold counting and mold identification. The round fish liver and muscle were submitted to the detection and quantification of aflatoxins B1 , B2 , G1 and G2 by high-performance liquid chromatography. RESULTS In evaluated feed, mold counts in the samples ranged from 2.0 to 4.7 log colony forming units g-1 and the major genera found were Penicillium (61.5%) and Aspergillus (34.6). Aflatoxin B1 (AFB1 ) was detected in 70% liver samples and 43.3% muscle samples, at levels up to 5.70 and 1.13 μg kg-1 , respectively. CONCLUSION It is concluded that, although the levels were lower than those recommended by Brazilian legislation, round fish are being exposed to diets naturally contaminated by aflatoxins and are susceptible to toxins accumulation in tissues. Therefore, regulations regarding feed should consider limits for mold and aflatoxin contamination in fish edible tissues should be monitored in order to ensure consumers' safety. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Amanda L Gomes
- Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo - FZEA/USP, Pirassununga, Brazil
| | - Silvia Hs de Godoy
- Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo - FZEA/USP, Pirassununga, Brazil
| | | | - Milena P Chaguri
- Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo - FZEA/USP, Pirassununga, Brazil
| | - Ricardo Lm de Sousa
- Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo - FZEA/USP, Pirassununga, Brazil
| | - Andrezza M Fernandes
- Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo - FZEA/USP, Pirassununga, Brazil
| |
Collapse
|
4
|
Koletsi P, Schrama JW, Graat EAM, Wiegertjes GF, Lyons P, Pietsch C. The Occurrence of Mycotoxins in Raw Materials and Fish Feeds in Europe and the Potential Effects of Deoxynivalenol (DON) on the Health and Growth of Farmed Fish Species-A Review. Toxins (Basel) 2021; 13:403. [PMID: 34198924 PMCID: PMC8226812 DOI: 10.3390/toxins13060403] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 05/31/2021] [Accepted: 05/31/2021] [Indexed: 11/16/2022] Open
Abstract
The first part of this study evaluates the occurrence of mycotoxin patterns in feedstuffs and fish feeds. Results were extrapolated from a large data pool derived from wheat (n = 857), corn (n = 725), soybean meal (n = 139) and fish feed (n = 44) samples in European countries and based on sample analyses by liquid chromatography/tandem mass spectrometry (LC-MS/MS) in the period between 2012-2019. Deoxynivalenol (DON) was readily present in corn (in 47% of the samples) > wheat (41%) > soybean meal (11%), and in aquafeeds (48%). Co-occurrence of mycotoxins was frequently observed in feedstuffs and aquafeed samples. For example, in corn, multi-mycotoxin occurrence was investigated by Spearman's correlations and odd ratios, and both showed co-occurrence of DON with its acetylated forms (3-AcDON, 15-AcDON) as well as with zearalenone (ZEN). The second part of this study summarizes the existing knowledge on the effects of DON on farmed fish species and evaluates the risk of DON exposure in fish, based on data from in vivo studies. A meta-analytical approach aimed to estimate to which extent DON affects feed intake and growth performance in fish. Corn was identified as the ingredient with the highest risk of contamination with DON and its acetylated forms, which often cannot be detected by commonly used rapid detection methods in feed mills. Periodical state-of-the-art mycotoxin analyses are essential to detect the full spectrum of mycotoxins in fish feeds aimed to prevent detrimental effects on farmed fish and subsequent economic losses for fish farmers. Because levels below the stated regulatory limits can reduce feed intake and growth performance, our results show that the risk of DON contamination is underestimated in the aquaculture industry.
Collapse
Affiliation(s)
- Paraskevi Koletsi
- Aquaculture and Fisheries Group, Wageningen University and Research, 6708 WD Wageningen, The Netherlands; (J.W.S.); (G.F.W.)
| | - Johan W. Schrama
- Aquaculture and Fisheries Group, Wageningen University and Research, 6708 WD Wageningen, The Netherlands; (J.W.S.); (G.F.W.)
| | - Elisabeth A. M. Graat
- Adaptation Physiology Group, Wageningen University and Research, 6708 WD Wageningen, The Netherlands;
| | - Geert F. Wiegertjes
- Aquaculture and Fisheries Group, Wageningen University and Research, 6708 WD Wageningen, The Netherlands; (J.W.S.); (G.F.W.)
| | - Philip Lyons
- Alltech Biotechnology Inc., A86 X006 Dunboyne, Ireland;
| | - Constanze Pietsch
- School of Agricultural, Forest and Food Sciences (HAFL), Applied University Berne (BFH), 3052 Zollikofen, Switzerland
| |
Collapse
|
5
|
GÖLGE Ö, AKTÜRE A, AYDIN R. Research on Mould and Aflatoxin Contamination Levels of Feeds Used in Trout Farms of Adana (Turkey). ULUSLARARASI TARIM VE YABAN HAYATI BILIMLERI DERGISI 2021. [DOI: 10.24180/ijaws.834623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
6
|
Rokvić N, Aksentijević K, Kureljušić J, Vasiljević M, Todorović N, Zdravković N, Stojanac N. Occurrence and transfer of mycotoxins from ingredients to fish feed and fish meat of common carp (Cyprinus carpio) in Serbia. WORLD MYCOTOXIN J 2020. [DOI: 10.3920/wmj2020.2580] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
As fish has been known for its high protein content and other health benefits, aquaculture production has started to flourish in Serbia. Common carp is the predominant species being farmed, comprising more than 80% of the total fish production in Serbia. The primary ingredients in fish feed are plant-based products, which present a risk of mycotoxin contamination, posing a potential risk to consumers. Therefore, this study aimed to determine the mycotoxin status of carp aquaculture in Serbia. At the beginning of the feeding season, May to June 2019, 27 samples of feed ingredients, 8 of finished feed and 14 of edible fish meat were analysed. The fish feed and feed ingredients were sampled from local producers, while the fish were sampled from fish farms that were reported to use the sampled feed. The feed ingredients were locally produced maize and maize products, sunflower meal, soybean and soybean products, wheat, bone meal, yeast and distillers dried grains with solubles, which were ground together, mixed and pelleted in different sizes. All samples were tested for the presence of aflatoxins (aflatoxin B1 (AFB1), B2, G1 and G2), ochratoxin A (OTA), zearalenone, deoxynivalenol, fumonisins (fumonisin B1 and B2), HT-2 and T-2 toxins. The most prevalent mycotoxins were OTA (91.4%), fumonisin B1+B2 (68.6%) and AFB1 (48.6%). Only one sample of the plant-based ingredients was below limit of quantification (LOQ), and more than 85% of the samples had more than one mycotoxin detected, ranging from 0.43 μg/kg of AFB1 to 3,168.5 μg/kg of fumonisin B1+B2. However, all the samples of edible fish meat were under the LOQ. We suggest that further research should be conducted on the effects of co-occurring mycotoxins; we also recommend stricter regulations on fish feed to reduce the impacts of mycotoxins on fish health and productivity.
Collapse
Affiliation(s)
- N. Rokvić
- Institute of Veterinary Medicine of Serbia, Janisa Janulisa 14, 11000 Belgrade, Serbia
| | - K. Aksentijević
- Faculty of Veterinary Medicine, University of Belgrade, Bulevar Oslobođenja 18, 11000 Belgrade, Serbia
| | - J. Kureljušić
- Institute of Veterinary Medicine of Serbia, Janisa Janulisa 14, 11000 Belgrade, Serbia
| | - M. Vasiljević
- Patent co., Vlade Ćetkovića 1A, 24211 Mišićevo, Serbia
| | - N. Todorović
- Patent co., Vlade Ćetkovića 1A, 24211 Mišićevo, Serbia
| | - N. Zdravković
- Institute of Veterinary Medicine of Serbia, Janisa Janulisa 14, 11000 Belgrade, Serbia
| | - N. Stojanac
- Faculty of Agriculture, University of Novi Sad, Trg Dositeja Obradovića 8, 21000 Novi Sad, Serbia
| |
Collapse
|
7
|
Mwihia EW, Lyche JL, Mbuthia PG, Ivanova L, Uhlig S, Gathumbi JK, Maina JG, Eshitera EE, Eriksen GS. Co-Occurrence and Levels of Mycotoxins in Fish Feeds in Kenya. Toxins (Basel) 2020; 12:E627. [PMID: 33008105 PMCID: PMC7600487 DOI: 10.3390/toxins12100627] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 09/08/2020] [Accepted: 09/11/2020] [Indexed: 12/22/2022] Open
Abstract
This study determined the presence, levels and co-occurrence of mycotoxins in fish feeds in Kenya. Seventy-eight fish feeds and ingredients were sampled from fish farms and fish feed manufacturing plants and analysed for 40 mycotoxins using high-performance liquid chromatography-high resolution mass spectrometry. Twenty-nine (73%) mycotoxins were identified with 76 (97%) samples testing positive for mycotoxins presence. Mycotoxins with the highest prevalences were enniatin B (91%), deoxynivalenol (76%) and fumonisin B1 (54%) while those with the highest maximum levels were sterigmatocystin (<30.5-3517.1 µg/kg); moniliformin (<218.9-2583.4 µg/kg) and ergotamine (<29.3-1895.6 µg/kg). Mycotoxin co-occurrence was observed in 68 (87%) samples. Correlations were observed between the fumonisins; enniatins B and zearalenone and its metabolites. Fish dietary exposure estimates ranged between <0.16 and 43.38 µg/kg body weight per day. This study shows evidence of mycotoxin presence and co-occurrence in fish feeds and feed ingredients in Kenya. Fish exposure to these levels of mycotoxins over a long period of time may lead to adverse health effects due to their possible additive, synergistic or antagonist toxic effects. Measures to reduce fish feed mycotoxin contamination should be taken to avoid mycotoxicosis in fish and subsequently in humans and animals through residues.
Collapse
Affiliation(s)
- Evalyn Wanjiru Mwihia
- Department of Veterinary Pathology, Microbiology and Parasitology, Faculty of Veterinary Medicine and Surgery, Egerton University, P.O. Box 536, Egerton 20115, Kenya
- Department of Food Safety and Infectious Biology, Faculty of Veterinary Medicine, Norwegian University of Life Sciences (NMBU), P.O. Box 8146, 0454 Oslo, Norway;
- Department of Pathology, Microbiology and Parasitology, Faculty of Veterinary Medicine, University of Nairobi, P.O. Box 29053, Kangemi 00625, Kenya; (P.G.M.); (J.K.G.)
| | - Jan Ludvig Lyche
- Department of Food Safety and Infectious Biology, Faculty of Veterinary Medicine, Norwegian University of Life Sciences (NMBU), P.O. Box 8146, 0454 Oslo, Norway;
| | - Paul Gichohi Mbuthia
- Department of Pathology, Microbiology and Parasitology, Faculty of Veterinary Medicine, University of Nairobi, P.O. Box 29053, Kangemi 00625, Kenya; (P.G.M.); (J.K.G.)
| | - Lada Ivanova
- Toxinology Research Group, Norwegian Veterinary Institute, Ullevålsveien 68, Pb 750 Sentrum, 0106 Oslo, Norway; (L.I.); (S.U.)
| | - Silvio Uhlig
- Toxinology Research Group, Norwegian Veterinary Institute, Ullevålsveien 68, Pb 750 Sentrum, 0106 Oslo, Norway; (L.I.); (S.U.)
| | - James K. Gathumbi
- Department of Pathology, Microbiology and Parasitology, Faculty of Veterinary Medicine, University of Nairobi, P.O. Box 29053, Kangemi 00625, Kenya; (P.G.M.); (J.K.G.)
| | - Joyce G. Maina
- Department of Animal Production, Faculty of Veterinary Medicine, University of Nairobi, P.O. Box 29053, Kangemi 00625, Kenya;
| | - Eric Emali Eshitera
- Department of Animal Health and Production, School of Natural Resource and Animal Sciences, Maasai Mara University, P.O. Box 861, Narok 20500, Kenya;
| | - Gunnar Sundstøl Eriksen
- Toxinology Research Group, Norwegian Veterinary Institute, Ullevålsveien 68, Pb 750 Sentrum, 0106 Oslo, Norway; (L.I.); (S.U.)
| |
Collapse
|
8
|
Alghuthaymi MA, Abd-Elsalam KA, Shami A, Said-Galive E, Shtykova EV, Naumkin AV. Silver/Chitosan Nanocomposites: Preparation and Characterization and Their Fungicidal Activity against Dairy Cattle Toxicosis Penicillium expansum. J Fungi (Basel) 2020; 6:jof6020051. [PMID: 32325907 PMCID: PMC7345578 DOI: 10.3390/jof6020051] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 04/17/2020] [Accepted: 04/17/2020] [Indexed: 02/07/2023] Open
Abstract
This work aimed to evaluate the fungicide activity of chitosan-silver nanocomposites (Ag-Chit-NCs) against Penicillium expansum from feed samples. The physicochemical properties of nanocomposites were characterized by X-ray fluorescence analysis (XRF), small-angle X-ray scattering (SAXS), X-ray photoelectron spectroscopy (XPS), and transmission electron microscopy (TEM). The morphological integrity of the nanohybrid was confirmed by electron transmission. By the data of RFA (X-ray fluorescent analysis), the contents of Ag in Ag-chitosan composite were 5.9 w/w%. The size distribution of the Ag nanoparticles incorporated in the chitosan matrix was investigated by SAXS. The main part of the size heterogeneity distribution in the chitosan matrix corresponds to the portion of small particles (3-4 nm). TEM analysis revealed a spherical morphology in the form of non-agglomerated caps, and 72% of the nanoparticles measured up to 4 nm. The minimum inhibitory concentration of NCs was evaluated in petri dishes. Three different concentrations were tested for antifungal activity against the mycotoxigenic P. expansum strain. Changes in the mycelium structure of P. expansum fungi by scanning electron microscopy (SEM) were observed to obtain information about the mode of action of Ag-Chit-NCs. It was shown that NC-Chit-NCs with sizes in the range from 4 to 10 nm have internalized sizes in cells, form agglomerates in the cytoplasm, and bind to cell organelles. Besides, their ability to influence protein and DNA fragmentation was examined in P. expansum. SDS-PAGE explains the apparent cellular protein response to the presence of various Ag-Chit-NCs. The intensity of P. expansum hyphal cell protein lines treated with Ag-Chit-NCs was very thin, indicating that high molecular weight proteins are largely prevented from entering the electrophoretic gel, which reflects cellular protein modification and possible damage caused by the binding of several protein fragments to Ag-Chit-NCs. The current results indicate that Ag-Chit-NCs <10 nm in size have significant antifungal activity against P. expansum, the causative agent of blue mold-contaminated dairy cattle feed.
Collapse
Affiliation(s)
- Mousa A. Alghuthaymi
- Biology Department, Science and Humanities College, Shaqra University, Alquwayiyah 11726, Saudi Arabia;
| | - Kamel A. Abd-Elsalam
- Plant Pathology Research Institute, Agricultural Research Center (ARC), Giza 12619, Egypt
- Correspondence: (K.A.A.-E.); (A.S.); Tel.: +20-10-910-49161 (K.A.A.-E.); +966-11-823-3175 (A.S.)
| | - Ashwag Shami
- Biology Department, College of Sciences, Princess Nourah bint Abdulrahman University, Riyadh 11617, Saudi Arabia
- Correspondence: (K.A.A.-E.); (A.S.); Tel.: +20-10-910-49161 (K.A.A.-E.); +966-11-823-3175 (A.S.)
| | - Ernest Said-Galive
- A.N. Nesmeyanov Institute of Organoelement compounds (INEOS) of Russian Academy of Sciences, 119991 Moscow, Russia; (E.S.-G.); (A.V.N.)
| | - Eleonora V. Shtykova
- V. Shubnikov Institute of Crystallography of Federal Scientific Research Centre “Crystallography and Photonics” of Russian Academy of Sciences, 119333 Moscow, Russia;
| | - Alexander V. Naumkin
- A.N. Nesmeyanov Institute of Organoelement compounds (INEOS) of Russian Academy of Sciences, 119991 Moscow, Russia; (E.S.-G.); (A.V.N.)
| |
Collapse
|
9
|
Namulawa VT, Mutiga S, Musimbi F, Akello S, Ngángá F, Kago L, Kyallo M, Harvey J, Ghimire S. Assessment of Fungal Contamination in Fish Feed from the Lake Victoria Basin, Uganda. Toxins (Basel) 2020; 12:toxins12040233. [PMID: 32272644 PMCID: PMC7232351 DOI: 10.3390/toxins12040233] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 03/28/2020] [Accepted: 04/02/2020] [Indexed: 12/17/2022] Open
Abstract
The emergence of commercial fish farming has stimulated the establishment of fish feed factories in Uganda. However, no information is available on the safety of the feed, mainly due to lack of mycotoxin testing facilities and weak regulatory systems. A study was carried out to examine fungal colonization and mycotoxin contamination in fish feed samples (n = 147) of different types collected from nine fish farms (n = 81) and seven fish feed factories (n = 66) in the Lake Victoria Basin (LVB). Fungi were isolated in potato dextrose agar, grouped into morphotypes and representative isolates from each morphotype were identified based on the internal transcribed spacer (ITS) region of ribosomal DNA sequences. Aflatoxin B1 (AFB1) and total fumonisin (combinations of B1, B2 and B3; hereinafter named fumonisin) levels in feed samples were determined by enzyme-linked immunosorbent assay (ELISA). A wide range of fungi, including toxigenic Aspergillus flavus and Fusarium verticillioides, were isolated from the fish feed samples. AFB1 was detected in 48% of the factory samples and in 63% of the farm samples, with toxin levels <40 and >400 µg/kg, respectively. Similarly, 31% of the factory samples and 29% of the farm samples had fumonisin contamination ranging between 0.1 and 4.06 mg/kg. Pellets and powder had higher mycotoxin contamination compared to other commercially available fish feed types. This study shows AFB1 as a potential fish feed safety issue in the LVB and suggests a need for more research on mycotoxin residues in fish fillets.
Collapse
Affiliation(s)
- Victoria Tibenda Namulawa
- National Agricultural Research Organization, Aquaculture Research & Development Center, P.O. Box 530, Kampala 00256, Uganda;
- Biosciences eastern and central Africa-International Livestock Research Institute (BecA–ILRI) Hub, P.O. Box 30709-00100, Nairobi 00100, Kenya; (S.M.); (S.A.); (F.N.); (L.K.); (M.K.); (J.H.); (S.G.)
- Correspondence:
| | - Samuel Mutiga
- Biosciences eastern and central Africa-International Livestock Research Institute (BecA–ILRI) Hub, P.O. Box 30709-00100, Nairobi 00100, Kenya; (S.M.); (S.A.); (F.N.); (L.K.); (M.K.); (J.H.); (S.G.)
- Department of Plant Pathology, University of Arkansas, Fayetteville, NC 72701, USA
| | - Fred Musimbi
- National Agricultural Research Organization, Aquaculture Research & Development Center, P.O. Box 530, Kampala 00256, Uganda;
| | - Sundy Akello
- Biosciences eastern and central Africa-International Livestock Research Institute (BecA–ILRI) Hub, P.O. Box 30709-00100, Nairobi 00100, Kenya; (S.M.); (S.A.); (F.N.); (L.K.); (M.K.); (J.H.); (S.G.)
| | - Fredrick Ngángá
- Biosciences eastern and central Africa-International Livestock Research Institute (BecA–ILRI) Hub, P.O. Box 30709-00100, Nairobi 00100, Kenya; (S.M.); (S.A.); (F.N.); (L.K.); (M.K.); (J.H.); (S.G.)
| | - Leah Kago
- Biosciences eastern and central Africa-International Livestock Research Institute (BecA–ILRI) Hub, P.O. Box 30709-00100, Nairobi 00100, Kenya; (S.M.); (S.A.); (F.N.); (L.K.); (M.K.); (J.H.); (S.G.)
| | - Martina Kyallo
- Biosciences eastern and central Africa-International Livestock Research Institute (BecA–ILRI) Hub, P.O. Box 30709-00100, Nairobi 00100, Kenya; (S.M.); (S.A.); (F.N.); (L.K.); (M.K.); (J.H.); (S.G.)
| | - Jagger Harvey
- Biosciences eastern and central Africa-International Livestock Research Institute (BecA–ILRI) Hub, P.O. Box 30709-00100, Nairobi 00100, Kenya; (S.M.); (S.A.); (F.N.); (L.K.); (M.K.); (J.H.); (S.G.)
- Feed the Future Innovation Lab for the Reduction of Post-Harvest Loss, and Department of Plant Pathology; Kansas State University, Manhattan, KS 66506, USA
| | - Sita Ghimire
- Biosciences eastern and central Africa-International Livestock Research Institute (BecA–ILRI) Hub, P.O. Box 30709-00100, Nairobi 00100, Kenya; (S.M.); (S.A.); (F.N.); (L.K.); (M.K.); (J.H.); (S.G.)
| |
Collapse
|
10
|
Pietsch C, Müller G, Mourabit S, Carnal S, Bandara K. Occurrence of Fungi and Fungal Toxins in Fish Feed During Storage. Toxins (Basel) 2020; 12:E171. [PMID: 32164387 PMCID: PMC7150775 DOI: 10.3390/toxins12030171] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 02/28/2020] [Accepted: 03/06/2020] [Indexed: 01/29/2023] Open
Abstract
Periods of unfavorable storing conditions can lead to changes in the quality of fish feeds, as well as the development of relevant mycotoxins. In the present study, a commercial fish feed was stored under defined conditions for four weeks. The main findings indicate that even storing fish feeds under unsuitable conditions for a short duration leads to a deterioration in quality. Mycotoxin and fungal contamination were subsequently analyzed. These investigations confirmed that different storage conditions can influence the presence of fungi and mycotoxins on fish feed. Notably, ochratoxin A (OTA) was found in samples after warm (25 °C) and humid (>60% relative humidity) treatment. This confirms the importance of this compound as a typical contaminant of fish feed and reveals how fast this mycotoxin can be formed in fish feed during storage.
Collapse
Affiliation(s)
- Constanze Pietsch
- Institute of Natural Resource Sciences (IUNR), Zurich University of Applied Sciences, 8820 Wädenswil, Switzerland; (G.M.); (S.M.); (S.C.)
| | - Georg Müller
- Institute of Natural Resource Sciences (IUNR), Zurich University of Applied Sciences, 8820 Wädenswil, Switzerland; (G.M.); (S.M.); (S.C.)
| | - Sulayman Mourabit
- Institute of Natural Resource Sciences (IUNR), Zurich University of Applied Sciences, 8820 Wädenswil, Switzerland; (G.M.); (S.M.); (S.C.)
| | - Simon Carnal
- Institute of Natural Resource Sciences (IUNR), Zurich University of Applied Sciences, 8820 Wädenswil, Switzerland; (G.M.); (S.M.); (S.C.)
| | - Kasun Bandara
- Department of Fisheries & Aquaculture, Faculty of Fisheries and Marine Sciences & Technology, University of Ruhuna, 81000 Matara, Sri Lanka;
| |
Collapse
|
11
|
Pietsch C. Risk assessment for mycotoxin contamination in fish feeds in Europe. Mycotoxin Res 2020; 36:41-62. [PMID: 31346981 PMCID: PMC6971146 DOI: 10.1007/s12550-019-00368-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 07/14/2019] [Accepted: 07/15/2019] [Indexed: 01/09/2023]
Abstract
Mycotoxins are difficult to monitor continuously, and a tool to assess the risk would help to judge if there is a particular risk due to the inclusion of certain feed ingredients. For this, the toxin contents of 97 commercial fish feeds have been estimated, and the most prominent toxins in fish feed are calculated to be deoxynivalenol, zearalenone, fumonisins and enniatins. These pose a risk to fish well-being, as can be calculated by the Bayesian models for determining the critical concentrations 5% (CC5) for the different toxins. Besides fishmeal, wheat, soybean products and corn are regularly used as fish feed ingredients. The calculated scenarios show that fish are at high risk of toxin contamination if feed ingredients of low quality are chosen for feed production. Due to this, specific maximum allowable levels for several mycotoxins in fish feeds should be established.
Collapse
Affiliation(s)
- Constanze Pietsch
- Institute of Natural Resource Sciences (IUNR), Zurich University of Applied Sciences (ZHAW), Grüental, P.O. Box, 8820, Wädenswil, Switzerland.
| |
Collapse
|
12
|
Marijani E, Kigadye E, Okoth S. Occurrence of Fungi and Mycotoxins in Fish Feeds and Their Impact on Fish Health. Int J Microbiol 2019; 2019:6743065. [PMID: 31827520 PMCID: PMC6881585 DOI: 10.1155/2019/6743065] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 10/01/2019] [Indexed: 02/04/2023] Open
Abstract
The rapid population growth in developing countries has led to strong pressure on capture fisheries. However, capture fisheries have reached their maximal limits of fish production and are supplemented by farmed fish. The growth in aquaculture has led to high demand for fish feeds, which play a very important role in fish nutrition and health. Use of animal protein in fish feeds is expensive; hence, a majority of farmers from developing countries use local feed ingredients from plant origin as a source of dietary protein. However, these ingredients of plant origin provide the best natural substrates for fungi, which can be easily accompanied by mycotoxin development under suitable conditions. The locally made feed comprises ingredients such as soybeans, cottonseed cake, and wheat and maize bran which are mixed together and ground after which the compounded feed is pelleted and stored. Among the ingredients, maize and oilseeds are more susceptible for mycotoxigenic fungi compared to other ingredients. The outcomes of mycotoxin contamination in fish feeds are not different from other animal species intended for human consumption, and they are directly associated with production losses, particularly decreased weight gain and feed conversion, impaired immune system and reproductive performance, and increased fish mortality. Fish may also carry mycotoxin residues along the food chain, thus compromising human health. Hence, it is important to ensure the control of mycotoxin contamination in fish feeds, especially during the production and storage.
Collapse
Affiliation(s)
- Esther Marijani
- Open University of Tanzania, P.O. Box 23409, Dar es Salaam, Tanzania
| | - Emmanuel Kigadye
- Open University of Tanzania, P.O. Box 23409, Dar es Salaam, Tanzania
| | - Sheila Okoth
- University of Nairobi, School of Biological Science, P.O. Box 30197-00100, Nairobi, Kenya
| |
Collapse
|
13
|
Molina A, Chavarría G, Alfaro-Cascante M, Leiva A, Granados-Chinchilla F. Mycotoxins at the Start of the Food Chain in Costa Rica: Analysis of Six Fusarium Toxins and Ochratoxin A between 2013 and 2017 in Animal Feed and Aflatoxin M 1 in Dairy Products. Toxins (Basel) 2019; 11:E312. [PMID: 31159287 PMCID: PMC6628313 DOI: 10.3390/toxins11060312] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 04/16/2019] [Accepted: 04/17/2019] [Indexed: 12/19/2022] Open
Abstract
Mycotoxins are secondary metabolites, produced by fungi of genera Aspergillus, Penicillium and Fusarium (among others), which produce adverse health effects on humans and animals (carcinogenic, teratogenic and immunosuppressive). In addition, mycotoxins negatively affect the productive parameters of livestock (e.g., weight, food consumption, and food conversion). Epidemiological studies are considered necessary to assist stakeholders with the process of decision-making regarding the control of mycotoxins in processing environments. This study addressed the prevalence in feed ingredients and compound feed of eight different types of toxins, including metabolites produced by Fusarium spp. (Deoxynivalenol/3-acetyldeoxynivalenol, T-2/HT-2 toxins, zearalenone and fumonisins) and two additional toxins (i.e., ochratoxin A (OTA) and aflatoxin M1 (AFM1)) from different fungal species, for over a period of five years. On the subject of Fusarium toxins, higher prevalences were observed for fumonisins (n = 80/113, 70.8%) and DON (n = 212/363, 58.4%), whereas, for OTA, a prevalence of 40.56% was found (n = 146/360). In the case of raw material, mycotoxin contamination exceeding recommended values were observed in cornmeal for HT-2 toxin (n = 3/24, 12.5%), T-2 toxin (n = 3/61, 4.9%), and ZEA (n = 2/45, 4.4%). In contrast, many compound feed samples exceeded recommended values; in dairy cattle feed toxins such as DON (n = 5/147, 3.4%), ZEA (n = 6/150, 4.0%), T-2 toxin (n = 10/171, 5.9%), and HT-2 toxin (n = 13/132, 9.8%) were observed in high amounts. OTA was the most common compound accompanying Fusarium toxins (i.e., 16.67% of co-occurrence with ZEA). This study also provided epidemiological data for AFM1 in liquid milk. The outcomes unveiled a high prevalence of contamination (i.e., 29.6-71.1%) and several samples exceeding the regulatory threshold. Statistical analysis exposed no significant climate effect connected to the prevalence of diverse types of mycotoxins.
Collapse
Affiliation(s)
- Andrea Molina
- Centro de Investigación en Nutrición Animal (CINA), Universidad de Costa Rica, Ciudad Universitaria Rodrigo, San José 11501-2060, Costa Rica.
- Escuela de Zootecnia, Universidad de Costa Rica, Ciudad Universitaria Rodrigo, San José 11501-2060, Costa Rica.
| | - Guadalupe Chavarría
- Centro de Investigación en Nutrición Animal (CINA), Universidad de Costa Rica, Ciudad Universitaria Rodrigo, San José 11501-2060, Costa Rica.
| | - Margarita Alfaro-Cascante
- Centro de Investigación en Nutrición Animal (CINA), Universidad de Costa Rica, Ciudad Universitaria Rodrigo, San José 11501-2060, Costa Rica.
| | - Astrid Leiva
- Centro de Investigación en Nutrición Animal (CINA), Universidad de Costa Rica, Ciudad Universitaria Rodrigo, San José 11501-2060, Costa Rica.
| | - Fabio Granados-Chinchilla
- Centro de Investigación en Nutrición Animal (CINA), Universidad de Costa Rica, Ciudad Universitaria Rodrigo, San José 11501-2060, Costa Rica.
| |
Collapse
|
14
|
Johny A, Fæste CK, Bogevik AS, Berge GM, Fernandes JMO, Ivanova L. Development and Validation of a Liquid Chromatography High-Resolution Mass Spectrometry Method for the Simultaneous Determination of Mycotoxins and Phytoestrogens in Plant-Based Fish Feed and Exposed Fish. Toxins (Basel) 2019; 11:toxins11040222. [PMID: 31013949 PMCID: PMC6520669 DOI: 10.3390/toxins11040222] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 03/28/2019] [Accepted: 04/11/2019] [Indexed: 11/16/2022] Open
Abstract
New protein sources in fish feed require the assessment of the carry-over potential of contaminants and anti-nutrients from feed ingredients into the fish, and the assessment of possible health risks for consumers. Presently, plant materials including wheat and legumes make up the largest part of aquafeeds, so evaluation of the transfer capabilities of typical toxic metabolites from plant-infesting fungi and of vegetable phytoestrogens into fish products is of great importance. With the aim of facilitating surveillance of relevant mycotoxins and isoflavones, we have developed and validated a multi-analyte LC-HRMS/MS method that can be used to ensure compliance to set maximum levels in feed and fish. The method performance characteristics were determined, showing high specificity for all 25 targeted analytes, which included 19 mycotoxins and three isoflavones and their corresponding aglycons with sufficient to excellent sensitivities and uniform analytical linearity in different matrices. Depending on the availability of matching stable isotope-labelled derivates or similar-structure homologues, calibration curves were generated either by using internal standards or by matrix-matched external standards. Precision and recovery data were in the accepted range, although they varied between the different analytes. This new method was considered as fit-for-purpose and applied for the analysis of customised fish feed containing wheat gluten, soy, or pea protein concentrate as well as salmon and zebrafish fed on diets with these ingredients for a period of up to eight weeks. Only mycotoxin enniatin B, at a level near the limit of detection, and low levels of isoflavones were detected in the feed, demonstrating the effectiveness of maximum level recommendations and modern feed processing technologies in the Norwegian aquaculture industry. Consequently, carry-over into fish muscle was not observed, confirming that fillets from plant-fed salmon were safe for human consumption.
Collapse
Affiliation(s)
- Amritha Johny
- Toxinology Research Group, Norwegian Veterinary Institute, Oslo 0454, Norway.
| | | | - André S Bogevik
- Nofima-Norwegian Institute of Food, Fisheries and Aquaculture Research, Fyllingsdalen 5141, Norway.
| | - Gerd Marit Berge
- Nofima-Norwegian Institute of Food, Fisheries and Aquaculture Research, Sunndalsøra 6600, Norway.
| | | | - Lada Ivanova
- Chemistry Section, Norwegian Veterinary Institute, Oslo 0454, Norway.
| |
Collapse
|
15
|
Greco M, Pardo A, Pose G, Patriarca A. Effect of water activity and temperature on the growth of Eurotium species isolated from animal feeds. Rev Iberoam Micol 2017; 35:39-48. [PMID: 29137926 DOI: 10.1016/j.riam.2017.04.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 03/15/2017] [Accepted: 04/20/2017] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND Xerophilic fungi represent a serious problem due to their ability to grow at low water activities causing the spoiling of low and intermediate moisture foods, stored goods and animal feeds, with the consequent economic losses. AIMS The combined effect of water activity and temperature of four Eurotium species isolated from animal feeds was investigated. METHODS Eurotium amstelodami, Eurotium chevalieri, Eurotium repens and Eurotium rubrum were grown at 5, 15, 25, 37 and 45°C on malt extract agar adjusted with glycerol in the range 0.710-0.993 of water activities. RESULTS The cardinal model proposed by Rosso and Robinson (2001) was applied to fit growth data, with the variable water activity at fixed temperatures, obtaining three cardinal water activities (awmin, awmax, awopt) and the specific growth rate at the optimum aw (μopt). A probabilistic model was also applied to define the interface between growth and no-growth. The cardinal model provided an adequate estimation of the optimal aw to grow and the maximum growth rate. The probabilistic model showed a good performance to fit growth/no-growth cases in the predicted range. CONCLUSIONS The results presented here could be applied to predict Eurotium species growth in animal feeds.
Collapse
Affiliation(s)
- Mariana Greco
- Laboratorio de Micología Molecular, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes (UNQ), Roque Sáenz Peña 352, B1876BXD Bernal, Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina.
| | - Alejandro Pardo
- Laboratorio de Micología Molecular, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes (UNQ), Roque Sáenz Peña 352, B1876BXD Bernal, Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - Graciela Pose
- Universidad Nacional de Río Negro (UNRN), Escuela de Producción, Tecnología y Medio Ambiente, Mitre 331, 8336 Villa Regina, Río Negro, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - Andrea Patriarca
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Orgánica, Laboratorio de Microbiología de Alimentos, Ciudad Universitaria, Intendente Güiraldes 2160, Pabellón II, 3 Piso, C1428EGA Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| |
Collapse
|
16
|
Pietsch C. Zearalenone (ZEN) and Its Influence on Regulation of Gene Expression in Carp (Cyprinus carpio L.) Liver Tissue. Toxins (Basel) 2017; 9:toxins9090283. [PMID: 28914814 PMCID: PMC5618216 DOI: 10.3390/toxins9090283] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 09/07/2017] [Accepted: 09/12/2017] [Indexed: 11/21/2022] Open
Abstract
Zearalenone (ZEN) is a frequently-occurring mycotoxin in both animal and fish feeds. In order to characterize its effects on carp, three groups of fish were fed for 28 days with feeds contaminated with three different levels of ZEN (low: 332 µg kg−1, medium: 621 µg kg−1, and high: 797 µg kg−1 feed). The reversibility of the effects of ZEN was assessed by feeding all of the groups with uncontaminated feed for a further 14 days. Gene expression of immune genes in the liver tissue of the fish was analysed, revealing reduced expressions of immune, antioxidative, and estrogen-related genes after the fish had been exposed to ZEN. However, the expression of vacuole-type H+ ATPase increased substantially with ZEN exposure, thus supporting the previously-reported sensitivity of lysosomal functions to ZEN. Feeding the fish with a ZEN-free diet for a further two weeks changed the effects of ZEN on the expression of some genes, including the expressions of the cytokines IL-1β, IL-8, IL-10, and arginase 2, which were not influenced after four weeks of treatment, but showed lower values after the recovery phase in fish previously treated with ZEN compared with the control group. In summary, this study confirmed the broad effects of ZEN on different essential functions in carp and suggests that the current maximum allowable levels in compound feed are too high to prevent damage to fish.
Collapse
Affiliation(s)
- Constanze Pietsch
- Institute of Natural Resource Sciences (IUNR), Zurich University of Applied Sciences (ZHAW), Grüental, P.O. Box, CH-8820 Waedenswil, Switzerland.
| |
Collapse
|
17
|
Transfer of zearalenone to the reproductive system of female rainbow trout spawners: A potential risk for aquaculture and fish consumers? Food Chem Toxicol 2017; 107:386-394. [DOI: 10.1016/j.fct.2017.07.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2017] [Revised: 06/12/2017] [Accepted: 07/04/2017] [Indexed: 11/20/2022]
|
18
|
Effects of deoxynivalenol (DON) and its microbial biotransformation product deepoxy-deoxynivalenol (DOM-1) on a trout, pig, mouse, and human cell line. Mycotoxin Res 2017; 33:297-308. [PMID: 28741250 PMCID: PMC5644741 DOI: 10.1007/s12550-017-0289-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 07/13/2017] [Accepted: 07/14/2017] [Indexed: 01/14/2023]
Abstract
Deoxynivalenol (DON), a trichothecene produced by various Fusarium species, is one of the most prevalent food- and feed-associated mycotoxins. The effects of DON and deepoxy-deoxynivalenol (DOM-1) were assessed in five different cell lines from different tissues and species starting from the first line of defense, the trout gill (RTgill-W1) and pig intestinal cells (IPEC-1 and IPEC-J2) over immune cells, as second line of defense (mouse macrophages RAW 264.7) to human liver cells (HepG2). Viability was assessed with a WST-1 assay, except for RTgill-W1, where a neutral red (NR) and sulforhodamine B (SRB) assay was performed. Additionally, more sensitive parameters, such as interleukin-, nitric oxide (NO)-, and albumin-release were determined. Viability was affected by DON at concentrations starting at 10 μmol/L (RTgill-W1), 0.9 μmol/L (IPEC-1), 3.5 μmol/L (IPEC-J2), and 0.9 μmol/L (HepG2), whereas DOM-1 did not have such an effect. Additionally, NO was decreased (0.84 μmol/L DON), whereas interleukin (IL)-6 was increased (0.42 μmol/L DON) in lipopolysaccharide (LPS)-stimulated DON-, but not DOM-1-treated RAW cells. Tumor necrosis factor (TNF)-α release, however, was not affected. Interestingly, albumin secretion of HepG2 cells was decreased by both DON and DOM-1 but at a much higher concentration for DOM-1 (228 versus 0.9 μmol/L for DON). 98.9% of DOM-1 was retrieved by liquid chromatography tandem mass spectrometry at the end of the experiment, proving its stability. In this study, IL-6 was the most sensitive parameter, followed by NO and albumin release and viability for HepG2 and IPEC-1.
Collapse
|
19
|
Pietsch C, Junge R. Physiological responses of carp (Cyprinus carpio L.) to dietary exposure to zearalenone (ZEN). Comp Biochem Physiol C Toxicol Pharmacol 2016; 188:52-9. [PMID: 27349726 DOI: 10.1016/j.cbpc.2016.06.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Revised: 05/30/2016] [Accepted: 06/15/2016] [Indexed: 11/18/2022]
Abstract
Zearalenone (ZEN) is a frequent contaminant of animal feeds, but systemic effects on fish and possible metabolic costs have not yet been investigated. In order to fill this gap a feeding trial with juvenile carp was conducted. The fish were fed ZEN-contaminated diets at three concentrations (low: 332μgkg(-1), medium: 621μgkg(-1), and high: 797μgkg(-1) final feed, respectively) for four weeks. Possible reversible effects of ZEN were evaluated by feeding an additional group with the mycotoxin for four weeks period and the uncontaminated diet for further two weeks. After that possible ZEN effects on enzyme activities in kidney, spleen, liver and muscle tissue were investigated to get an organism-wide aspect of ZEN effects. Most organs appeared to (over)compensate ZEN effects during the exposure to this mycotoxin, which caused metabolic costs. Oxygen consumption increased in fish treated with the two higher ZEN concentrations via the diet. The differences between the treatments persisted also after the recovery phase of two weeks. Thus, the present study provided evidence of effects of ZEN on carbohydrate metabolism, lipid peroxidation in organs and metabolic oxygen demand. This is the first evidence for increased metabolic costs in a fish species due to exposure to the mycotoxin ZEN.
Collapse
Affiliation(s)
- Constanze Pietsch
- Zurich University of Applied Sciences (ZHAW), Institute of Natural Resource Sciences (IUNR), Gruental, P.O. Box, CH-8820 Waedenswil, Switzerland.
| | - Ranka Junge
- Zurich University of Applied Sciences (ZHAW), Institute of Natural Resource Sciences (IUNR), Gruental, P.O. Box, CH-8820 Waedenswil, Switzerland
| |
Collapse
|