1
|
Lin CY, Nguyen NN, Tsai WL, Hsieh RH, Wu HT, Chen YC. Aspartame Intake Delayed Puberty Onset in Female Offspring Rats and Girls. Mol Nutr Food Res 2024; 68:e2300270. [PMID: 38389198 DOI: 10.1002/mnfr.202300270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 01/14/2024] [Indexed: 02/24/2024]
Abstract
SCOPE The disturbance of the hypothalamic-pituitary-gonadal (HPG) axis, gut microbiota (GM) community, and short-chain fatty acids (SCFAs) is a triggering factor for pubertal onset. The study investigates the effects of the long-term intake of aspartame on puberty and GM in animals and humans. METHODS AND RESULTS Aspartame-fed female offspring rats result in vaginal opening time prolongation, serum estrogen reduction, and serum luteinizing hormone elevation. , 60 mg kg-1 aspartame treatment decreases the mRNA levels of gonadotropin-releasing hormone (GnRH), Kiss1, and G protein-coupled receptor 54 (GPR54), increases the mRNA level of RFamide-related peptide-3 (RFRP-3), and decreases the expression of GnRH neurons in the hypothalamus. Significant differences in relative bacterial abundance at the genus levels and decreased fecal SCFA levels are noted by 60 mg kg-1 aspartame treatment. Among which, Escherichia-Shigella is negatively correlated with several SCFAs. In girls, high-dose aspartame consumption decreases the risk of precocious puberty. CONCLUSIONS Aspartame reduces the chance of puberty occurring earlier than usual in female offspring and girls. Particularly, 60 mg kg-1 aspartame-fed female offspring delays pubertal onset through the dysregulation of HPG axis and GM composition by inhibiting the Kiss1/GPR54 system and inducing the RFRP-3. An acceptable dose of aspartame should be recommended during childhood.
Collapse
Affiliation(s)
- Chia-Yuan Lin
- Department of Food Science, National Taiwan Ocean University, Keelung, 202301, Taiwan
- Department of Family Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, 110, Taiwan
| | - Nam Nhat Nguyen
- College of Medicine, Taipei Medical University, Taipei, 110, Taiwan
| | - Wan-Ling Tsai
- Department of Family Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, 110, Taiwan
- Department of Health Promotion and Gerontological Care, College of LOHAS, Taipei University of Marine Technology, New Taipei City, 25172, Taiwan
| | - Rong-Hong Hsieh
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, Taipei, 110, Taiwan
| | - Hung-Tsung Wu
- Department of Internal Medicine, School of Medicine, College of Medicine, National Cheng Kung, University, Tainan, 701, Taiwan
| | - Yang-Ching Chen
- Department of Family Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, 110, Taiwan
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, Taipei, 110, Taiwan
- Department of Family Medicine, Taipei Medical University Hospital, Taipei, 11031, Taiwan
- Graduate Institute of Metabolism and Obesity Sciences, Taipei Medical University, Taipei, 110, Taiwan
- Department of Family Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, 116, Taiwan
- Nutrition Research Center, Taipei Medical University Hospital, Taipei, 110, Taiwan
| |
Collapse
|
2
|
He J, Jin H, Guo J, Li K, Jia L, Li Y, Zhang L. T-2 toxin-induced testicular impairment by triggering oxidative stress and ferroptosis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 270:115844. [PMID: 38134641 DOI: 10.1016/j.ecoenv.2023.115844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 12/05/2023] [Accepted: 12/14/2023] [Indexed: 12/24/2023]
Abstract
T-2 toxin is a trichothecene mycotoxin of significant danger to humans and animals. Its impact on reproductive toxicity is attributed to oxidative stress, which ultimately leads to cell death. Ferroptosis is a programmed cell death that characterized by lipid peroxidation. This study aimed to investigate the toxic effects of T-2 toxin on mouse testis and the potential mechanism of T-2 toxin-induced ferroptosis. T-2 toxin significantly altered the morphology of the testis and decreased testosterone level, sperm concentration, and increased sperm malformation rate, as well as induced oxidative damage with reactive oxygen species and malondialdehyde accumulated, and activity of superoxide dismutase, glutathione peroxidase decreased. Additionally, T-2 toxin induced ferroptosis by accumulating iron ions, increasing prostaglandin endoperoxide synthase 2, downregulating glutathione peroxidase 4 and ferritin heavy chain 1, as well as manifesting ferroptotic morphological alterations, ultimately leading to testicular impairment. Administration of ferroptosis inhibitor liproxstatin-1 or antioxidant resveratrol effectively mitigated the T-2 toxin-induced ferroptosis and testicular injury. These findings provided novel insights into the fundamental mechanism of T-2 toxin-induced cell death and furnished further proof of the potential therapeutic effect in addressing T-2 toxin-induced testicular impairment.
Collapse
Affiliation(s)
- Jun He
- Chinese PLA Center for Disease Control and Prevention, Beijing, China
| | - Hong Jin
- Chinese PLA Center for Disease Control and Prevention, Beijing, China
| | - Jiabin Guo
- Chinese PLA Center for Disease Control and Prevention, Beijing, China
| | - Kexin Li
- Chinese PLA Center for Disease Control and Prevention, Beijing, China
| | - Li Jia
- Chinese PLA Center for Disease Control and Prevention, Beijing, China
| | - Yujie Li
- Chinese PLA Center for Disease Control and Prevention, Beijing, China
| | - Li Zhang
- Chinese PLA Center for Disease Control and Prevention, Beijing, China.
| |
Collapse
|
3
|
Sun Y, Liu Z, Zhang W, Lin H, Li Q, Liu C, Zhang C. Paternal genetic effects of cadmium exposure during pregnancy on hormone synthesis disorders in ovarian granulosa cells of offspring. J Ovarian Res 2023; 16:98. [PMID: 37194017 DOI: 10.1186/s13048-023-01175-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 04/25/2023] [Indexed: 05/18/2023] Open
Abstract
The aim of this study was to investigate the paternal genetic intergenerational and transgenerational genetic effects of cadmium (Cd) exposure during pregnancy on estradiol (E2) and progesterone (Pg) synthesis in the ovarian granulosa cells (GCs) of offspring. Pregnant SD rats were intragastrically exposed to CdCl2 (0, 0.5, 2.0, 8.0 mg/kg) from days 1 to 20 to produce the F1 generation, F1 males were mated with newly purchased females to produce the F2 generation, and the F3 generation was obtained in the same way. Using this model, Cd-induced hormone synthesis disorders in GCs of F1 have been observed [8]. In this study, altered serum E2 and Pg levels in both F2 and F3 generations showed a nonmonotonic dose‒response relationship. In addition, hormone synthesis-related genes (Star, Cyp11a1, Cyp17a1, Cyp19a1, Sf-1) and miRNAs were observed to be altered in both F2 and F3. No differential changes in DNA methylation modifications of hormone synthesis-related genes were observed, and only the Adcy7 was hypomethylated. In summary, paternal genetic intergenerational and transgenerational effects exist in ovarian GCs E2 and Pg synthesis disorders induced by Cd during pregnancy. In F2, the upregulation of StAR and CYP11A1, and changes in the miR-27a-3p, miR-27b-3p, and miR-146 families may be important, while changes in the miR-10b-5p and miR-146 families in F3 may be important.
Collapse
Affiliation(s)
- Yi Sun
- Department of Preventive Medicine, Fujian Provincial Key Laboratory of Environmental Factors and Cancer, Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, 350122, Fujian Province, China
- Key Laboratory of Environment and Female Reproductive Health, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Zhangpin Liu
- Department of Preventive Medicine, Fujian Provincial Key Laboratory of Environmental Factors and Cancer, Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, 350122, Fujian Province, China
| | - Wenchang Zhang
- Department of Preventive Medicine, Fujian Provincial Key Laboratory of Environmental Factors and Cancer, Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, 350122, Fujian Province, China.
| | - Hao Lin
- Fuzhou Center for Disease Control and Prevention, Fuzhou, 350005, Fujian Province, China
| | - Qingyu Li
- Department of Preventive Medicine, Fujian Provincial Key Laboratory of Environmental Factors and Cancer, Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, 350122, Fujian Province, China
| | - Chenchen Liu
- Department of Preventive Medicine, Fujian Provincial Key Laboratory of Environmental Factors and Cancer, Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, 350122, Fujian Province, China
| | - Chenyun Zhang
- School of Health Management, Fujian Medical University, Fuzhou, 350122, Fujian Province, China.
| |
Collapse
|
4
|
Bentz EJ, Ophir AG. Chromosome-scale genome assembly of the African giant pouched rat (Cricetomys ansorgei) and evolutionary analysis reveals evidence of olfactory specialization. Genomics 2022; 114:110521. [PMID: 36351561 DOI: 10.1016/j.ygeno.2022.110521] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 10/28/2022] [Accepted: 11/04/2022] [Indexed: 11/07/2022]
Abstract
The Southern giant pouched rat, Cricetomys ansorgei, is a large rodent best known for its ability to detect landmines using its impressive sense of smell. Their powerful chemosensory abilities enable subtle discrimination of chemical social signals, and female pouched rats demonstrate a unique reproductive physiology hypothesized to be mediated by pheromonal mechanisms. Thus, C. ansorgei represents a novel mammalian model for chemosensory physiology, social behavior, and pheromonal control of reproductive physiology. We present the first chromosome-scale genomic sequence of the pouched rat encoding 22,671 protein coding genes, including 1571 olfactory receptors, and provide a glance into the evolutionary history of this species. Functional enrichment analysis reveals genetic expansions specific to the pouched rat are enriched for functions related to olfactory specialization. Overall, this assembly is of reference-quality, and will serve as a useful and informative genomic sequence on which we can confidently base future molecular research involving the pouched rat.
Collapse
Affiliation(s)
- Ehren J Bentz
- Department of Psychology, Cornell University, Ithaca, NY, USA.
| | | |
Collapse
|
5
|
Yang Y, Zuo Z, Yang Z, Yin H, Wei L, Fang J, Guo H, Cui H, Ouyang P, Chen X, Chen J, Geng Y, Chen Z, Huang C, Zhu Y, Liu W. Nickel chloride induces spermatogenesis disorder by testicular damage and hypothalamic-pituitary-testis axis disruption in mice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 225:112718. [PMID: 34478984 DOI: 10.1016/j.ecoenv.2021.112718] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 08/24/2021] [Accepted: 08/26/2021] [Indexed: 06/13/2023]
Abstract
As a common environmental pollutant, nickel chloride (NiCl2) poses serious threat to human and animals health. NiCl2 has adverse effects on reproductive function in male, however, the underlying mechanisms are not fully illuminated. In this study, 64 male ICR mice were divided into four groups (8 mice per each period/ group), in which mice orally administrated with 0, 7.5, 15 or 30 mg/kg body weight for 14 or 28 consecutive days, respectively. The results showed that the sperm concentration (12.95%, 29.78% and 37.63% -) and sperm motility (19.79%, 34.88% and 43.10%) were dose-dependent significantly reduced, and the total sperm malformation rates (110.15%, 206.84% and 292.27%) were dose-dependent significantly elevated in the 7.5, 15 and 30 mg/kg NiCl2 treatment groups (vs control at 28 days), respectively (P < 0.05). Meanwhile, NiCl2 also decreased the relative weights of testis and epididymis and caused histopathological lesions of testis and epididymis. Furthermore, serum testosterone levels were significantly decreased after NiCl2 treatment. And the findings showed that NiCl2 down-regulated the expression of LH-R, StAR, P450scc, 3β-HSD, 17β-HSD, ABP and INHβB in the testis, however, the relative genes in the hypothalamus (Kiss-1, GPR54 and GnRH) and pituitary (GnRH-R, LHβ and FSHβ) did not exhibit noticeable change. In summary, NiCl2 induced spermatogenesis disorder by testicular damage and hypothalamic-pituitary-testis axis disruption in mice, and only impaired the genes on the testis of HPT axis.
Collapse
Affiliation(s)
- Yue Yang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Zhicai Zuo
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Zhuangzhi Yang
- Chengdu Academy of Agriculture and Forestry Sciences, Chengdu, Sichuan 611130, PR China
| | - Heng Yin
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Ling Wei
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Jing Fang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China; Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agriculture University, Wenjiang, Chengdu 611130, PR China.
| | - Hongrui Guo
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China; Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agriculture University, Wenjiang, Chengdu 611130, PR China.
| | - Hengmin Cui
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China; Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agriculture University, Wenjiang, Chengdu 611130, PR China
| | - Ping Ouyang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Xia Chen
- Chengdu Academy of Agriculture and Forestry Sciences, Chengdu, Sichuan 611130, PR China
| | - Jian Chen
- Chengdu Academy of Agriculture and Forestry Sciences, Chengdu, Sichuan 611130, PR China
| | - Yi Geng
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Zhengli Chen
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Chao Huang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Yanqiu Zhu
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Wentao Liu
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| |
Collapse
|
6
|
Saedi S, Shirazi MRJ, Zamiri MJ, Totonchi M, Dadpasand M, Sedaghati F. Impaired follicular development and endocrine disorders in female rats by prepubertal exposure to toxic doses of cadmium. Toxicol Ind Health 2021; 36:63-75. [PMID: 32279652 DOI: 10.1177/0748233720912060] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Cadmium (Cd) has been associated with several physiological problems including reproductive and endocrine system dysfunction resulting in temporary infertility. The principal objective of this project was to investigate the effects of prepubertal exposure to toxic doses of Cd on puberty onset, the endocrine system, and follicular development. For this purpose, 16 female Sprague-Dawley rats weaned on postnatal day (PND) 21 were randomly divided into 4 groups (n = 4 per group). The treatments were as follows: 0, 25, 50, and 75 mg/kg/day of cadmium chloride (CdCl2) by oral gavage from PND 21 to observation of first vaginal opening (VO). The results demonstrated that prepubertal exposure to different doses of CdCl2 delays the age of VO, first diestrus, and first proestrus via altering the concentrations of estradiol and progesterone. The low level of these steroid hormones contributed to lower differentiation and maturation of follicles and it finally led to reduced ovarian reservoir of follicles and impaired follicular development. The number of atretic follicles and secondary follicles with premature cavity increased in rats that received a high dose of CdCl2, whereas the number of secondary follicles and corpora luteum decreased in the same circumstances. Taken together, these data suggest that prepubertal exposure to toxic doses of Cd delays the onset of puberty via disorderliness in the concentration of steroid hormones and reduces the ovarian reservoir of follicles, as well as folliculogenesis.
Collapse
Affiliation(s)
- Saman Saedi
- Department of Animal Science, College of Agriculture, Shiraz University, Shiraz, Iran
| | | | - Mohammad Javad Zamiri
- Department of Animal Science, College of Agriculture, Shiraz University, Shiraz, Iran
| | - Mehdi Totonchi
- Department of Genetics, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Mohammad Dadpasand
- Department of Animal Science, College of Agriculture, Shiraz University, Shiraz, Iran
| | - Fatemeh Sedaghati
- Department of Chemistry, Estahban Higher Education Center, Estahban, Iran
| |
Collapse
|
7
|
Yardimci A, Akkoc RF, Tektemur A, Ulker N, Kaya Tektemur N, Erdem Guzel E, Canpolat S, Ozan IE. Chronic Maternal Tobacco Smoke Exposure and/or Alpha-Lipoic Acid Treatment Causes Long-Term Deterioration of Testis and Sexual Behavior in Adult Male Rats. J Sex Med 2020; 17:1835-1847. [PMID: 32798198 DOI: 10.1016/j.jsxm.2020.07.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 06/26/2020] [Accepted: 07/01/2020] [Indexed: 11/18/2022]
Abstract
BACKGROUND Tobacco use during pregnancy is known to have several negative effects on the offspring's reproductive health in the long term. The use of alpha-lipoic acid (ALA) as a dietary supplement during pregnancy has increased greatly in recent years and has been known to have positive effects on various pregnancy outcomes including miscarriage, diabetic embryopathy, preterm delivery, and congenital malformations. AIM To evaluate the effects of tobacco smoke exposure (TSE) on sexual behavior, reproductive parameters, and testicles in adult male rats and to reveal the possible role of ALA administration on these parameters. METHODS Pregnant rats (n = 7 per group) were treated with tobacco smoke (TS), ALA (20 mg/kg), and TS + ALA for a total of 11 weeks. The following parameters were compared with 8 control rats: puberty parameters, sexual behavior; levels of serum gonadotropins and testosterone, total antioxidant status, and total oxidant status; the expression of the apoptotic protease-activating factor-1 and caspase 9 mRNA levels in the testis; and assessment of immunohistochemistry and terminal deoxynucleotidyl transferase dUTP nick end labeling assay of testis. MAIN OUTCOME MEASURE Sexual behavior, changes in puberty parameters, and hormonal and genetic alterations were the outcomes analyzed in this study. RESULTS Maternal TSE caused a significant decrease in the number of intromissions compared to the control group. Similarly, ALA decreased erectile function in sexual behavior by decreasing the number of intromissions and intromission ratio in the ALA group compared to the control group. In addition, TSE and ALA treatment caused an impairment of some consummatory sexual behaviors. Also, in parallel with this inhibitory effect, the age of pubertal onset was significantly delayed in the TS + ALA group compared to other groups. Also, histopathological changes in testicular tissue, oxidative stress markers, apoptotic index, and mRNA levels of apoptosis-related genes increased in all treatment groups. CLINICAL IMPLICATIONS The use of ALA and/or tobacco products during pregnancy may adversely affect the reproductive health of male newborns in the long term. STRENGTHS & LIMITATIONS To the best of our knowledge, this study is the first to show the effects of maternal ALA treatment and/or TSE on the sexual behavior and reproductive parameters in male rats; however, the study is based on an animal model, and the present findings partially reflect the characteristics of human sexual behavior. CONCLUSION Maternal TSE and/or ALA treatment may impair sexual behavior in adulthood in male rats because of testicular damage caused by oxidative stress during gonadal development. Yardimci A, Akkoc RF, Tektemur A, et al. Chronic Maternal Tobacco Smoke Exposure and/or Alpha-Lipoic Acid Treatment Causes Long-Term Deterioration of Testis and Sexual Behavior in Adult Male Rats. J Sex Med 2020;17:1835-1847.
Collapse
Affiliation(s)
- Ahmet Yardimci
- Department of Physiology, Faculty of Medicine, Firat University, Elazig, Turkey.
| | - Ramazan Fazil Akkoc
- Department of Anatomy, Faculty of Medicine, Firat University, Elazig, Turkey
| | - Ahmet Tektemur
- Department of Medical Biology, Faculty of Medicine, Firat University, Elazig, Turkey
| | - Nazife Ulker
- Department of Physiology, Faculty of Medicine, Firat University, Elazig, Turkey
| | - Nalan Kaya Tektemur
- Department of Histology and Embryology, Faculty of Medicine, Firat University, Elazig, Turkey
| | - Elif Erdem Guzel
- Department of Midwifery, Faculty of Health Sciences, Mardin Artuklu University, Mardin, Turkey
| | - Sinan Canpolat
- Department of Physiology, Faculty of Medicine, Firat University, Elazig, Turkey
| | - Ibrahim Enver Ozan
- Department of Histology and Embryology, Faculty of Medicine, Firat University, Elazig, Turkey
| |
Collapse
|
8
|
Saedi S, Jafarzadeh Shirazi MR, Totonchi M, Zamiri MJ, Derakhshanfar A. Effect of Prepubertal Exposure to CdCl2 on the Liver, Hematological, and Biochemical Parameters in Female Rats; an Experimental Study. Biol Trace Elem Res 2020; 194:472-481. [PMID: 31290066 DOI: 10.1007/s12011-019-01800-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 06/25/2019] [Indexed: 01/28/2023]
Abstract
The examination chemical factors including industrial toxins and heavy metals seem to be crucial during the prepubertal period. In order to investigate the effects of prepubertal exposure to toxic doses of Cd on liver, hematological, and biochemical parameters in the serum, 16 female rats weaned on postnatal day (PND) 21 were randomly divided into four groups with four rats in each (n = 4). The treatments were as follows: control (0.5 mL distilled water), 25, 50, and 75 mg/kg/day received cadmium chloride (CdCl2). The CdCl2 were administered orally from PND 21 days until observed first vaginal opening (VO). The result showed that the treatment of 75 mg/kg CdCl2 dramatically increased the serum level of LDL (P < 0.0001) and LDL/HDL ratio (P = 0.0004). Conversely, treatment of 75 mg/kg CdCl2 considerably decreased the serum level of HDL in comparison with control group (P = 0.0002). Nevertheless, the rats that received different doses of CdCl2 showed no significant differences in Glu, TG, and TC compared to control group. Number of RBC and Hb of rats treated with 75 mg/kg CdCl2 were significantly less than the other groups (P < 0.0001), whereas a number of WBCs in rats treated with 75 mg/kg CdCl2 (5.27 ± 0.13 103/μL) showed significant difference (P < 0.0001) compared to control group (4.23 ± 0.09 103/μL). Histopathological exams showed nodular accumulation of lymphocytes in the liver (lymphocytic hepatitis) of rats, treated with 75 mg/kg CdCl2. These results showed that CdCl2 could cause change in serum lipidome and hematological parameters. What is more, exposure to Cd triggers liver injury and cardiovascular disease during the prepubertal period.
Collapse
Affiliation(s)
- Saman Saedi
- Department of Animal Science, College of Agriculture, Shiraz University, Shiraz, Iran
| | | | - Mehdi Totonchi
- Department of Genetics, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Mohammad Javad Zamiri
- Department of Animal Science, College of Agriculture, Shiraz University, Shiraz, Iran
| | - Amin Derakhshanfar
- Diagnostic Laboratory Sciences and Technology Research Center, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
- Center of Comparative and Experimental Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
9
|
Perveen A, Shen J, Ali Kaka N, Li C. Maternal Exposure to T-2 Toxin Affects Puberty Genes and Delays Estrus Cycle in Mice Offspring. Animals (Basel) 2020; 10:E471. [PMID: 32178237 PMCID: PMC7142777 DOI: 10.3390/ani10030471] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 02/29/2020] [Accepted: 02/29/2020] [Indexed: 11/16/2022] Open
Abstract
Among foodborne toxicities, the T-2 toxin is the most toxic member of trichothecenes mycotoxins, which has been shown to impair the development and reproductive efficiency of animals. Pups are particularly more quickly prone to programming the effects of the maternal diet during the gestational and lactation periods. Few studies have reported the maternal toxic effect on the next generation. Dams were served the T-2 toxin at a dose of 0.005 and 0.05 mg/kg body weight/day and control group 0 mg/kg from gestation day 14 to lactation day 21. Female mice offspring were selected at the weaning age. Our observations indicate that age during the vaginal opening and di-estrus stage increased and the length of the estrus cycle, first di-estrus, and regular estrus cycling were delayed with prolonged di-estrus in the 0.05 mg/kg group compared to the 0.005 mg/kg and control group. Transcription level analysis showed that mice at a dose of 0.05 mg/kg exhibited a decrease in hypothalamic mRNA expression of Gnrh and Gnrhr, Lhb, and Fshb in the pituitary gland, with a significant decrease of Fshr and Lhr in the ovaries. Present findings report that postnatal exposure to the T-2 toxin delayed puberty age in female mice and induced oxidative stress, ovarian damage, and reduced vaginal epithelium wall majorly in the 0.05 mg/kg group, and showed fewer effects in the 0.005 mg/kg group.
Collapse
Affiliation(s)
| | | | | | - Chunmei Li
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (A.P.); (J.S.); (N.A.K.)
| |
Collapse
|
10
|
Yang X, Liu P, Cui Y, Xiao B, Liu M, Song M, Huang W, Li Y. Review of the Reproductive Toxicity of T-2 Toxin. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:727-734. [PMID: 31895560 DOI: 10.1021/acs.jafc.9b07880] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
T-2 toxin, an inevitable environmental pollutant, is the most toxic type A trichothecene mycotoxin. Reproductive disruption is a key adverse effect of T-2 toxin. Herein, this paper reviews the reproductive toxicity of T-2 toxin and its mechanisms in male and female members of different species. The reproductive toxicity of T-2 toxin is evidenced by decreased fertility, disrupted structures and functions of reproductive organs, and loss of gametogenesis in males and females. T-2 toxin disrupts the reproductive endocrine axis and inhibits reproductive hormone synthesis. Furthermore, exposure to T-2 toxin during pregnancy results in embryotoxicity and the abnormal development of offspring. We also summarize the research progress in counteracting the reproductive toxicity of T-2 toxin. This review provides information toward a comprehensive understanding of the reproductive toxicity mechanisms of T-2 toxin.
Collapse
Affiliation(s)
- Xu Yang
- Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine , Northeast Agricultural University , 600 Changjiang Road , Xiangfang District, Harbin , Heilongjiang 150030 , People's Republic of China
| | - Pengli Liu
- Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine , Northeast Agricultural University , 600 Changjiang Road , Xiangfang District, Harbin , Heilongjiang 150030 , People's Republic of China
| | - Yilong Cui
- Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine , Northeast Agricultural University , 600 Changjiang Road , Xiangfang District, Harbin , Heilongjiang 150030 , People's Republic of China
| | - Bonan Xiao
- Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine , Northeast Agricultural University , 600 Changjiang Road , Xiangfang District, Harbin , Heilongjiang 150030 , People's Republic of China
| | - Menglin Liu
- Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine , Northeast Agricultural University , 600 Changjiang Road , Xiangfang District, Harbin , Heilongjiang 150030 , People's Republic of China
| | - Miao Song
- Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine , Northeast Agricultural University , 600 Changjiang Road , Xiangfang District, Harbin , Heilongjiang 150030 , People's Republic of China
| | - Wanyue Huang
- Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine , Northeast Agricultural University , 600 Changjiang Road , Xiangfang District, Harbin , Heilongjiang 150030 , People's Republic of China
| | - Yanfei Li
- Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine , Northeast Agricultural University , 600 Changjiang Road , Xiangfang District, Harbin , Heilongjiang 150030 , People's Republic of China
| |
Collapse
|
11
|
Yang X, Zhang X, Yao Q, Song M, Han Y, Shao B, Li Y. T-2 toxin impairs male fertility by disrupting hypothalamic-pituitary-testis axis and declining testicular function in mice. CHEMOSPHERE 2019; 234:909-916. [PMID: 31519099 DOI: 10.1016/j.chemosphere.2019.06.145] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Revised: 06/18/2019] [Accepted: 06/19/2019] [Indexed: 06/10/2023]
Abstract
T-2 toxin could impair male reproductive function. But, the toxicity mechanism is still unclear. In this study, male Kunming mice were orally administrated with T-2 toxin at the doses of 0, 0.5, 1 or 2 mg/kg body weight for 28 days. The fertility, body weight, reproductive organs volume, daily sperm production (DSP), and sperm malformation rate were detected. The expressions of testosterone (T) biosynthetic enzymes, luteinizing hormone (LH)-receptor, follicle stimulating hormone (FSH)-receptor and androgen binding protein (ABP) in testis were detected. The serum hormone level of gonadotropin-releasing hormone (GnRH), FSH, LH, T and progesterone (P), and the mRNA expression of GnRH, GnRH-receptor, LH and FSH were measured. These results demonstrated that T-2 toxin decreased body weight, reproductive organs volume and DSP, increased sperm malformation rate. T-2 toxin impaired fertility by decreasing the mating index, fertility index, numbers of implantation sites and viable fetuses, and increasing the number of animal with resorptions. Meantime, T-2 suppressed testicular function by inhibiting T biosynthesis and decreasing FSHR, LHR and ABP expression. Furthermore, the serum reproductive hormone contents and key factors expression of hypothalamic-pituitary-testis (HPT) axis were decreased by T-2 toxin. In summary, T-2 toxin impaired the male fertility by disrupting HPT axis and impairing testicular function.
Collapse
Affiliation(s)
- Xu Yang
- Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin, 150030, China
| | - Xuliang Zhang
- Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin, 150030, China
| | - Qiucheng Yao
- College of Agriculture, Guangdong Ocean University, Zhanjiang, 524000, China
| | - Miao Song
- Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin, 150030, China
| | - Yanfei Han
- Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin, 150030, China
| | - Bing Shao
- Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin, 150030, China
| | - Yanfei Li
- Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin, 150030, China.
| |
Collapse
|
12
|
Pogrmic-Majkic K, Samardzija Nenadov D, Stanic B, Milatovic S, Trninic-Pjevic A, Kopitovic V, Andric N. T-2 toxin downregulates LHCGR expression, steroidogenesis, and cAMP level in human cumulus granulosa cells. ENVIRONMENTAL TOXICOLOGY 2019; 34:844-852. [PMID: 30951242 DOI: 10.1002/tox.22752] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 03/18/2019] [Accepted: 03/22/2019] [Indexed: 06/09/2023]
Abstract
Our goals were to investigate whether environmentally relevant doses of T-2 toxin can affect human ovarian granulosa cells' function and to reveal the potential mechanism of T-2 toxin's action. Results showed that T-2 toxin strongly attenuated luteinizing hormone/choriogonadotropin receptor (LHCGR) mRNA expression in follicle-stimulating hormone (FSH)-stimulated human cumulus granulosa cells. Addition of human chorionic gonadotropin was not able to elicit maximal response of ovulatory genes amphiregulin, epiregulin, and progesterone receptor. T-2 toxin reduced mRNA levels of CYP19A1 and steroidogenic acute regulatory protein (STAR) and lowered FSH-stimulated estradiol and progesterone production. Mechanistic experiments demonstrated that T-2 toxin decreased FSH-stimulated cyclic adenosine monophosphate (cAMP) production. Addition of total PDE inhibitor 3-isobutyl-1-methylxanthine prevented T-2 toxin's action on LHCGR, STAR, and CYP19A1 mRNA expression in FSH-stimulated human cumulus granulosa cells. Furthermore, T-2 toxin partially decreased 8-bromoadenosine 3'5'-cyclic monophosphate (8-Br-cAMP)-stimulated LHCGR and STAR, but did not affect 8-Br-cAMP-stimulated CYP19A1 mRNA expression in human cumulus granulosa cells. Overall, our data indicate that environmentally relevant dose of T-2 toxin decreases steroidogenesis and ovulatory potency in human cumulus granulosa cells probably through activation of PDE, thus posing a significant risk for female fertility.
Collapse
Affiliation(s)
- Kristina Pogrmic-Majkic
- University of Novi Sad, Faculty of Sciences, Department of Biology and Ecology, Novi Sad, Serbia
| | | | - Bojana Stanic
- University of Novi Sad, Faculty of Technical Sciences, Department of Environmental Engineering and Occupational Safety and Health, Novi Sad, Serbia
| | - Stevan Milatovic
- University of Novi Sad, Faculty of Medicine, Novi Sad, Serbia
- Clinic for Gynecology and Obstetrics, Clinical Center of Vojvodina, Novi Sad, Serbia
| | - Aleksandra Trninic-Pjevic
- University of Novi Sad, Faculty of Medicine, Novi Sad, Serbia
- Clinic for Gynecology and Obstetrics, Clinical Center of Vojvodina, Novi Sad, Serbia
| | - Vesna Kopitovic
- University of Novi Sad, Faculty of Medicine, Novi Sad, Serbia
- Clinic for Gynecology and Obstetrics, Clinical Center of Vojvodina, Novi Sad, Serbia
| | - Nebojsa Andric
- University of Novi Sad, Faculty of Sciences, Department of Biology and Ecology, Novi Sad, Serbia
| |
Collapse
|
13
|
Khezri A, Herranz-Jusdado JG, Ropstad E, Fraser TW. Mycotoxins induce developmental toxicity and behavioural aberrations in zebrafish larvae. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 242:500-506. [PMID: 30005262 DOI: 10.1016/j.envpol.2018.07.010] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 06/20/2018] [Accepted: 07/03/2018] [Indexed: 05/19/2023]
Abstract
Mycotoxins are secondary metabolites produced by varieties of fungi that contaminate food and feed resources and are capable of inducing a wide range of toxicity. In the current study, we investigated developmental and behavioural toxicity in zebrafish larvae after exposure to six different mycotoxins; ochratoxin A (OTA), type A trichothecenes mycotoxin (T-2 toxin), type B trichothecenes mycotoxin (deoxynivalenol - DON), and zearalenone (ZEN) and its metabolites alpha-zearalenol (α-ZOL) and beta-zearalenol (β-ZOL). Developmental defects, hatching time, and survival were monitored until 96 h post fertilisation (hpf). The EC50, LC50, and IC50 values were calculated. Subsequently, to assess behavioural toxicity, new sets of embryos were exposed to a series of non-lethal doses within the range of environmental and/or developmental concern. Results indicated that all the tested mycotoxins were toxic, they all induced developmental defects, and with the exception of OTA, all affected hatching time. Behavioural effects were only observed following exposure to OTA and ZEN and its metabolites, α ZOL and β ZOL. These results demonstrate that mycotoxins are teratogenic and can influence behaviour in a vertebrate model.
Collapse
Affiliation(s)
- Abdolrahman Khezri
- Department of Basic Science and Aquatic Medicine, Faculty of Veterinary Medicine, Norwegian University of Life Science, Pb. 8146 Dep, 0033, Oslo, Norway.
| | | | - Erik Ropstad
- Department of Production Animal Clinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Science, Pb. 8146 Dep, 0033, Oslo, Norway
| | - Thomas Wk Fraser
- Department of Production Animal Clinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Science, Pb. 8146 Dep, 0033, Oslo, Norway
| |
Collapse
|
14
|
Liu X, Huang D, Guo P, Wu Q, Dai M, Cheng G, Hao H, Xie S, Yuan Z, Wang X. PKA/CREB and NF-κB pathway regulates AKNA transcription: A novel insight into T-2 toxin-induced inflammation and GH deficiency in GH3 cells. Toxicology 2017; 392:81-95. [DOI: 10.1016/j.tox.2017.10.013] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 10/14/2017] [Accepted: 10/22/2017] [Indexed: 12/22/2022]
|
15
|
Zhang Y, Jia RX, Pan MH, Lu Y, Cui XS, Kim NH, Sun SC. HT-2 toxin affects development of porcine parthenotes by altering DNA and histone methylation in oocytes matured in vitro. Theriogenology 2017; 103:110-116. [PMID: 28780481 DOI: 10.1016/j.theriogenology.2017.07.052] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 07/25/2017] [Accepted: 07/29/2017] [Indexed: 12/17/2022]
Abstract
T-2 toxin is a type A mycotoxin produced by various Fusarium species, while HT-2 toxin is a major metabolite of T-2 toxin. Both T-2 toxin and HT-2 toxin are known to have deleterious effects on animals. Our previous work showed that HT-2 treatment caused the failure of porcine oocyte maturation. In this study, we reported that HT-2 also affected porcine embryo development. In HT-2 toxin treated group, all the percentages of embryos in 2-cell, 4-cell and blastocyst stage were significantly lower compared with those in control groups. We then explored the causes from the epigenetic modification aspect of the oocytes. The analysis of fluorescence intensity showed that 5-methyl cytosine (5 mC) level was increased after exposure to HT-2 toxin in porcine oocytes, indicating that the general DNA methylation level increased in the treated porcine oocytes. In addition, histone modifications were also affected, since our results showed that H3K4me2 and H3K9me2 levels were increased in the oocytes from HT-2-treated group. Therefore, our results indicated that HT-2 toxin decreased porcine embryo developmental competence through altering the epigenetic modifications of oocytes.
Collapse
Affiliation(s)
- Yue Zhang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Ru-Xia Jia
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Meng-Hao Pan
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Yujie Lu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiang-Shun Cui
- Department of Animal Sciences, Chungbuk National University, Cheongju 361-763, Republic of Korea
| | - Nam-Hyung Kim
- Department of Animal Sciences, Chungbuk National University, Cheongju 361-763, Republic of Korea
| | - Shao-Chen Sun
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
16
|
Liu X, Guo P, Liu A, Wu Q, Xue X, Dai M, Hao H, Qu W, Xie S, Wang X, Yuan Z. Nitric oxide (NO)-mediated mitochondrial damage plays a critical role in T-2 toxin-induced apoptosis and growth hormone deficiency in rat anterior pituitary GH3 cells. Food Chem Toxicol 2017; 102:11-23. [DOI: 10.1016/j.fct.2017.01.017] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 01/20/2017] [Accepted: 01/22/2017] [Indexed: 12/11/2022]
|