1
|
Williams B, Paterson J, Rawsthorne-Manning HJ, Jeffrey PA, Gillard JJ, Lythe G, Laws TR, López-García M. Quantifying in vitro B. anthracis growth and PA production and decay: a mathematical modelling approach. NPJ Syst Biol Appl 2024; 10:33. [PMID: 38553532 PMCID: PMC10980772 DOI: 10.1038/s41540-024-00357-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 03/05/2024] [Indexed: 04/02/2024] Open
Abstract
Protective antigen (PA) is a protein produced by Bacillus anthracis. It forms part of the anthrax toxin and is a key immunogen in US and UK anthrax vaccines. In this study, we have conducted experiments to quantify PA in the supernatants of cultures of B. anthracis Sterne strain, which is the strain used in the manufacture of the UK anthrax vaccine. Then, for the first time, we quantify PA production and degradation via mathematical modelling and Bayesian statistical techniques, making use of this new experimental data as well as two other independent published data sets. We propose a single mathematical model, in terms of delay differential equations (DDEs), which can explain the in vitro dynamics of all three data sets. Since we did not heat activate the B. anthracis spores prior to inoculation, germination occurred much slower in our experiments, allowing us to calibrate two additional parameters with respect to the other data sets. Our model is able to distinguish between natural PA decay and that triggered by bacteria via proteases. There is promising consistency between the different independent data sets for most of the parameter estimates. The quantitative characterisation of B. anthracis PA production and degradation obtained here will contribute towards the ambition to include a realistic description of toxin dynamics, the host immune response, and anti-toxin treatments in future mechanistic models of anthrax infection.
Collapse
Affiliation(s)
- Bevelynn Williams
- Department of Applied Mathematics, School of Mathematics, University of Leeds, Leeds, UK
| | - Jamie Paterson
- Department of Applied Mathematics, School of Mathematics, University of Leeds, Leeds, UK
| | | | - Polly-Anne Jeffrey
- Department of Applied Mathematics, School of Mathematics, University of Leeds, Leeds, UK
| | - Joseph J Gillard
- CBR Division, Defence Science and Technology Laboratory, Salisbury, UK
| | - Grant Lythe
- Department of Applied Mathematics, School of Mathematics, University of Leeds, Leeds, UK
| | - Thomas R Laws
- CBR Division, Defence Science and Technology Laboratory, Salisbury, UK
| | - Martín López-García
- Department of Applied Mathematics, School of Mathematics, University of Leeds, Leeds, UK.
| |
Collapse
|
2
|
Abstract
Bacillus anthracis, present in two forms of vegetative cells and spores, is a pathogen that infects humans through contact with infected animals or contaminated animal products and is also maliciously used in terrorist acts. Therefore, a rapid and sensitive test for B. anthracis is necessary but challenging. The challenge comes from the following aspects: an accurate distinction of B. anthracis from other Bacillus species due to their high genomic similarity and the horizontal gene transfer between Bacillus members; direct detection of the B. anthracis spores without damaging them for component extraction to avoid the risk of spore atomization; and the rapid detections of B. anthracis in complex samples, such as soil and suspicious powders, without sample pretreatments and expensive large-scale equipment. Although culturing B. anthracis from samples is the conventional method for the detection of B. anthracis, it is time-consuming and the detection results would not be easy to interpret because many Bacillus species share similar phenotypic features such as a lack of motility and hemolysis, resistance to gamma phages, and so on. Intensive and extensive effort has been expended to develop reliable detection technologies, among which biosensors exhibit comprehensive advantages in terms of sensitivity, specificity, and portability. Here, we briefly review the research progress, providing highlights of the latest achievements and our own practice and experience. The contents can be summarized in three aspects: the discovery of detection targets, including genes, toxins, and other components; the creation of molecular recognition elements, such as monoclonal antibodies, single-chain antibody fragments, specific peptides, and aptamers; and the design and construction of biosensing systems by the integration of appropriate molecular recognition elements and transducer devices. These sensor devices have their own characteristics and different principles. For example, the surface plasmon resonance biosensor and quartz crystal microbalance biosensor are very sensitive, while the multiplex PCR-on-a-chip can detect multitargets. Biosensors for direct spore detection are highly recommended because they are not only fast but also avoid contamination from aerosol-containing spores. The introduction of nanotechnology has significantly improved the performance of biosensors. Superparamagnetic nanoparticles and phage-displayed gold nanoparticle ligand peptides have made the results of spore detection visible to the naked eye. Because of space constraints, many advanced biosensors for B. anthracis are not described in detail but are cited as references. Although biosensors provide a variety of options for various application scenarios, the challenges have not been fully addressed, which leaves room for the development of more advanced and practical B. anthracis detection means.
Collapse
Affiliation(s)
- Dian-Bing Wang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Meng-Meng Cui
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Min Li
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Xian-En Zhang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- Faculty of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| |
Collapse
|
3
|
Abdous M, Hasannia S, Salmanian AH, Arab SS. Efficacy assessment of a triple anthrax chimeric antigen as a vaccine candidate in guinea pigs: challenge test with Bacillus anthracis 17 JB strain spores. Immunopharmacol Immunotoxicol 2021; 43:495-502. [PMID: 34259590 DOI: 10.1080/08923973.2021.1945087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
CONTEXT Bacillus anthracis secretes a tripartite toxin comprising protective antigen (PA), edema factor (EF), and lethal factor (LF). The human anthrax vaccine is mainly composed of the anthrax protective antigen (PA). Considerable efforts are being directed towards improving the efficacy of vaccines because the use of commercial anthrax vaccines (human/veterinary) is associated with several limitations. OBJECTIVE In this study, a triple chimeric antigen referred to as ELP (gene accession no: MT590758) comprising highly immunogenic domains of PA, LF, and EF was designed, constructed, and assessed for the immunization capacity against anthrax in a guinea pig model. MATERIALS AND METHODS Immunization was carried out considering antigen titration and immunization protocol. The immunoprotective efficacy of the ELP was evaluated in guinea pigs and compared with the potency of veterinary anthrax vaccine using a challenge test with B. anthracis 17JB strain spores. RESULTS The results demonstrated that the ELP antigen induced strong humoral responses. The T-cell response of the ELP was found to be similar to PA, and showed that the ELP could protect 100%, 100%, 100%, 80% and 60% of the animals from 50, 70, 90, 100 and 120 times the minimum lethal dose (MLD, equal 5 × 105 spore/ml), respectively, which killed control animals within 48 h. DISCUSSION AND CONCLUSIONS It is concluded that the ELP antigen has the necessary requirement for proper immunization against anthrax and it can be used to develop an effective recombinant vaccine candidate against anthrax.
Collapse
Affiliation(s)
- Masoud Abdous
- Institute of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Sadegh Hasannia
- Faculty of Biological Sciences, Department of Biochemistry, Tarbiat Modares University, Tehran, Iran
| | - Ali Hatef Salmanian
- Institute of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Seyed-Shahryar Arab
- Faculty of Biological Sciences, Department of Biochemistry, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
4
|
Toward Fluorimetric-Paired-Emitter-Detector-Diode test for Bacillus anthracis DNA based on graphene oxide. Microchem J 2020. [DOI: 10.1016/j.microc.2019.104592] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
5
|
Kondakova OA, Nikitin NA, Evtushenko EA, Ryabchevskaya EM, Atabekov JG, Karpova OV. Vaccines against anthrax based on recombinant protective antigen: problems and solutions. Expert Rev Vaccines 2019; 18:813-828. [PMID: 31298973 DOI: 10.1080/14760584.2019.1643242] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Introduction: Anthrax is a dangerous bio-terror agent because Bacillus anthracis spores are highly resilient and can be easily aerosolized and disseminated. There is a threat of deliberate use of anthrax spores aerosol that could lead to serious fatal diseases outbreaks. Existing control measures against inhalation form of the disease are limited. All of this has provided an impetus to the development of new generation vaccines. Areas сovered: This review is devoted to challenges and achievements in the design of vaccines based on the anthrax recombinant protective antigen (rPA). Scientific databases have been searched, focusing on causes of PA instability and solutions to this problem, including new approaches of rPA expression, novel rPA-based vaccines formulations as well as the simultaneous usage of PA with other anthrax antigens. Expert opinion: PA is a central anthrax toxin component, playing a key role in the defense against encapsulated and unencapsulated strains. Subunit rPA-based vaccines have a good safety and protective profile. However, there are problems of PA instability that are greatly enhanced when using aluminum adjuvants. New adjuvant compositions, dry formulations and resistant to proteolysis and deamidation mutant PA forms can help to handle this issue. Devising a modern anthrax vaccine requires huge efforts.
Collapse
Affiliation(s)
- Olga A Kondakova
- a Department of Virology, Faculty of Biology, Lomonosov Moscow State University , Moscow , Russian Federation
| | - Nikolai A Nikitin
- a Department of Virology, Faculty of Biology, Lomonosov Moscow State University , Moscow , Russian Federation
| | - Ekaterina A Evtushenko
- a Department of Virology, Faculty of Biology, Lomonosov Moscow State University , Moscow , Russian Federation
| | - Ekaterina M Ryabchevskaya
- a Department of Virology, Faculty of Biology, Lomonosov Moscow State University , Moscow , Russian Federation
| | - Joseph G Atabekov
- a Department of Virology, Faculty of Biology, Lomonosov Moscow State University , Moscow , Russian Federation
| | - Olga V Karpova
- a Department of Virology, Faculty of Biology, Lomonosov Moscow State University , Moscow , Russian Federation
| |
Collapse
|
6
|
Glinert I, Weiss S, Sittner A, Bar-David E, Ben-Shmuel A, Schlomovitz J, Kobiler D, Levy H. Infection with a Nonencapsulated Bacillus anthracis Strain in Rabbits-The Role of Bacterial Adhesion and the Potential for a Safe Live Attenuated Vaccine. Toxins (Basel) 2018; 10:toxins10120506. [PMID: 30513757 PMCID: PMC6316610 DOI: 10.3390/toxins10120506] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 11/15/2018] [Accepted: 11/22/2018] [Indexed: 12/14/2022] Open
Abstract
Nonencapsulated (∆pXO2) Bacillus anthracis strains are commonly used as vaccines and for anthrax research, mainly in the mouse model. Previously, we demonstrated that the infection of rabbits, intranasally or subcutaneously, with the spores of a fully virulent strain results in the systemic dissemination of the bacteria, meningitis, and death, whereas ∆pXO2 strains are fully attenuated in this animal model. We used the intravenous inoculation of rabbits to study the pathogenicity of the ∆pXO2 strain infection. Bacteremia, brain bacterial burden, and pathology were used as criteria to compare the Vollum∆pXO2 disease to the wild type Vollum infection. To test the role of adhesion in the virulence of Vollum∆pXO2, we deleted the major adhesion protein BslA and tested the virulence and immunogenicity of this mutant. We found that 50% of the rabbits succumb to Vollum∆pXO2 strain following i.v. infection, a death that was accompanied with significant neurological symptoms. Pathology revealed severe brain infection coupled with an atypical massive bacterial growth into the parenchyma. Contrary to the Vollum strain, deletion of the bslA gene fully attenuated the ∆pXO2 strain. Though the Vollum∆pXO2 cannot serve as a model for B. anthracis pathogenicity in rabbits, deletion of the bslA gene prevents central nervous system (CNS) infections, possibly leading to the generation of a safer vaccine.
Collapse
Affiliation(s)
- Itai Glinert
- Department of Infectious Diseases, Israel Institute for Biological Research, P.O. Box 19, Ness Ziona 74100, Israel.
| | - Shay Weiss
- Department of Infectious Diseases, Israel Institute for Biological Research, P.O. Box 19, Ness Ziona 74100, Israel.
| | - Assa Sittner
- Department of Infectious Diseases, Israel Institute for Biological Research, P.O. Box 19, Ness Ziona 74100, Israel.
| | - Elad Bar-David
- Department of Infectious Diseases, Israel Institute for Biological Research, P.O. Box 19, Ness Ziona 74100, Israel.
| | - Amir Ben-Shmuel
- Department of Infectious Diseases, Israel Institute for Biological Research, P.O. Box 19, Ness Ziona 74100, Israel.
| | - Josef Schlomovitz
- Department of Infectious Diseases, Israel Institute for Biological Research, P.O. Box 19, Ness Ziona 74100, Israel.
| | - David Kobiler
- Department of Infectious Diseases, Israel Institute for Biological Research, P.O. Box 19, Ness Ziona 74100, Israel.
| | - Haim Levy
- Department of Infectious Diseases, Israel Institute for Biological Research, P.O. Box 19, Ness Ziona 74100, Israel.
| |
Collapse
|
7
|
Granger JH, Porter MD. The Case for Human Serum as a Highly Preferable Sample Matrix for Detection of Anthrax Toxins. ACS Sens 2018; 3:2303-2310. [PMID: 30350950 DOI: 10.1021/acssensors.8b00566] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
This paper describes preliminary results on the surprising impact of human serum as a sample matrix on the detectability of protective antigen (PA) and lethal factor (LF), two antigenic protein markers of Bacillus anthracis, in a heterogeneous immunometric assay. Two sample matrices were examined: human serum and physiological buffer. Human serum is used as a specimen in the diagnostic testing of potentially infected individuals. Physiological buffers are often applied to the recovery of biomarkers dispersed in suspicious white powders and other suspect specimens and as a serum diluent to combat contributions to the measured test response from nonspecific adsorption. The results of these experiments using a sandwich immunoassay read out by surface-enhanced Raman scattering yielded estimates for the limit of detection (LOD) for both markers when using spiked human serum that were remarkably lower than those of spiked physiological buffer (∼70,000× for PA and ∼25,000× for LF). The difference in LODs is attributed to a degradation in the effectiveness of the capture and/or labeling steps in the immunoassay due to the known propensity for both proteins to denature in buffer. These findings indicate that the use of physiological buffer for serum dilution or recovery from a powdered matrix is counter to the low-level detection of these two antigenic proteins. The potential implications of these results with respect to the ability to detect markers of other pathogenic agents are briefly discussed.
Collapse
|
8
|
Longstreth J, Skiadopoulos MH, Hopkins RJ. Licensure strategy for pre- and post-exposure prophylaxis of biothrax vaccine: the first vaccine licensed using the FDA animal rule. Expert Rev Vaccines 2016; 15:1467-1479. [DOI: 10.1080/14760584.2016.1254556] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Janice Longstreth
- Biodefense Division, Emergent BioSolutions Inc., Gaithersburg, MD, US
| | | | - Robert J. Hopkins
- Biodefense Division, Emergent BioSolutions Inc., Gaithersburg, MD, US
| |
Collapse
|