1
|
Acar M, Tatini D, Romani V, Ninham BW, Rossi F, Lo Nostro P. Curious effects of overlooked aspects on urease activity. Colloids Surf B Biointerfaces 2024; 247:114422. [PMID: 39673898 DOI: 10.1016/j.colsurfb.2024.114422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 11/15/2024] [Accepted: 12/02/2024] [Indexed: 12/16/2024]
Abstract
Intermolecular forces determine complex chemical structures of exquisite intricacy, like proteins. However even the most advanced theories we have so far rely on too drastic approximations to explain them. Some crucial aspects that dictate structure, specific ion and solvent effects are not accommodated. Further the very significant effects of dissolved atmospheric gas are completely ignored and unexplored. Here we examine the effects of cations, dissolved gasses, and heavy water on the pH clock reactions of urease. This enzyme catalyzes the hydrolysis of urea to ammonium and bicarbonate in unbuffered aqueous solutions. In so doing it increases the pH. Circular dichroism and fluorescence experiments are used to assess conformational effects. The results highlight the subtle interplay of different factors that participate in determining the urease activity. The experimental data are correlated with specific ion physicochemical parameters and conformational data. They are explored in the context of specific ion and solvent interactions and hydration.
Collapse
Affiliation(s)
- Mert Acar
- Department of Chemistry "Ugo Schiff" and CSGI, University of Florence, Sesto Fiorentino, Firenze 50019, Italy
| | - Duccio Tatini
- Department of Biotechnologies, Chemistry and Pharmacy, University of Siena, Siena 53100, Italy
| | - Valentina Romani
- Department of Chemistry "Ugo Schiff" and CSGI, University of Florence, Sesto Fiorentino, Firenze 50019, Italy
| | - Barry W Ninham
- Department of Materials Physics, Research School of Physics, Australian National University, Canberra, ACT 0200, Australia
| | - Federico Rossi
- Department of Earth, Environmental and Physical Sciences-DEEP Sciences, University of Siena, Siena 53100, Italy
| | - Pierandrea Lo Nostro
- Department of Chemistry "Ugo Schiff" and CSGI, University of Florence, Sesto Fiorentino, Firenze 50019, Italy.
| |
Collapse
|
2
|
Wang X, Chan XF, Go Y, Wang Y, Li T, Wang G. Combatting Helicobacter pylori: A Focus on Nanomaterials. Helicobacter 2024; 29:e70004. [PMID: 39725648 DOI: 10.1111/hel.70004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 11/09/2024] [Accepted: 12/05/2024] [Indexed: 12/28/2024]
Abstract
Developing effective non-antibiotic antimicrobial strategies is essential for combating global antibiotic resistance, including resistance stemming from Helicobacter pylori (H. pylori) treatment. Nanomaterials offer a promising and innovative approach for non-antibiotic anti-H. pylori treatment strategies. This review highlights the progress made in the use of metallic and nonmetallic nanoparticles, as well as nanozymes, to directly inhibit H. pylori growth. Moreover, we summarize advances made in the direct targeting of H. pylori by nanomaterials and the stimuli-responsive release of nanoparticles in the stomach. Additionally, we explore the recent advancements in multifunctional nanoplatforms that integrate physical methods, such as light, heat, ultrasound, and magnetism, with nanomaterials to synergistically treat H. pylori infections. Finally, we briefly address the existing challenges and future directions in this field. In summary, we highlight that with ongoing research, nanomaterials may serve as a promising treatment strategy for H. pylori eradication.
Collapse
Affiliation(s)
- Xuanping Wang
- Geriatric Department, Royal Victoria Hospital, Belfast, UK
| | | | - Yuyo Go
- Department of Engineering Science, University of Oxford, Oxford, UK
| | | | - Tingyu Li
- Department of Gastroenterology, National Clinical Research Center for Geriatric Diseases, The Second Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Gangshi Wang
- Department of Gastroenterology, National Clinical Research Center for Geriatric Diseases, The Second Medical Center, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
3
|
Akcelik-Deveci S, Kılıç E, Mansur-Ozen N, Timucin E, Buyukcolak Y, Oktem-Okullu S. Identification of interaction partners of outer inflammatory protein A: Computational and experimental insights into how Helicobacter pylori infects host cells. PLoS One 2024; 19:e0300557. [PMID: 39471168 PMCID: PMC11521304 DOI: 10.1371/journal.pone.0300557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 09/26/2024] [Indexed: 11/01/2024] Open
Abstract
Outer membrane proteins (OMPs) play a key role in facilitating the survival of Helicobacter pylori within the gastric tissue by mediating adherence. Among these proteins, Outer inflammatory protein A (OipA) is a critical factor in H. pylori colonization of the host gastric epithelial cell surface. While the role of OipA in H. pylori attachment and its association with clinical outcomes have been established, the structural mechanisms underlying OipA's action in adherence to gastric epithelial cells remain limited. Our study employed experimental and computational approaches to investigate the interaction partners of OipA on the gastric epithelial cell surface. Initially, we conducted a proteomic analysis using a pull-down assay with recombinant OipA and gastric epithelial cell membrane proteins to identify the OipA interactome. This analysis revealed 704 unique proteins that interacted with OipA. We subsequently analyzed 16 of these OipA partners using molecular modeling tools. Among these 16 partners, we highlight three human proteins, namely Hepatocyte growth factor (HGF), Mesenchymal epithelial transition factor receptor (Met), and Adhesion G Protein-Coupled Receptor B1 (AGRB1) that could play a role in H. pylori adherence to the gastric epithelial cell surface with OipA. Collectively, these findings reveal novel host interactions mediated by OipA, suggesting their potential as therapeutic targets for combating H. pylori infection.
Collapse
Affiliation(s)
- Sümeyye Akcelik-Deveci
- Department of Medical Biotechnology, Institute of Health Sciences, Acibadem University, Atasehir, Istanbul, Turkey
| | - Elif Kılıç
- Department of Medical Biotechnology, Institute of Health Sciences, Acibadem University, Atasehir, Istanbul, Turkey
| | - Nesteren Mansur-Ozen
- Department of Medical Biotechnology, Institute of Health Sciences, Acibadem University, Atasehir, Istanbul, Turkey
| | - Emel Timucin
- Department of Biostatistics and Medical Informatics, School of Medicine, Acibadem University, Atasehir, Istanbul, Turkey
- Department of Biostatistics and Bioinformatics, Institute of Health Sciences, Acibadem University, Atasehir, Istanbul, Turkey
| | - Yaren Buyukcolak
- Department of Medical Biotechnology, Institute of Health Sciences, Acibadem University, Atasehir, Istanbul, Turkey
| | - Sinem Oktem-Okullu
- Department of Medical Microbiology, School of Medicine, Acibadem, Atasehir, Istanbul, Turkey
| |
Collapse
|
4
|
Kazantseva EP, Frolov AM, Frolov MA, Novikova EA, Mugulov KS, Kozlova KS, Volchanskiy KI, Maximova SA, Pilipenko MO. The role of Helicobacter pylori in the development of inflammatory eyelid diseases. ACTA BIOMEDICA SCIENTIFICA 2024; 9:108-116. [DOI: 10.29413/abs.2024-9.4.13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025] Open
Abstract
Background. Blepharitis is one of the most common eye diseases: it accounts for 23.3 % of the total number of patients with inflammatory eye diseases worldwide. 40.2 % of these patients seek outpatient care. The incidence of blepharitis is 1.5–2 times higher in women than in men. The leading factors in the development of blepharitis are both general (gastrointestinal tract diseases, diabetes mellitus, hypertension, systemic use of corticosteroids, etc.) and local (atopic and seborrheic dermatitis or rosacea). The main causative agents of this disease are Staphylococcus spp. (S. aureus, S. epidermidis). As a rule, the disease manifests itself in patients aged 30–50 years, while in women aged 40 to 45 years, 80 % of blepharitis are of staphylococcal origin. Currently, there are reports in the literature about apotential link between Helicobacter pylori infection and the development of chronic blepharitis, but the data are very contradictory.The aim of the study. To analyze the features of the relationship between Helicobacter pylori and inflammatory eyelid diseases.Materials and methods. We conducted a search and analysis of literary sources in the Web of Science, PubMed and Google Scholar databases, as well as in the Russian Science Citation Index database for the period from 2000 to 2022.Conclusion. The review analyzes and summarizes the pathogenic mechanisms of the relationship between chronic blepharitis and Helicobacter pylori. We carried out an analysis of numerous studies, which give grounds to assume a possible role of Helicobacter pylori infection in the development and course of inflammatory eyelid diseases (blepharitis). The main pathogenic aspects in these studies are: chronic inflammation of the eyelids and gastrointestinal tract (antigenic mimicry); excretion of toxic substances from the oral cavity (ammonia, hydrogen nitrite, hydrogen cyanide and other substances causing indirect inflammation of the conjunctiva and eyelid cartilage); the presence of Helicobacter pylori in tears.
Collapse
Affiliation(s)
- E. P. Kazantseva
- Peoples’ Friendship University of Russia named after Patrice Lumumba
| | - A. M. Frolov
- Peoples’ Friendship University of Russia named after Patrice Lumumba
| | - M. A. Frolov
- Peoples’ Friendship University of Russia named after Patrice Lumumba
| | - E. A. Novikova
- I.M. Sechenov First Moscow State Medical University (Sechenov University)
| | - K. S. Mugulov
- I.M. Sechenov First Moscow State Medical University (Sechenov University)
| | - K. S. Kozlova
- I.M. Sechenov First Moscow State Medical University (Sechenov University)
| | - K. I. Volchanskiy
- I.M. Sechenov First Moscow State Medical University (Sechenov University)
| | - S. A. Maximova
- I.M. Sechenov First Moscow State Medical University (Sechenov University)
| | - M. O. Pilipenko
- I.M. Sechenov First Moscow State Medical University (Sechenov University)
| |
Collapse
|
5
|
Lai J, Angulmaduwa S, Kim MA, Kim A, Tissera K, Cho YJ, Cha JH. Influence of oipA Phase Variation on Virulence Phenotypes Related to Type IV Secretion System in Helicobacter pylori. Helicobacter 2024; 29:e13140. [PMID: 39440915 DOI: 10.1111/hel.13140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 08/23/2024] [Accepted: 09/11/2024] [Indexed: 10/25/2024]
Abstract
BACKGROUND oipA, an outer membrane protein of Helicobacter pylori, is linked to IL-8 induction and gastric inflammation, but its role is debated due to inconsistent findings. This study aims to explore the role of oipA phase variation in modulating the virulence traits of H. pylori, a bacterium strongly associated with the development of gastric cancer. MATERIAL AND METHODS American clinical isolate AH868 strain for naturally occurring phase variations of the oipA gene, and G27 strain for in vitro-induced phase variations were used to elucidate oipA's impact on key virulence phenotypes, including cell elongation, CagA phosphorylation, and IL-8 induction. RESULTS Using AH868 strain, natural oipA phase variation does not affect cell elongation and IL-8 induction. Interestingly, however, in vitro-induced oipA phase variations in G27 strain uncovered that 9.4% of oipA "Off" transformants exhibit reduced cell elongation while all maintaining consistent IL-8 induction levels. Additionally, complementation of oipA "Off to On" status restores the cell elongation phenotype in 12.5% of transformants, highlighting the importance of oipA in maintaining normal cell morphology. Crucially, these variations in cell elongation are not linked to changes in bacterial adherence capabilities. Furthermore, the study shows a correlation among oipA phase variation, cell elongation, and CagA phosphorylation, suggesting that oipA influences the functionality of the Type IV secretion system. Whole-genome sequencing of selected transformants reveals genetic variations in bab paralogue, cagY gene, and other genomic regions, underscoring the complex genetic interactions that shape H. pylori's virulence. CONCLUSIONS Our research provides new insights into the subtle yet significant role of oipA phase variation in H. pylori pathogenicity, emphasizing the need for further studies to explore the intricate molecular mechanisms involved. This understanding could pave the way for targeted therapeutic strategies to mitigate the impact of H. pylori on human health.
Collapse
Affiliation(s)
- Jing Lai
- Department of Periodontics, Changsha Stomatological Hospital, Changsha, Hunan, China
- Department of Oral Biology, Oral Science Research Center, Yonsei University College of Dentistry, Seoul, Republic of Korea
- Department of Applied Life Science, The Graduate School, BK21 FOUR Project, Yonsei University College of Dentistry, Seoul, Republic of Korea
| | - Sacheera Angulmaduwa
- Department of Oral Biology, Oral Science Research Center, Yonsei University College of Dentistry, Seoul, Republic of Korea
- Department of Applied Life Science, The Graduate School, BK21 FOUR Project, Yonsei University College of Dentistry, Seoul, Republic of Korea
| | - Myeong-A Kim
- Department of Oral Biology, Oral Science Research Center, Yonsei University College of Dentistry, Seoul, Republic of Korea
- Department of Applied Life Science, The Graduate School, BK21 FOUR Project, Yonsei University College of Dentistry, Seoul, Republic of Korea
| | - Aeryun Kim
- Department of Oral Biology, Oral Science Research Center, Yonsei University College of Dentistry, Seoul, Republic of Korea
- Department of Applied Life Science, The Graduate School, BK21 FOUR Project, Yonsei University College of Dentistry, Seoul, Republic of Korea
- Oral Health Research Institute, Apple Tree Dental Hospital, Bucheon, Republic of Korea
| | - Kavinda Tissera
- Department of Medical Laboratory Science, Faculty of Allied Health Sciences, University of Peradeniya, Peradeniya, Sri Lanka
| | - Yong-Joon Cho
- Department of Molecular Bioscience and Multidimensional Genomics Research Center, Kangwon National University, Chuncheon, Republic of Korea
| | - Jeong-Heon Cha
- Department of Oral Biology, Oral Science Research Center, Yonsei University College of Dentistry, Seoul, Republic of Korea
- Department of Applied Life Science, The Graduate School, BK21 FOUR Project, Yonsei University College of Dentistry, Seoul, Republic of Korea
| |
Collapse
|
6
|
Singh S, Sharma AK, Som A, Gehlot V, Mahant S, Sharma P, Das K, Das R. Molecular characterization and phylogenetic analysis of babA gene of Helicobacter pylori isolated from Indian patients with gastrointestinal diseases. Gene 2024; 920:148526. [PMID: 38703866 DOI: 10.1016/j.gene.2024.148526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 04/16/2024] [Accepted: 05/01/2024] [Indexed: 05/06/2024]
Abstract
INTRODUCTION Outer membrane protein (OMP) of Helicobacter pylori (H. pylori) i.e., blood group antigen binding adhesin (babA) is responsible for the attachment of H. pylori in the gastric epithelium. Its adherence is causative for gastric pathology such as gastritis, peptic ulcer disease (PUD), or digestive tract disorders like erosive reflux disease (ERD) and (NERD) non-erosive reflux disease and together called Gastroesophageal reflux disease (GERD). BabA manifests rapid and varied selection via substitution of amino acid in its Leb-carbohydrate binding domain (CBD) which enables better binding preferences for distinct human populations and ABO blood group phenotypes. The positive evolutionary selection of the pathogenic factor of this genetically diverse bacterium has enabled it to adapt to the host gastric environment. Analyzing the association of virulent genes (cagA, vacA) and babA will help us better understand bacteria's pathogenicity. METHOD 109 H. pylori strains from patients with distinct gastrointestinal diseases were genotyped using Polymerase Chain Reaction(PCR) for cagA, vacA, and babA followed by Sanger sequencing and phylogenetic analysis. RESULT In the babA + ve genotype, a statistically significant association with p = 0.04 and < 0.0001 is seen in gastritis and ERD respectively. A significant association of genotype vacAs1m2 (p = 0.0002) was seen in gastritis, vacAs1m1 (p = 0.02) in NERD, vacAs1m1 (p < 0.0001) and vacAs1m2 (p = 0.002) in ERD. This relationship helps to detect gastritis or ERD where BabA gene can be used as an independent marker for detecting their presence. CONCLUSION The appearance of variants within distinct disease categories is due to local genetic variation.
Collapse
Affiliation(s)
- Sarika Singh
- Centre for Medical Biotechnology, Amity Institute of Biotechnology, Amity University, Noida 201301, UP, India.
| | - Amresh Kumar Sharma
- Centre of Bioinformatics, Institute of Interdisciplinary Studies, University of Allahabad, Prayagraj 211002, UP, India.
| | - Anup Som
- Centre of Bioinformatics, Institute of Interdisciplinary Studies, University of Allahabad, Prayagraj 211002, UP, India.
| | - Valentina Gehlot
- Centre for Medical Biotechnology, Amity Institute of Biotechnology, Amity University, Noida 201301, UP, India.
| | - Shweta Mahant
- Centre for Medical Biotechnology, Amity Institute of Biotechnology, Amity University, Noida 201301, UP, India.
| | - Prateek Sharma
- Centre for Medical Biotechnology, Amity Institute of Biotechnology, Amity University, Noida 201301, UP, India.
| | - Kunal Das
- Department of Gastroenterology, Yashoda super specialty Hospital, Ghaziabad, 201001, U.P, India.
| | - Rajashree Das
- Centre for Medical Biotechnology, Amity Institute of Biotechnology, Amity University, Noida 201301, UP, India.
| |
Collapse
|
7
|
Wang K, Zhang Q, Zhang P, Yang Q, Pan F, Zha B. Use of bidirectional Mendelian randomization to unveil the association of Helicobacter pylori infection and autoimmune thyroid diseases. SCIENCE ADVANCES 2024; 10:eadi8646. [PMID: 39083605 PMCID: PMC11290481 DOI: 10.1126/sciadv.adi8646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 06/25/2024] [Indexed: 08/02/2024]
Abstract
Previous observational studies found associations between Helicobacter pylori infection and autoimmune thyroid diseases (AITDs), but the causal nature of this association is still uncertain. We investigated the causal effect of six crucial antibodies against H. pylori on AITDs using a bidirectional Mendelian randomization (MR). We found that anti-H. pylori outer membrane protein (OMP) significantly increased the risk of hyperthyroidism and Graves' disease (GD). In addition, our reverse MR analysis indicated that hyperthyroidism could increase the levels of cytotoxin-associated gene A and OMP antibodies. We also observed causal roles of GD on anti-H. pylori OMP. Our analyses indicate the mutual effects of H. pylori infection and AITDs, suggesting the existence of a gut-thyroid axis. These results also provide evidence of the bidirectional causal association between anti-H. pylori OMP with hyperthyroidism and GD, resulting in a vicious circle.
Collapse
Affiliation(s)
| | | | | | - Qian Yang
- Department of Endocrinology, Shanghai Fifth People’s Hospital, Fudan University, Shanghai 200240, China
| | - Fanfan Pan
- Department of Endocrinology, Shanghai Fifth People’s Hospital, Fudan University, Shanghai 200240, China
| | | |
Collapse
|
8
|
Hurtado-Monzón EG, Valencia-Mayoral P, Silva-Olivares A, Bañuelos C, Velázquez-Guadarrama N, Betanzos A. The Helicobacter pylori infection alters the intercellular junctions on the pancreas of gerbils (Meriones unguiculatus). World J Microbiol Biotechnol 2024; 40:273. [PMID: 39030443 PMCID: PMC11271430 DOI: 10.1007/s11274-024-04081-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 07/12/2024] [Indexed: 07/21/2024]
Abstract
Helicobacter pylori is a common resident in the stomach of at least half of the world's population and recent evidence suggest its emergence in other organs such as the pancreas. In this organ, the presence of H. pylori DNA has been reported in cats, although the functional implications remain unknown. In this work, we determined distinct features related to the H. pylori manifestation in pancreas in a rodent model, in order to analyse its functional and structural effect. Gerbils inoculated with H. pylori exhibited the presence of this bacterium, as revealed by the expression of some virulence factors, as CagA and OMPs in stomach and pancreas, and confirmed by urease activity, bacterial culture, PCR and immunofluorescence assays. Non-apparent morphological changes were observed in pancreatic tissue of infected animals; however, delocalization of intercellular junction proteins (claudin-1, claudin-4, occludin, ZO-1, E-cadherin, β-catenin, desmoglein-2 and desmoplakin I/II) and rearrangement of the actin-cytoskeleton were exhibited. This structural damage was consistent with alterations in the distribution of insulin and glucagon, and a systemic inflammation, event demonstrated by elevated IL-8 levels. Overall, these findings indicate that H. pylori can reach the pancreas, possibly affecting its function and contributing to the development of pancreatic diseases.
Collapse
Affiliation(s)
- Edgar G Hurtado-Monzón
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Ciudad de Mexico, México
| | - Pedro Valencia-Mayoral
- Departamento de Patología Clínica y Experimental del Hospital Infantil de México Federico Gómez, Ciudad de Mexico, México
| | - Angélica Silva-Olivares
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Ciudad de Mexico, México
| | - Cecilia Bañuelos
- Programa de Doctorado Transdisciplinario en Desarrollo Científico y Tecnológico Para La Sociedad, CINVESTAV-IPN, Ciudad de Mexico, México
| | - Norma Velázquez-Guadarrama
- Laboratorio de Investigación en Enfermedades Infecciosas, Área de Genética Bacteriana del Hospital Infantil de México Federico Gómez, Ciudad de Mexico, México.
| | - Abigail Betanzos
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Ciudad de Mexico, México.
| |
Collapse
|
9
|
Guo X, Zhao X, Lu X, Zhao L, Zeng Q, Chen F, Zhang Z, Xu M, Feng S, Fan T, Wei W, Zhang X, Pang J, You X, Song D, Wang Y, Jiang J. A deep learning-driven discovery of berberine derivatives as novel antibacterial against multidrug-resistant Helicobacter pylori. Signal Transduct Target Ther 2024; 9:183. [PMID: 38972904 PMCID: PMC11228022 DOI: 10.1038/s41392-024-01895-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 05/17/2024] [Accepted: 06/14/2024] [Indexed: 07/09/2024] Open
Abstract
Helicobacter pylori (H. pylori) is currently recognized as the primary carcinogenic pathogen associated with gastric tumorigenesis, and its high prevalence and resistance make it difficult to tackle. A graph neural network-based deep learning model, employing different training sets of 13,638 molecules for pre-training and fine-tuning, was aided in predicting and exploring novel molecules against H. pylori. A positively predicted novel berberine derivative 8 with 3,13-disubstituted alkene exhibited a potency against all tested drug-susceptible and resistant H. pylori strains with minimum inhibitory concentrations (MICs) of 0.25-0.5 μg/mL. Pharmacokinetic studies demonstrated an ideal gastric retention of 8, with the stomach concentration significantly higher than its MIC at 24 h post dose. Oral administration of 8 and omeprazole (OPZ) showed a comparable gastric bacterial reduction (2.2-log reduction) to the triple-therapy, namely OPZ + amoxicillin (AMX) + clarithromycin (CLA) without obvious disturbance on the intestinal flora. A combination of OPZ, AMX, CLA, and 8 could further decrease the bacteria load (2.8-log reduction). More importantly, the mono-therapy of 8 exhibited comparable eradication to both triple-therapy (OPZ + AMX + CLA) and quadruple-therapy (OPZ + AMX + CLA + bismuth citrate) groups. SecA and BamD, playing a major role in outer membrane protein (OMP) transport and assembling, were identified and verified as the direct targets of 8 by employing the chemoproteomics technique. In summary, by targeting the relatively conserved OMPs transport and assembling system, 8 has the potential to be developed as a novel anti-H. pylori candidate, especially for the eradication of drug-resistant strains.
Collapse
Affiliation(s)
- Xixi Guo
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, 100050, Beijing, China
| | - Xiaosa Zhao
- School of Information Science and Technology, Northeast Normal University, Changchun, 130117, China
| | - Xi Lu
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, 100050, Beijing, China
| | - Liping Zhao
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, 100050, Beijing, China
| | - Qingxuan Zeng
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, 100050, Beijing, China
| | - Fenbei Chen
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, 100050, Beijing, China
| | - Zhimeng Zhang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, 100050, Beijing, China
| | - Mengyi Xu
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, 100050, Beijing, China
| | - Shijiao Feng
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, 100050, Beijing, China
| | - Tianyun Fan
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, 100050, Beijing, China
| | - Wei Wei
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, 100050, Beijing, China
| | - Xin Zhang
- Department of Pharmacy, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, 272029, Shandong, China
| | - Jing Pang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, 100050, Beijing, China.
| | - Xuefu You
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, 100050, Beijing, China.
| | - Danqing Song
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, 100050, Beijing, China.
| | - Yanxiang Wang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, 100050, Beijing, China.
- Institute of Health and Medicine, Hefei Comprehensive National Science Center, Hefei, 230601, Anhui, China.
| | - Jiandong Jiang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, 100050, Beijing, China
| |
Collapse
|
10
|
Sedarat Z, Taylor-Robinson AW. Helicobacter pylori Outer Membrane Proteins and Virulence Factors: Potential Targets for Novel Therapies and Vaccines. Pathogens 2024; 13:392. [PMID: 38787244 PMCID: PMC11124246 DOI: 10.3390/pathogens13050392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/12/2024] [Accepted: 05/07/2024] [Indexed: 05/25/2024] Open
Abstract
Helicobacter pylori is a gastric oncopathogen that infects over half of the world's human population. It is a Gram-negative, microaerophilic, helix-shaped bacterium that is equipped with flagella, which provide high motility. Colonization of the stomach is asymptomatic in up to 90% of people but is a recognized risk factor for developing various gastric disorders such as gastric ulcers, gastric cancer and gastritis. Invasion of the human stomach occurs via numerous virulence factors such as CagA and VacA. Similarly, outer membrane proteins (OMPs) play an important role in H. pylori pathogenicity as a means to adapt to the epithelial environment and thereby facilitate infection. While some OMPs are porins, others are adhesins. The epithelial cell receptors SabA, BabA, AlpA, OipA, HopQ and HopZ have been extensively researched to evaluate their epidemiology, structure, role and genes. Moreover, numerous studies have been performed to seek to understand the complex relationship between these factors and gastric diseases. Associations exist between different H. pylori virulence factors, the co-expression of which appears to boost the pathogenicity of the bacterium. Improved knowledge of OMPs is a major step towards combatting this global disease. Here, we provide a current overview of different H. pylori OMPs and discuss their pathogenicity, epidemiology and correlation with various gastric diseases.
Collapse
Affiliation(s)
- Zahra Sedarat
- Cellular & Molecular Research Centre, Shahrekord University of Medical Sciences, Shahrekord 8813833435, Iran;
| | - Andrew W. Taylor-Robinson
- College of Health Sciences, VinUniversity, Gia Lam District, Hanoi 67000, Vietnam
- Center for Global Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 1904, USA
| |
Collapse
|
11
|
Yan K, Dai X, Li Z, Rong W, Chen L, Diao X. Clinical Study on the Eradication of Helicobacter pylori by Vonoprazan Combined with Amoxicillin for 10-Day Dual Therapy. Clin Pharmacol Drug Dev 2024; 13:240-247. [PMID: 38197874 DOI: 10.1002/cpdd.1357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 11/29/2023] [Indexed: 01/11/2024]
Abstract
Vonoprazan holds significant research promise for Helicobacter pylori eradication, with the goal of determining the most effective drug regimen. In this study, H. pylori patients (426) were enrolled and randomized into 3 groups: an EA14 group (20 mg of esomeprazole qid and 1000 mg of amoxicillin tid for 14 days), a VA14 group (20 mg of vonoprazan bid and 750 mg of amoxicillin qid for 14 days), and a VA10 group (20 mg of vonoprazan bid and 1000 mg of amoxicillin tid for 10 days). Key outcomes encompassed the H. pylori eradication rate, patient adverse effects, and compliance. In the EA14, VA14, and VA10 groups, H. pylori eradication rates were 89.4%, 90.1%, and 88.7% in intention-to-treat analysis, and 94.2%, 94.4%, and 94.6% in per-protocol analysis, respectively. Adverse events incidences were 14.8%, 12.7%, and 5.6%, while compliance rates were 88.7%, 90.9%, and 95.8%, respectively. Notably, the VA10 regimen demonstrated comparable H. pylori eradication rates, adverse effect incidences, and compliance levels to the EA14 and VA14 regimens.
Collapse
Affiliation(s)
- Kunfeng Yan
- Department of Gastroenterology, Taixing People's Hospital, Taixing, China
| | - Xiaorong Dai
- Department of Gastroenterology, Taixing People's Hospital, Taixing, China
| | - Zhenxing Li
- Department of Gastroenterology, Taixing People's Hospital, Taixing, China
| | - Weiwei Rong
- Department of Gastroenterology, Taixing People's Hospital, Taixing, China
| | - Lei Chen
- Department of Gastroenterology, Taixing People's Hospital, Taixing, China
| | - Xinxin Diao
- Department of Gastroenterology, Taixing People's Hospital, Taixing, China
| |
Collapse
|
12
|
Baral B, Kandpal M, Ray A, Jana A, Yadav DS, Sachin K, Mishra A, Baig MS, Jha HC. Helicobacter pylori and Epstein-Barr virus infection in cell polarity alterations. Folia Microbiol (Praha) 2024; 69:41-57. [PMID: 37672163 DOI: 10.1007/s12223-023-01091-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 08/28/2023] [Indexed: 09/07/2023]
Abstract
The asymmetrical distribution of the cellular organelles inside the cell is maintained by a group of cell polarity proteins. The maintenance of polarity is one of the vital host defense mechanisms against pathogens, and the loss of it contributes to infection facilitation and cancer progression. Studies have suggested that infection of viruses and bacteria alters cell polarity. Helicobacter pylori and Epstein-Barr virus are group I carcinogens involved in the progression of multiple clinical conditions besides gastric cancer (GC) and Burkitt's lymphoma, respectively. Moreover, the coinfection of both these pathogens contributes to a highly aggressive form of GC. H. pylori and EBV target the host cell polarity complexes for their pathogenesis. H. pylori-associated proteins like CagA, VacA OipA, and urease were shown to imbalance the cellular homeostasis by altering the cell polarity. Similarly, EBV-associated genes LMP1, LMP2A, LMP2B, EBNA3C, and EBNA1 also contribute to altered cell asymmetry. This review summarized all the possible mechanisms involved in cell polarity deformation in H. pylori and EBV-infected epithelial cells. We have also discussed deregulated molecular pathways like NF-κB, TGF-β/SMAD, and β-catenin in H. pylori, EBV, and their coinfection that further modulate PAR, SCRIB, or CRB polarity complexes in epithelial cells.
Collapse
Affiliation(s)
- Budhadev Baral
- Infection Bioengineering Group, Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Indore, Madhya Pradesh, 453552, India
| | - Meenakshi Kandpal
- Infection Bioengineering Group, Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Indore, Madhya Pradesh, 453552, India
| | - Anushka Ray
- Infection Bioengineering Group, Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Indore, Madhya Pradesh, 453552, India
| | - Ankit Jana
- Infection Bioengineering Group, Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Indore, Madhya Pradesh, 453552, India
| | - Dhirendra Singh Yadav
- Central Forensic Science Laboratory, Pune, DFSS, Ministry of Home Affairs, Govt. of India, Talegaon MIDC Phase-1, Near JCB Factory, Pune, Maharashtra, 410506, India
| | - Kumar Sachin
- Himalayan School of Biosciences, Swami Rama Himalayan University, Swami Ram Nagar, Jolly Grant, Dehradun, Uttarakhand, 248 016, India
| | - Amit Mishra
- Department of Bioscience & Bioengineering, Indian Institute of Technology Jodhpur, NH 65 Nagaur Road, Karwar, Jodhpur District, Rajasthan, 342037, India
| | - Mirza S Baig
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Indore, Madhya Pradesh, 453552, India
| | - Hem Chandra Jha
- Infection Bioengineering Group, Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Indore, Madhya Pradesh, 453552, India.
| |
Collapse
|
13
|
Zhao Y, Chen Z, Cai Y, Xue J, Zhang L, Wang L, Zhao M, Zheng Y, Xia T, Yu H, Jiang T, Sun Y. Aloe-emodin destroys the biofilm of Helicobacter pylori by targeting the outer membrane protein 6. Microbiol Res 2024; 278:127539. [PMID: 37956613 DOI: 10.1016/j.micres.2023.127539] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/30/2023] [Accepted: 10/30/2023] [Indexed: 11/15/2023]
Abstract
Biofilm formation is one of the most important factors causing drug resistance of Helicobacter pylori. Therefore, it is necessary to explore the mechanism underlying the biofilm formation and its eradication methods. The outer membrane proteins (OMPs) play important roles in the formation of bacterial biofilms and are considered the essential targets for new drug discovery. Natural products play significant roles in anti-bacterial and anti-biofilm functions. This study explored the key OMPs involved in the biofilm formation of H. pylori and the natural products that target these OMPs. Transcriptome sequencing, gene knockout, and electrophoretic mobility shift assay (EMSA) were performed to reveal that OMP6 was involved in the biofilm formation of H. pylori, which was regulated by non-phosphorylated ArsR. Molecular docking suggested that aloe-emodin (AE) could target OMP6 and destroy the biofilms of H. pylori. Further exploration of its mechanism found that AE could also inhibit the expression of omp6 mRNA by binding to its regulator ArsR. In summary, we have discovered a novel molecular mechanism regulating the biofilm formation of H. pylori and identified a natural product against H. pylori biofilms, providing potential clues for clinical treatment of H. pylori.
Collapse
Affiliation(s)
- Yican Zhao
- Key Laboratory for Experimental Teratology of the Ministry of Education and Department of Microbiology, School of Basic Medical Science, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Zhenghong Chen
- Department of Microbiology, Key Laboratory of Medical Microbiology and Parasitology, Guizhou Medical University, Guiyang, China
| | - Yuying Cai
- Key Laboratory for Experimental Teratology of the Ministry of Education and Department of Microbiology, School of Basic Medical Science, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Junyuan Xue
- Key Laboratory for Experimental Teratology of the Ministry of Education and Department of Microbiology, School of Basic Medical Science, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Lu Zhang
- Key Laboratory for Experimental Teratology of the Ministry of Education and Department of Microbiology, School of Basic Medical Science, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Liyuan Wang
- Key Laboratory for Experimental Teratology of the Ministry of Education and Department of Microbiology, School of Basic Medical Science, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Mingzhong Zhao
- Key Laboratory for Experimental Teratology of the Ministry of Education and Department of Microbiology, School of Basic Medical Science, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Yantong Zheng
- Key Laboratory for Experimental Teratology of the Ministry of Education and Department of Microbiology, School of Basic Medical Science, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Tian Xia
- Key Laboratory for Experimental Teratology of the Ministry of Education and Department of Microbiology, School of Basic Medical Science, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Han Yu
- Key Laboratory for Experimental Teratology of the Ministry of Education and Department of Microbiology, School of Basic Medical Science, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Ting Jiang
- Jiangsu Luye Diagnostic Technology, Wuxi, China
| | - Yundong Sun
- Key Laboratory for Experimental Teratology of the Ministry of Education and Department of Microbiology, School of Basic Medical Science, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.
| |
Collapse
|
14
|
Gonciarz W, Chyb M, Chmiela M. Diminishing of Helicobacter pylori adhesion to Cavia porcellus gastric epithelial cells by BCG vaccine mycobacteria. Sci Rep 2023; 13:16305. [PMID: 37770504 PMCID: PMC10539345 DOI: 10.1038/s41598-023-43571-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 09/26/2023] [Indexed: 09/30/2023] Open
Abstract
Mycobacterium bovis onco-BCG bacilli used in immunotherapy of bladder cancer are candidates for training of immune cells towards microbial pathogens. Increasing antibiotic resistance of gastric pathogen Helicobacter pylori (Hp) prompts the search for new anti-Hp and immunomodulatory formulations. Colonization of gastric mucosa by Hp through mucin 5 AC (MUC5AC) ligands could potentially be a therapeutic target. The aim of this study was to examine the ability of onco-BCG mycobacteria to reduce Hp adhesion to gastric epithelial cells using Cavia porcellus model. Animals were inoculated per os with 0.85% NaCl, Hp alone, onco-BCG alone or with onco-BCG and Hp. After 7/28 days Mucin5AC and Hp binding to gastric epithelium were assessed in gastric tissue specimens by staining with anti-Mucin5AC and anti-Hp antibodies, respectively, both fluorescently labeled. Primary gastric epithelial cells were treated ex vivo with live Hp or Hp surface antigens (glycine extract or lipopolysaccharide) alone or with onco-BCG. In such cells MUC5AC and Hp binding were determined as above. Mycobacteria reduced the amount of MUC5AC animals infected with Hp and in gastric epithelial cells pulsed in vitro with Hp components. Decrease of MUC5AC driven in cell cultures in vitro and in gastric tissue exposed ex vivo to mycobacteria was related to diminished adhesion of H. pylori bacilli. Vaccine mycobacteria by diminishing the amount of MUC5AC in gastric epithelial cells may reduce Hp adhesion.
Collapse
Affiliation(s)
- Weronika Gonciarz
- Department of Immunology and Infectious Biology, Institute of Microbiology, Biotechnology and Immunology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12-16, 90-237, Lodz, Poland.
| | - Maciej Chyb
- Department of Molecular Microbiology, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
- Bio-Med-Chem Doctoral School of the University of Lodz and Lodz Institutes of the Polish Academy of Sciences, Lodz, Poland
| | - Magdalena Chmiela
- Department of Immunology and Infectious Biology, Institute of Microbiology, Biotechnology and Immunology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12-16, 90-237, Lodz, Poland.
| |
Collapse
|
15
|
Bustos-Fraga S, Salinas-Pinta M, Vicuña-Almeida Y, de Oliveira RB, Baldeón-Rojas L. Prevalence of Helicobacter pylori genotypes: cagA, vacA (m1), vacA (s1), babA2, dupA, iceA1, oipA and their association with gastrointestinal diseases. A cross-sectional study in Quito-Ecuador. BMC Gastroenterol 2023; 23:197. [PMID: 37280541 DOI: 10.1186/s12876-023-02838-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 05/30/2023] [Indexed: 06/08/2023] Open
Abstract
BACKGROUND The most prevalent stomach infection in the world is caused by Helicobacter pylori (H. pylori). Several pathogenicity genes, including cagA, vacA, babA2, dupA, iceA, and oipA, are associated with an increased risk of gastrointestinal disease such as peptic ulcer and stomach cancer. This research aims to determine the prevalence of different H. pylori genotypes and correlate their risk in the development of gastrointestinal diseases in the Ecuadorian population. METHODS A cross-sectional research of 225 patients at the Calderón Hospital in Quito, Ecuador, was conducted. End point PCRs were run to determine the presence of 16S rRNA, cagA, vacA (m1), vacA (s1), babA2, dupA, iceA1, and oipA virulence genes. Chi-square test, odds ratios (OR) and 95% confidence intervals (CI) were utilized for the statistical analysis. RESULTS H. pylori infection was present in 62.7% of people. Peptic ulcers were seen in 22.2% and malignant lesions in 3.6% of patients. Genes oipA (93.6%), vacA (s1) (70.9%), and babA2 (70.2%) were the most prevalent. cagA/vacA (s1m1) and cagA/oipA (s1m1) combinations were found in 31.2% and 22.7% of the cases, respectively. Acute inflammation has a significant correlation with the genes cagA (OR = 4.96 95% CI: 1.1-22.41), babA2 (OR = 2.78 95% CI: 1.06-7.3), and the cagA/oipA combination (OR = 4.78, 95% CI: 1.06-21.62). Follicular hyperplasia was associated with iceA1 (OR = 3.13; 95% CI: 1.2-8.16), babA2 (OR = 2.56; 95% CI: 1.14-5.77), cagA (OR = 2.19; 95% CI: 1.06-4.52), and the cagA/oipA combination (OR = 2.32, 95% CI: 1.12-4.84). The vacA (m1) and vacA (s1m1) genes were associated with gastric intestinal metaplasia (OR = 2.71 95% CI: 1.17-6.29) (OR = 2.33 95% CI: 1.03-5.24). Finally, we showed that cagA/vacA (s1m1) gene combination increased the risk of duodenal ulcer development (OR = 2.89, 95% CI 1.10-7.58). CONCLUSION This study makes a significant contribution by offering genotypic information regarding H. pylori infection. The presence of several H. pylori genes was associated with the onset of gastrointestinal illness in the Ecuadorian population.
Collapse
Affiliation(s)
- Santiago Bustos-Fraga
- Departamento de Gastroenterología Clínica, Hospital General Docente de Calderón, Quito, Ecuador
- Facultad de Ciencias Médicas, Universidad Central del Ecuador, Quito, Ecuador
| | - Marco Salinas-Pinta
- Instituto de Investigación en Biomedicina, Universidad Central del Ecuador, Quito, Ecuador.
| | | | | | - Lucy Baldeón-Rojas
- Facultad de Ciencias Médicas, Universidad Central del Ecuador, Quito, Ecuador
- Instituto de Investigación en Biomedicina, Universidad Central del Ecuador, Quito, Ecuador
| |
Collapse
|
16
|
Ma W, Wang X, Zhang W, Hu X, Yang JL, Liang X. Two-Component System Response Regulator ompR Regulates Mussel Settlement through Exopolysaccharides. Int J Mol Sci 2023; 24:ijms24087474. [PMID: 37108636 PMCID: PMC10139040 DOI: 10.3390/ijms24087474] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/12/2023] [Accepted: 04/14/2023] [Indexed: 04/29/2023] Open
Abstract
The outer membrane protein (OMP) is a kind of biofilm matrix component that widely exists in Gram-negative bacteria. However, the mechanism of OMP involved in the settlement of molluscs is still unclear. In this study, the mussel Mytilus coruscus was selected as a model to explore the function of ompR, a two-component system response regulator, on Pseudoalteromonas marina biofilm-forming capacity and the mussel settlement. The motility of the ΔompR strain was increased, the biofilm-forming capacity was decreased, and the inducing activity of the ΔompR biofilms in plantigrades decreased significantly (p < 0.05). The extracellular α-polysaccharide and β-polysaccharide of the ΔompR strain decreased by 57.27% and 62.63%, respectively. The inactivation of the ompR gene decreased the ompW gene expression and had no impact on envZ expression or c-di-GMP levels. Adding recombinant OmpW protein caused the recovery of biofilm-inducing activities, accompanied by the upregulation of exopolysaccharides. The findings deepen the understanding of the regulatory mechanism of bacterial two-component systems and the settlement of benthic animals.
Collapse
Affiliation(s)
- Wei Ma
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, China
- Shanghai Collaborative Innovation Center for Cultivating Elite Breeds and Green-Culture of Aquaculture Animals, Shanghai 201306, China
| | - Xiaoyu Wang
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, China
- Shanghai Collaborative Innovation Center for Cultivating Elite Breeds and Green-Culture of Aquaculture Animals, Shanghai 201306, China
| | - Wen Zhang
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, China
- Shanghai Collaborative Innovation Center for Cultivating Elite Breeds and Green-Culture of Aquaculture Animals, Shanghai 201306, China
| | - Xiaomeng Hu
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, China
- Shanghai Collaborative Innovation Center for Cultivating Elite Breeds and Green-Culture of Aquaculture Animals, Shanghai 201306, China
| | - Jin-Long Yang
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, China
- Shanghai Collaborative Innovation Center for Cultivating Elite Breeds and Green-Culture of Aquaculture Animals, Shanghai 201306, China
| | - Xiao Liang
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, China
- Shanghai Collaborative Innovation Center for Cultivating Elite Breeds and Green-Culture of Aquaculture Animals, Shanghai 201306, China
| |
Collapse
|
17
|
Elbehiry A, Marzouk E, Aldubaib M, Abalkhail A, Anagreyyah S, Anajirih N, Almuzaini AM, Rawway M, Alfadhel A, Draz A, Abu-Okail A. Helicobacter pylori Infection: Current Status and Future Prospects on Diagnostic, Therapeutic and Control Challenges. Antibiotics (Basel) 2023; 12:191. [PMID: 36830102 PMCID: PMC9952126 DOI: 10.3390/antibiotics12020191] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/26/2022] [Accepted: 01/06/2023] [Indexed: 01/20/2023] Open
Abstract
Helicobacter pylori (H. pylori) infection, which affects approximately half of the world's population, remains a serious public health problem. As H. pylori infection leads to a number of gastric pathologies, including inflammation, gastroduodenal ulcers, and malignancies, early detection and treatment are crucial to preventing the spread of the infection. Multiple extragastric complications, such as iron deficiency anaemia, immune thrombocytopenic purpura, vitamin B12 deficiency, diabetes mellitus, cardiovascular diseases, and certain neurological disorders, have also been linked to H. pylori infection. An awareness of H. pylori and associated health hazards is necessary to minimize or even eradicate the infection. Therefore, there is an urgent need to raise the standards for the currently employed diagnostic, eradication, alternative treatment strategies. In addition, a brief overview of traditional and cutting-edge approaches that have proven effective in identifying and managing H. pylori is needed. Based on the test and laboratory equipment available and patient clinical characteristics, the optimal diagnostic approach requires weighing several factors. The pathophysiology and pathogenic mechanisms of H. pylori should also be studied, focusing more on the infection-causing virulence factors of this bacterium. Accordingly, this review aims to demonstrate the various diagnostic, pathophysiological, therapeutic, and eradication tactics available for H. pylori, emphasizing both their advantages and disadvantages. Invasive methods (such as quick urease testing, biopsy, or culture) or noninvasive methods (such as breath tests, stool investigations, or serological tests) can be used. We also present the most recent worldwide recommendations along with scientific evidence for treating H. pylori. In addition to the current antibiotic regimens, alternative therapies may also be considered. It is imperative to eradicate the infections caused by H. pylori as soon as possible to prevent problems and the development of stomach cancer. In conclusion, significant advances have been made in identifying and treating H. pylori. To improve eradication rates, peptide mass fingerprinting can be used as a diagnostic tool, and vaccines can also eliminate the infection.
Collapse
Affiliation(s)
- Ayman Elbehiry
- Department of Public Health, College of Public Health and Health Informatics, Qassim University, Al Bukayriyah 52741, Saudi Arabia
- Department of Bacteriology, Mycology and Immunology, Faculty of Veterinary Medicine, University of Sadat City, Sadat City 32511, Egypt
| | - Eman Marzouk
- Department of Public Health, College of Public Health and Health Informatics, Qassim University, Al Bukayriyah 52741, Saudi Arabia
| | - Musaad Aldubaib
- Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, Qassim University, Buraydah 52571, Saudi Arabia
| | - Adil Abalkhail
- Department of Public Health, College of Public Health and Health Informatics, Qassim University, Al Bukayriyah 52741, Saudi Arabia
| | - Sulaiman Anagreyyah
- Department of Preventive Medicine, King Fahad Armed Hospital, Jeddah 23311, Saudi Arabia
| | - Nuha Anajirih
- Medical Emergency Services Department, Faculty of Health Sciences, Umm Al-Qura University, Al-Qunfudah P.O. Box 1109, Saudi Arabia
| | - Abdulaziz M. Almuzaini
- Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, Qassim University, Buraydah 52571, Saudi Arabia
| | - Mohammed Rawway
- Biology Department, College of Science, Jouf University, Sakaka 42421, Saudi Arabia
- Botany and Microbiology Department, Faculty of Science, AL-Azhar University, Assiut 71524, Egypt
| | - Abdulmajeed Alfadhel
- Performance Excellence and Quality, Qassim Health Cluster, Buraydah 52367, Saudi Arabia
| | - Abdelmaged Draz
- Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, Qassim University, Buraydah 52571, Saudi Arabia
| | - Akram Abu-Okail
- Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, Qassim University, Buraydah 52571, Saudi Arabia
| |
Collapse
|
18
|
IL-1β, an important cytokine affecting Helicobacter pylori-mediated gastric carcinogenesis. Microb Pathog 2023; 174:105933. [PMID: 36494022 DOI: 10.1016/j.micpath.2022.105933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 12/01/2022] [Accepted: 12/05/2022] [Indexed: 12/12/2022]
Abstract
Infection with Helicobacter pylori (H. pylori) is prevalent around the world and responsible for gastric cancer (GC). The development of GC from gastritis is closely associated with the bacterial virulence and the body's immune response ability. In this process, interleukin-1β (IL-1β) plays an important role. Under H. pylori infection, IL-1β is highly expressed that result in gastric acid inhibition, GC-related gene methylations and disfunctions, angiogenesis. Nod-like receptor pyrin domain containing 3 (NLRP3) inflammasome mediates IL-1β maturation in cells such as macrophages, neutrophils and dendritic cells. But how does IL-1β get released across the cell membrane still unclear. In this review, we focus on the secretion mechanism of IL-1β across the membrane, and to explore the role of IL-1β in the progression of GC.
Collapse
|
19
|
Park HE, Park S, Nizamutdinov D, Seo JH, Park JS, Jun JS, Shin JI, Boonyanugomol W, Park JS, Shin MK, Baik SC, Youn HS, Cho MJ, Kang HL, Lee WK, Jung M. Antigenic Determinant of Helicobacter pylori FlaA for Developing Serological Diagnostic Methods in Children. Pathogens 2022; 11:pathogens11121544. [PMID: 36558878 PMCID: PMC9782684 DOI: 10.3390/pathogens11121544] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/23/2022] [Accepted: 12/11/2022] [Indexed: 12/23/2022] Open
Abstract
The early diagnosis of Helicobacter pylori infection is important for gastric cancer prevention and treatment. Although endoscopic biopsy is widely used for H. pylori diagnosis, an accurate biopsy cannot be performed until a lesion becomes clear, especially in pediatric patients. Therefore, it is necessary to develop convenient and accurate methods for early diagnosis. FlaA, an essential factor for H. pylori survival, shows high antigenicity and can be used as a diagnostic marker. We attempted to identify effective antigens containing epitopes of high diagnostic value in FlaA. Full-sized FlaA was divided into several fragments and cloned, and its antigenicity was investigated using Western blotting. The FlaA fragment of 1345-1395 bp had strong immunogenicity. ELISA was performed with serum samples from children by using the 1345-1395 bp recombinant antigen fragment. IgG reactivity showed 90.0% sensitivity and 90.5% specificity, and IgM reactivity showed 100% sensitivity and specificity. The FlaA fragment of 1345-1395 bp discovered in the present study has antigenicity and is of high value as a candidate antigen for serological diagnosis. The FlaA 1345-1395 bp epitope can be used as a diagnostic marker for H. pylori infection, thereby controlling various gastric diseases such as gastric cancer and peptic ulcers caused by H. pylori.
Collapse
Affiliation(s)
- Hyun-Eui Park
- Department of Microbiology, College of Medicine, Gyeongsang National University, Jinju 52727, Republic of Korea
- Institute of Health Science, Research Institute of Life Science, Gyeongsang National University, Jinju 52727, Republic of Korea
| | - Seorin Park
- Department of Microbiology, College of Medicine, Gyeongsang National University, Jinju 52727, Republic of Korea
- Institute of Health Science, Research Institute of Life Science, Gyeongsang National University, Jinju 52727, Republic of Korea
- BK21 Center for Human Resource Development in the Bio-Health Industry, Department of Convergence Medical Science, Gyeongsang National University, Jinju 52727, Republic of Korea
| | - Damir Nizamutdinov
- Department of Microbiology, College of Medicine, Gyeongsang National University, Jinju 52727, Republic of Korea
| | - Ji-Hyeun Seo
- Institute of Health Science, Research Institute of Life Science, Gyeongsang National University, Jinju 52727, Republic of Korea
- Department of Pediatrics, College of Medicine, Gyeongsang National University, Jinju 52727, Republic of Korea
| | - Ji-Shook Park
- Institute of Health Science, Research Institute of Life Science, Gyeongsang National University, Jinju 52727, Republic of Korea
- Department of Pediatrics, College of Medicine, Gyeongsang National University, Jinju 52727, Republic of Korea
| | - Jin-Su Jun
- Institute of Health Science, Research Institute of Life Science, Gyeongsang National University, Jinju 52727, Republic of Korea
- Department of Pediatrics, College of Medicine, Gyeongsang National University, Jinju 52727, Republic of Korea
| | - Jeong-Ih Shin
- Department of Microbiology, College of Medicine, Gyeongsang National University, Jinju 52727, Republic of Korea
- BK21 Center for Human Resource Development in the Bio-Health Industry, Department of Convergence Medical Science, Gyeongsang National University, Jinju 52727, Republic of Korea
| | - Wongwarut Boonyanugomol
- Department of Sciences and Liberal Arts, Amnatcharoen Campus, Mahidol University, Amnatcharoen 37000, Thailand
| | - Jin-Sik Park
- Department of Microbiology, College of Medicine, Gyeongsang National University, Jinju 52727, Republic of Korea
| | - Min-Kyoung Shin
- Department of Microbiology, College of Medicine, Gyeongsang National University, Jinju 52727, Republic of Korea
- Institute of Health Science, Research Institute of Life Science, Gyeongsang National University, Jinju 52727, Republic of Korea
- BK21 Center for Human Resource Development in the Bio-Health Industry, Department of Convergence Medical Science, Gyeongsang National University, Jinju 52727, Republic of Korea
- Research Institute of Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Seung-Chul Baik
- Department of Microbiology, College of Medicine, Gyeongsang National University, Jinju 52727, Republic of Korea
- Institute of Health Science, Research Institute of Life Science, Gyeongsang National University, Jinju 52727, Republic of Korea
| | - Hee-Shang Youn
- Institute of Health Science, Research Institute of Life Science, Gyeongsang National University, Jinju 52727, Republic of Korea
- Department of Pediatrics, College of Medicine, Gyeongsang National University, Jinju 52727, Republic of Korea
| | - Myung-Je Cho
- Department of Microbiology, College of Medicine, Gyeongsang National University, Jinju 52727, Republic of Korea
- Research Institute of Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Hyung-Lyun Kang
- Department of Microbiology, College of Medicine, Gyeongsang National University, Jinju 52727, Republic of Korea
- Institute of Health Science, Research Institute of Life Science, Gyeongsang National University, Jinju 52727, Republic of Korea
| | - Woo-Kon Lee
- Department of Microbiology, College of Medicine, Gyeongsang National University, Jinju 52727, Republic of Korea
- Research Institute of Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea
- Correspondence: (W.-K.L.); (M.J.); Tel.: +82-55-772-8082 (M.J.); Fax: +82-55-772-8089 (M.J.)
| | - Myunghwan Jung
- Department of Microbiology, College of Medicine, Gyeongsang National University, Jinju 52727, Republic of Korea
- Institute of Health Science, Research Institute of Life Science, Gyeongsang National University, Jinju 52727, Republic of Korea
- BK21 Center for Human Resource Development in the Bio-Health Industry, Department of Convergence Medical Science, Gyeongsang National University, Jinju 52727, Republic of Korea
- Research Institute of Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea
- Correspondence: (W.-K.L.); (M.J.); Tel.: +82-55-772-8082 (M.J.); Fax: +82-55-772-8089 (M.J.)
| |
Collapse
|
20
|
Singh S, Sharma P, Mahant S, Das K, Som A, Das R. Analysis of Functional Status of Genetically Diverse OipA Gene in Indian Patients with Distinct Gastrointestinal Disease. Curr Microbiol 2022; 80:35. [PMID: 36512098 DOI: 10.1007/s00284-022-03137-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 11/29/2022] [Indexed: 12/15/2022]
Abstract
Helicobacter pylori (H. pylori,) a genetically diversified bacteria which colonizes human gastric epithelium, is now established causative agent for gastric cancer worldwide. Outer membrane protein (OMP)-coding genes of H. pylori are responsible for attachment and colonization of bacteria. These genes which code proteins on outer membrane of H. pylori is a group of 33 genes which with other virulent genes are causative of giving rise to disease-causing factors in the host. OipA (Outer inflammatory protein A), a participant of Hop family of OMP, is effective in acting as a biomarker for studying progression of diseases like gastric cancer. The functionality of oipA gene is regulated by phase variation within CT repeat pattern. It is the expression, i.e., "on"/"off" of oipA gene which is related with the development of distinct gastric diseases. 40 amplified DNA sequences were studied to investigate functional status of oipA. Our results reveal 57.2% isolates with functional oipA along with significant association with cagA (P = 0.0011) and vacAs1m1/s1m2 (P = 0.0034, P = 0.0093) genotypes, respectively. In conclusion, our results indicate diversity in CT repeat pattern among Indian H. pylori strains. The prevalence of functional oipA gene was found to be ranging between 50% and 64.2% though it did not show significant correlation between functional oipA and disease outcome.
Collapse
Affiliation(s)
- Sarika Singh
- Centre for Medical Biotechnology, Amity Institute of Biotechnology, Amity University, Noida, UP, India
| | - Prateek Sharma
- Centre for Medical Biotechnology, Amity Institute of Biotechnology, Amity University, Noida, UP, India
| | - Shweta Mahant
- Centre for Medical Biotechnology, Amity Institute of Biotechnology, Amity University, Noida, UP, India
| | - Kunal Das
- Department of Gastroenterology, Yashoda Superspeciality Hospital, Ghaziabad, UP, India
| | - Anup Som
- Centre of Bioinformatics, Institute of Interdisciplinary Studies, University of Allahabad, Prayagraj, 211002, UP, India
| | - Rajashree Das
- Centre for Medical Biotechnology, Amity Institute of Biotechnology, Amity University, Noida, UP, India.
| |
Collapse
|
21
|
Avalos-Gómez C, Ramírez-Rico G, Ruiz-Mazón L, Sicairos NL, Serrano-Luna J, de la Garza M. Lactoferrin: An Effective Weapon in the Battle Against Bacterial Infections. Curr Pharm Des 2022; 28:3243-3260. [PMID: 36284379 DOI: 10.2174/1381612829666221025153216] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 09/27/2022] [Indexed: 01/28/2023]
Abstract
The emergence of multidrug-resistant bacterial strains with respect to commercially available antimicrobial drugs has marked a watershed in treatment therapies to fight pathogens and has stimulated research on alternative remedies. Proteins of the innate immune system of mammals have been highlighted as potentially yielding possible treatment options for infections. Lactoferrin (Lf) is one of these proteins; interestingly, no resistance to it has been found. Lf is a conserved cationic nonheme glycoprotein that is abundant in milk and is also present in low quantities in mucosal secretions. Moreover, Lf is produced and secreted by the secondary granules of neutrophils at infection sites. Lf is a molecule of approximately 80 kDa that displays multiple functions, such as antimicrobial, anti-viral, anti-inflammatory, and anticancer actions. Lf can synergize with antibiotics, increasing its potency against bacteria. Lactoferricins (Lfcins) are peptides resulting from the N-terminal end of Lf by proteolytic cleavage with pepsin. They exhibit several anti-bacterial effects similar to those of the parental glycoprotein. Synthetic analog peptides exhibiting potent antimicrobial properties have been designed. The aim of this review is to update understanding of the structure and effects of Lf and Lfcins as anti-bacterial compounds, focusing on the mechanisms of action in bacteria and the use of Lf in treatment of infections in patients, including those studies where no significant differences were found. Lf could be an excellent option for prevention and treatment of bacterial diseases, mainly in combined therapies with antibiotics or other antimicrobials.
Collapse
Affiliation(s)
- Christian Avalos-Gómez
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del IPN, Ciudad de Mexico, Mexico
| | - Gerardo Ramírez-Rico
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del IPN, Ciudad de Mexico, Mexico.,Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México (UNAM), Km 2.5 Carretera Cuautitlán- Teoloyucan, Cuautitlán Izcalli, 54714, Mexico
| | - Lucero Ruiz-Mazón
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del IPN, Ciudad de Mexico, Mexico
| | - Nidia León Sicairos
- Departamento de Investigación, Hospital Pediátrico de Sinaloa, Unidad de Investigación, Facultad de Medicina, Universidad Autónoma de Sinaloa, Mexico
| | - Jesús Serrano-Luna
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del IPN, Ciudad de Mexico, Mexico
| | - Mireya de la Garza
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del IPN, Ciudad de Mexico, Mexico
| |
Collapse
|
22
|
Teng KW, Hsieh KS, Hung JS, Wang CJ, Liao EC, Chen PC, Lin YH, Wu DC, Lin CH, Wang WC, Chan HL, Huang SK, Kao MC. Helicobacter pylori employs a general protein glycosylation system for the modification of outer membrane adhesins. Gut Microbes 2022; 14:2130650. [PMID: 36206406 PMCID: PMC9553153 DOI: 10.1080/19490976.2022.2130650] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Helicobacter pylori infection is associated with the development of several gastric diseases including gastric cancer. To reach a long-term colonization in the host stomach, H. pylori employs multiple outer membrane adhesins for binding to the gastric mucosa. However, due to the redundancy of adhesins that complement the adhesive function of bacteria, targeting each individual adhesin alone usually achieves nonideal outcomes for preventing bacterial adhesion. Here, we report that key adhesins AlpA/B and BabA/B in H. pylori are modified by glycans and display a two-step molecular weight upshift pattern from the cytoplasm to the inner membrane and from the inner membrane to the outer membrane. Nevertheless, this upshift pattern is missing when the expression of some enzymes related to lipopolysaccharide (LPS) biosynthesis, including the LPS O-antigen assembly and ligation enzymes WecA, Wzk, and WaaL, is disrupted, indicating that the underlying mechanisms and the involved enzymes for the adhesin glycosylation are partially shared with the LPS biosynthesis. Loss of the adhesin glycosylation not only reduces the protease resistance and the stability of the tested adhesins but also changes the adhesin-binding ability. In addition, mutations in the LPS biosynthesis cause a significant reduction in bacterial adhesion in the in vitro cell-line model. The current findings reveal that H. pylori employs a general protein glycosylation system related to LPS biosynthesis for adhesin modification and its biological significance. The enzymes required for adhesin glycosylation rather than the adhesins themselves are potentially better drug targets for preventing or treating H. pylori infection.
Collapse
Affiliation(s)
- Kai-Wen Teng
- Institute of Molecular Medicine, College of Life Science, National Tsing Hua University, Hsinchu, Taiwan
| | - Kai-Siang Hsieh
- Institute of Molecular Medicine, College of Life Science, National Tsing Hua University, Hsinchu, Taiwan
| | - Ji-Shiuan Hung
- Institute of Molecular Medicine, College of Life Science, National Tsing Hua University, Hsinchu, Taiwan
| | - Chun-Jen Wang
- Institute of Molecular Medicine, College of Life Science, National Tsing Hua University, Hsinchu, Taiwan
| | - En-Chi Liao
- Institute of Bioinformatics and Structural Biology, College of Life Science, National Tsing Hua University, Hsinchu, Taiwan,Department of Medical Science, College of Life Science, National Tsing Hua University, Hsinchu, Taiwan
| | - Pei-Chun Chen
- Institute of Molecular Medicine, College of Life Science, National Tsing Hua University, Hsinchu, Taiwan
| | - Ying-Hsuan Lin
- Institute of Molecular Medicine, College of Life Science, National Tsing Hua University, Hsinchu, Taiwan
| | - Deng-Chyang Wu
- Division of Gastroenterology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chun-Hung Lin
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Wen-Ching Wang
- Institute of Molecular and Cellular Biology, College of Life Science, National Tsing Hua University, Hsinchu, Taiwan,Department of Life Science, College of Life Science, National Tsing Hua University, Hsinchu, Taiwan
| | - Hong-Lin Chan
- Institute of Bioinformatics and Structural Biology, College of Life Science, National Tsing Hua University, Hsinchu, Taiwan,Department of Medical Science, College of Life Science, National Tsing Hua University, Hsinchu, Taiwan
| | - Shau-Ku Huang
- National Institute of Environmental Health Sciences, National Health Research Institutes, Zhunan, Taiwan
| | - Mou-Chieh Kao
- Institute of Molecular Medicine, College of Life Science, National Tsing Hua University, Hsinchu, Taiwan,Department of Life Science, College of Life Science, National Tsing Hua University, Hsinchu, Taiwan,CONTACT Mou-Chieh Kao Institute of Molecular Medicine, College of Life Science, National Tsing Hua University, 101, Section 2, Kuang-Fu Road, Hsinchu 300044, Taiwan
| |
Collapse
|
23
|
Salinas Ibáñez ÁG, Origone AL, Liggieri CS, Barberis SE, Vega AE. Asclepain cI, a proteolytic enzyme from Asclepias curassavica L., a south American plant, against Helicobacter pylori. Front Microbiol 2022; 13:961958. [PMID: 36060760 PMCID: PMC9433900 DOI: 10.3389/fmicb.2022.961958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 07/26/2022] [Indexed: 11/13/2022] Open
Abstract
Helicobacter pylori is a Gram negative bacterium most frequently associated with human gastrointestinal infections worldwide. The increasing occurrence of antibiotic-resistant isolates of H. pylori constitutes a challenge. The eradication of the microorganism is currently being considered a “high priority” by the World Health Organization (WHO). In this context, bioactive compounds found in natural products seem to be an effective therapeutic option to develop new antibiotics against the pathogen. In this study, we investigated the effect of asclepain cI, the main purified proteolytic enzyme of the latex of petioles and stems from Asclepia curassavica L. (Asclepiadaceae), a South American native plant, against H. pylori; in order to obtain a natural therapeutic adjuvant and a safe nutraceutical product. Asclepain cI showed antibacterial activity against reference strains and drug-resistant clinical isolates of H. pylori in vitro. A range of minimal inhibitory concentration (MIC) from 1 to 2 μg/ml and minimal bactericidal concentration (MBC) from 2 to 4 μg/ml was obtained, respectively. The action of asclepain cI on the transcription of omp18, ureA, flaA genes showed a significantly decreased expression of the selected pathogenic factors. Furthermore, asclepain cI did not induce toxic effects at the concentrations assayed. Asclepain cI could be considered a highly feasible option to be used as a natural therapeutic adjuvant and a safe nutraceutical product against H. pylori.
Collapse
Affiliation(s)
- Ángel Gabriel Salinas Ibáñez
- Laboratorio de Microbiología e Inmunología, Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, San Luis, Argentina
- Instituto de Física Aplicada (INFAP) - Centro Científico Tecnológico (CCT) San Luis - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), San Luis, Argentina
| | - Anabella L. Origone
- Instituto de Física Aplicada (INFAP) - Centro Científico Tecnológico (CCT) San Luis - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), San Luis, Argentina
- Laboratorio de Control de Calidad y Desarrollo de Bromatología, Universidad Nacional de San Luis, San Luis, Argentina
| | - Constanza S. Liggieri
- Centro de Investigación de Proteínas Vegetales (CIProVe), Universidad Nacional de La Plata, La Plata, Argentina
| | - Sonia E. Barberis
- Instituto de Física Aplicada (INFAP) - Centro Científico Tecnológico (CCT) San Luis - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), San Luis, Argentina
- Laboratorio de Control de Calidad y Desarrollo de Bromatología, Universidad Nacional de San Luis, San Luis, Argentina
- *Correspondence: Sonia E. Barberis
| | - Alba E. Vega
- Laboratorio de Microbiología e Inmunología, Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, San Luis, Argentina
| |
Collapse
|
24
|
Zeng X, Xiong L, Wang W, Zhao Y, Xie Y, Wang Q, Zhang Q, Li L, Jia C, Liao Y, Zhou J. Whole-genome sequencing and comparative analysis of Helicobacter pylori GZ7 strain isolated from China. Folia Microbiol (Praha) 2022; 67:923-934. [PMID: 35829852 DOI: 10.1007/s12223-022-00989-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Accepted: 07/01/2022] [Indexed: 11/04/2022]
Abstract
Helicobacter pylori (H. pylori) is a Gram-negative pathogen as a carcinogen of the class Ι, with unique genetic diversity and wide geographic differences. The high incidence of gastric cancer in East Asia may be related to the bacterial genotype. It is of great significance that the genome of H. pylori in East Asia is widely collected. Therefore, we combined two sequencing technologies (PacBio and Illumina HiSeq 4000) and multiple databases to sequence and annotate the whole genome of H. pylori GZ7 isolated from a gastric cancer patient in Guizhou, China. Furthermore, this sequence was further compared with the genome sequence of 23 H. pylori strains isolated from different regions through collinearity comparison, specific gene analysis, phylogenetic tree construction, etc. The results showed that the genome of H. pylori GZ7 consists of 1,579,995 bp circle chromosomes with a GC content of 39.51%. This chromosome has 1,572 coding sequences, three antibiotic resistance genes, five prophages, and 198 virulence genes. The comparative genome analyses showed that H. pylori GZ7 has 53 specific genes compared to the other 23 strains. Most of these specific genes have not been annotated and characterized until now, whose research may provide insights into the biological activities of this strain. H. pylori GZ7 has the closest genetic relationship with H. pylori F30, and the farthest genetic relationship with H. pylori ELS37, which indicates that H. pylori genomes have geographical differences. This information may provide a molecular basis and guidance for constructing diagnostic methods for H. pylori and researching subsequent experiments.
Collapse
Affiliation(s)
- Xiaoyan Zeng
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education and Key Laboratory of Medical Molecular Biology, Guizhou Medical University, Beijing Road 9, GuizhouGuiyang, 550004, China
| | - Lin Xiong
- The Third Affiliated Hospital of Zunyi Medical University, The First People's Hospital of Zunyi), Fenghuang Road 98, Zunyi, 563099, China
| | - Wenling Wang
- GuiZhou Cancer Hospital, Beijing Road 9, Guiyang, 550004, China
| | - Yan Zhao
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education and Key Laboratory of Medical Molecular Biology, Guizhou Medical University, Beijing Road 9, GuizhouGuiyang, 550004, China
| | - Yuan Xie
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education and Key Laboratory of Medical Molecular Biology, Guizhou Medical University, Beijing Road 9, GuizhouGuiyang, 550004, China
| | - Qinrong Wang
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education and Key Laboratory of Medical Molecular Biology, Guizhou Medical University, Beijing Road 9, GuizhouGuiyang, 550004, China
| | - Qifang Zhang
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education and Key Laboratory of Medical Molecular Biology, Guizhou Medical University, Beijing Road 9, GuizhouGuiyang, 550004, China
| | - Leilei Li
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education and Key Laboratory of Medical Molecular Biology, Guizhou Medical University, Beijing Road 9, GuizhouGuiyang, 550004, China
| | - Cencen Jia
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education and Key Laboratory of Medical Molecular Biology, Guizhou Medical University, Beijing Road 9, GuizhouGuiyang, 550004, China
| | - Yonghui Liao
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education and Key Laboratory of Medical Molecular Biology, Guizhou Medical University, Beijing Road 9, GuizhouGuiyang, 550004, China
| | - Jianjiang Zhou
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education and Key Laboratory of Medical Molecular Biology, Guizhou Medical University, Beijing Road 9, GuizhouGuiyang, 550004, China.
| |
Collapse
|
25
|
Vahidi S, Mirzajani E, Norollahi SE, Aziminezhad M, Samadani AA. Performance of DNA Methylation on the Molecular Pathogenesis of Helicobacter pylori in Gastric Cancer; targeted therapy approach. J Pharmacopuncture 2022; 25:88-100. [PMID: 35837145 PMCID: PMC9240405 DOI: 10.3831/kpi.2022.25.2.88] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 03/29/2022] [Accepted: 04/11/2022] [Indexed: 11/09/2022] Open
Affiliation(s)
- Sogand Vahidi
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Ebrahim Mirzajani
- Department of Biochemistry, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
- Cellular and Molecular Research Center, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Seyedeh Elham Norollahi
- Cancer Research Center and Department of Immunology, Semnan University of Medical Sciences, Semnan, Iran
| | - Mohsen Aziminezhad
- Non-Communicable Disease Research Center, Neyshabur University of Medical Sciences, Neyshabur, Iran
- UMR INSERM U 1122, Gene Environment Interactions in Cardiovascular Pathophysiology (IGE-PCV), University of Lorraine, Nancy, France
| | - Ali Akbar Samadani
- Guilan Road Trauma Research Center, Guilan University of Medical Sciences, Rasht, Iran
| |
Collapse
|
26
|
Potapova MV, Broyaka NA, Skvortsov KY, Konobeeva EV. Helicobacter pylori roles in haematology disease pathogenesis. СИБИРСКИЙ НАУЧНЫЙ МЕДИЦИНСКИЙ ЖУРНАЛ 2022; 42:18-35. [DOI: 10.18699/ssmj20220302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Affiliation(s)
- M. V. Potapova
- Saratov State Medical University n.a. V.I. Razumovsky of Minzdrav of Russia
| | - N. A. Broyaka
- Saratov State Medical University n.a. V.I. Razumovsky of Minzdrav of Russia
| | | | - E. V. Konobeeva
- Saratov State Medical University n.a. V.I. Razumovsky of Minzdrav of Russia
| |
Collapse
|
27
|
Zhu X, Su T, Wang S, Zhou H, Shi W. New Advances in Nano-Drug Delivery Systems: Helicobacter pylori and Gastric Cancer. Front Oncol 2022; 12:834934. [PMID: 35619913 PMCID: PMC9127958 DOI: 10.3389/fonc.2022.834934] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 03/29/2022] [Indexed: 01/07/2023] Open
Abstract
With the development of materials science and biomedicine, the application of nanomaterials in the medical field is further promoted. In the process of the diagnosis and treatment of diseases, a variety of drugs need to be used. It is an ideal state to make these drugs arrive at a specific location at a specific time and release at a specific speed, which can improve the bioavailability of drugs and reduce the adverse effects of drugs on normal tissues. Traditional drug delivery methods such as tablets, capsules, syrups, and ointments have certain limitations. The emergence of a new nano-drug delivery system further improves the accuracy of drug delivery and the efficacy of drugs. It is well known that the development of the cancer of the stomach is the most serious consequence for the infection of Helicobacter pylori. For the patients who are suffering from gastric cancer, the treatments are mainly surgery, chemotherapy, targeted and immune therapy, and other comprehensive treatments. Although great progress has been made, the diagnosis and prognosis of gastric cancer are still poor with patients usually diagnosed with cancer at an advanced stage. Current treatments are of limited benefits for patients, resulting in a poor 5-year survival rate. Nanomaterials may play a critical role in early diagnosis. A nano-drug delivery system can significantly improve the chemotherapy, targeted therapy, and immunotherapy of advanced gastric cancer, reduce the side effects of the original treatment plan and provide patients with better benefits. It is a promising treatment for gastric cancer. This article introduces the application of nanomaterials in the diagnosis and treatment of H. pylori and gastric cancer.
Collapse
Affiliation(s)
- Xiang Zhu
- Department of General Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tingting Su
- Department of General Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shouhua Wang
- Department of General Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Huiqing Zhou
- Department of Gastroenterology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Weibin Shi
- Department of General Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
28
|
Peng C, Sang S, Shen X, Zhang W, Yan J, Chen P, Jiang C, Yuan Y, Zhu W, Yao M. In vitro anti-Helicobacter pylori activity of Syzygium aromaticum and the preliminary mechanism of action. JOURNAL OF ETHNOPHARMACOLOGY 2022; 288:114995. [PMID: 35032584 DOI: 10.1016/j.jep.2022.114995] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 12/28/2021] [Accepted: 01/11/2022] [Indexed: 06/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The dried flower bud of Syzygium aromaticum (L.) Merr. & L.M Perry (S. aromaticum) (Myrtaceae), also known as clove, was used in Traditional Chinese Medicine (TCM) to aid gastrointestinal function and treat stomach disorders including vomiting, flatulence and nausea. And it is a food homology medicine which is a promising candidate for H. pylori treatment. H. pylori is a Gram-negative bacterium that infects approximately 50% of the human population worldwide, which is closely related to multiple gastric diseases, including gastric cancer. However, there are still no sufficient studies on the anti-H. pylori activity of S. aromaticum, especially for the mechanism of action. AIM OF STUDY This study aimed to study the antibacterial activities of S. aromaticum extracts on both antibiotic-sensitive and -resistant H. pylori strains, and to explore the underlying mechanisms of action. MATERIALS AND METHODS The S. aromaticum extracts were obtained by heat reflux extraction and lyophilized to powder form. The phytochemical analyses were performed by High-performance liquid chromatography (HPLC) and UPLC-electrospray ionization mass spectrometry (ESI-MS). In vitro anti-H. pylori activity was evaluated by broth microdilution method. Mechanism of action studies included morphological observation using electron microscopy, determination of expression of virulence genes by reverse transcription quantitative polymerase chain reaction (RT-qPCR), genes expression profile identification by transcriptomic analysis, and exploration of anti-H. pylori infection mechanisms by network pharmacology analysis and western blotting validation. RESULTS The S. aromaticum extracts, aqueous extract (AE) and 75% hydroalcoholic extract (HE), exerted significant antibacterial activities against both antibiotic-sensitive and -resistant H. pylori strains with MICs of 160∼320 μg/ml, without developing drug resistance. Among them, AE was bactericide to all the tested strains with MBCs of less than 4MIC, while HE was merely bacteriostatic to most of the tested strains with MBCs of 2MIC∼16MIC. Besides, they showed no antagonistic effects in combination with clarithromycin, metronidazole, levofloxacin, and amoxicillin. Additionally, these extracts altered the morphology and ultrastructure and down-regulated the virulence genes expression of H. pylori. And transcriptomic analysis showed that they regulated genes expression of multiple H. pylori biological processes, including tricarboxylic acid cycle (TAC) and pyruvate metabolic pathways. Furthermore, these extracts combated the abnormal activation of PI3K-Akt and MAPK signaling pathways caused by H. pylori infection. CONCLUSIONS Overall, the present study firstly analyzed the chemical compositions of S. aromaticum extracts, and then confirmed their activities on both antibiotic-sensitive and -resistant H. pylori strains. In addition, the mechanisms of action of S. aromaticum extracts against H. pylori were found to be destroying the bacterial structure, down-regulating the expression of virulence genes, and interfering TAC and pyruvate metabolic pathways. Finally, S. aromaticum extracts were found to combated the abnormal activation of PI3K-Akt and MAPK signaling pathways to treat H. pylori infection. This study should accelerate further research and application of S. aromaticum against H. pylori infection.
Collapse
Affiliation(s)
- Chang Peng
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, China.
| | - Shuyi Sang
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, China.
| | - Xue Shen
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China.
| | - Weijia Zhang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China.
| | - Jiahui Yan
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China.
| | - Pengting Chen
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China.
| | - Cheng Jiang
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, China.
| | - Yuemei Yuan
- School of Ecology, Sun Yat-sen University, Shenzhen, 518107, China.
| | - Weixing Zhu
- Qingyuan Hospital of Traditional Chinese Medicine, Qingyuan, 511500, China.
| | - Meicun Yao
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, China.
| |
Collapse
|
29
|
Yan J, Peng C, Chen P, Zhang W, Jiang C, Sang S, Zhu W, Yuan Y, Hong Y, Yao M. In-vitro anti-Helicobacter pylori activity and preliminary mechanism of action of Canarium album Raeusch. fruit extracts. JOURNAL OF ETHNOPHARMACOLOGY 2022; 283:114578. [PMID: 34464702 DOI: 10.1016/j.jep.2021.114578] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/17/2021] [Accepted: 08/27/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Canarium album Raeusch. belongs to the Burseraceae family. Its ripe fruits, known as Qing Guo (QG) in Traditional Chinese Medicine (TCM), are used to treat sore throat, cough, and fish or crab poisoning. QG was reported to have antibacterial activity, and it exerted excellent anti-Helicobacter pylori (H. pylori) activity in our screening of abundant TCM. However, few studies have reported its anti-H. pylori activity and mechanism. AIM OF STUDY The commonly used eradication therapies for H. pylori infection are antibiotic-based therapies. With the increasing antibiotic resistance of H. pylori, interest in finding alternative therapies has been aroused. This study investigated the phytochemistry profile, in vitro anti-H. pylori activity and possible anti-bacterial mechanism of QG extracts. MATERIALS AND METHODS QG extracts were obtained by heat reflux extraction, ultrasonic extraction or liquid-liquid extraction with different solvents. The quantitative and qualitative phytochemical analyses were performed by colorimetric determination, high-performance liquid chromatography (HPLC), and UPLC-electrospray ionization mass spectrometry (ESI-MS). In vitro anti- H. pylori activity was assessed by broth micro-dilution method. Mechanism of action studies included morphological observation using electron microscopy, urease inhibition assay and determination of expression of virulence genes by RT-qPCR. RESULTS All QG extracts especially ethyl acetate extract (QGEAE) were rich in phenolic components, with the minimum inhibitory concentrations (MICs) on H.pylori of 39-625 μg/ml and minimum bactericidal concentrations (MBCs) of 78-1250 μg/ml. Both aqueous extract (QGAE) and QGEAE could induce the morphological and structural changes of H. pylori, inhibit urease activity with IC50 of 1093 μg/ml and 332.90 μg/ml, respectively, and down-regulate the virulence genes, such as vacA and cagA. CONCLUSIONS QG may exhibit in vitro anti-H. pylori activity by inhibiting growth, destroying the bacterial structure and down-regulating the expression of virulence factors. Moreover, QG is the homology of food and TCM, which can be considered as a safe and convenient agent against H. pylori infection.
Collapse
Affiliation(s)
- Jiahui Yan
- School of Pharmaceutical Science, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Chang Peng
- School of Pharmaceutical Science (Shenzhen), Sun Yat-Sen University, Shenzhen, 518107, China
| | - Pengting Chen
- School of Pharmaceutical Science, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Weijia Zhang
- School of Pharmaceutical Science, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Cheng Jiang
- School of Pharmaceutical Science (Shenzhen), Sun Yat-Sen University, Shenzhen, 518107, China
| | - Shuyi Sang
- School of Pharmaceutical Science (Shenzhen), Sun Yat-Sen University, Shenzhen, 518107, China
| | - Weixing Zhu
- Qingyuan Hospital of Traditional Chinese Medicine, Qingyuan, 511500, China.
| | - Yuemei Yuan
- School of Ecology, Sun Yat-sen University, Guangzhou, 510006, China
| | - Yanjun Hong
- School of Pharmaceutical Science (Shenzhen), Sun Yat-Sen University, Shenzhen, 518107, China.
| | - Meicun Yao
- School of Pharmaceutical Science (Shenzhen), Sun Yat-Sen University, Shenzhen, 518107, China.
| |
Collapse
|
30
|
Liu M, Chen H, Gao D, Ma CY, Zhang ZY. Identification of Helicobacter pylori Membrane Proteins Using Sequence-Based Features. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:7493834. [PMID: 35069791 PMCID: PMC8769816 DOI: 10.1155/2022/7493834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Accepted: 12/16/2021] [Indexed: 11/28/2022]
Abstract
Helicobacter pylori (H. pylori) is the most common risk factor for gastric cancer worldwide. The membrane proteins of the H. pylori are involved in bacterial adherence and play a vital role in the field of drug discovery. Thus, an accurate and cost-effective computational model is needed to predict the uncharacterized membrane proteins of H. pylori. In this study, a reliable benchmark dataset consisted of 114 membrane and 219 nonmembrane proteins was constructed based on UniProt. A support vector machine- (SVM-) based model was developed for discriminating H. pylori membrane proteins from nonmembrane proteins by using sequence information. Cross-validation showed that our method achieved good performance with an accuracy of 91.29%. It is anticipated that the proposed model will be useful for the annotation of H. pylori membrane proteins and the development of new anti-H. pylori agents.
Collapse
Affiliation(s)
- Mujiexin Liu
- Ineye Hospital of Chengdu University of TCM, Chengdu University of TCM, Chengdu 610084, China
| | - Hui Chen
- School of Healthcare Technology, Chengdu Neusoft University, 611844 Chengdu, China
| | - Dong Gao
- School of Life Science and Technology and Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Cai-Yi Ma
- School of Life Science and Technology and Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Zhao-Yue Zhang
- School of Healthcare Technology, Chengdu Neusoft University, 611844 Chengdu, China
- School of Life Science and Technology and Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 610054, China
| |
Collapse
|
31
|
Salinas Ibáñez ÁG, Vallés D, Adaro M, Barberis S, Vega AE. Antimicrobial Effect of a Proteolytic Enzyme From the Fruits of Solanum granuloso-leprosum (Dunal) Against Helicobacter pylori. Front Nutr 2022; 8:699955. [PMID: 34977105 PMCID: PMC8717831 DOI: 10.3389/fnut.2021.699955] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Accepted: 11/15/2021] [Indexed: 12/19/2022] Open
Abstract
Helicobacter pylori is a gram-negative, helix-shaped, and microaerophilic bacteria that colonizes the human gastric mucosa, causing chronic infections, gastritis, peptic ulcer, lymphomas associated with lymphoid mucosa tissue, and gastric cancer. H. pylori is considered a Type 1 human carcinogen by WHO. The prevalence of the infection is estimated in more than half of the world population. Treatment of H. pylori infection includes antibiotics and proton pump inhibitors, but the increasing antibiotic resistance promotes the research of novel, more effective, and natural antibacterial compounds. The aim of this work was to study the effect of the partially purified proteolytic extract (RAP) of the fruits from Solanum granuloso-leprosum (Dunal), a South American native plant, and a purified fraction named granulosain I, against H. pylori, to obtain natural food additives for the production of anti-H. pylori functional foods. Furthermore, granulosain I and RAP could be used as natural adjuncts to conventional therapies. Granulosain I and RAP antibacterial activity was evaluated as minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) against H. pylori NCTC 11638 (reference strain) and twelve H. pylori wild strains, using a microdilution plating technique (Clinical and Laboratory Standards Institute). All the strains tested were susceptible to granulosain I with MIC from 156.25 to 312.5 μg/mL and MBC from 312.5 to 625 μg/mL, respectively. Besides, all the strains tested were susceptible to the RAP with MIC from 312.5 to 625 μg/mL and MBC from 625 to 1,250 μg/mL, respectively. The effect of granulosain I and RAP on the transcription of H. pylori genes encoding pathogenic factors, omp18, ureA, and flaA, with respect to a housekeeping gene (16S rRNA), was evaluated by RT-PCR technique. The band intensity between pathogenic factors and control gene was correlated under treated or untreated conditions, using the ImageJ program. Granulosain I and RAP significantly decreased the expression of pathogenic factors: omp18, ureA, and flaA. The combined inhibitory effect of granulosain I or RAP and an antibiotic such as, amoxicillin (AML, 10 μg), clarithromycin (CLA, 15 μg), levofloxacin (LEV, 5 μg), and metronidazole (MTZ, 5 μg) was evaluated, using the agar diffusion technique. Granulosain I and RAP showed significant synergistic effect on AML, CLA, and LEV, but no significant effect on MTZ was observed. Besides, granulosain I and RAP did not show toxicological effects at the concentrations studied. Finally, granulosain I and RAP could be used as safe natural food additives and as adjuvants for conventional therapies against H. pylori.
Collapse
Affiliation(s)
- Ángel Gabriel Salinas Ibáñez
- Laboratorio de Microbiología e Inmunología, Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, San Luis, Argentina.,Instituto de Física Aplicada (INFAP)-Centro Científico Tecnológico (CCT) San Luis-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), San Luis, Argentina
| | - Diego Vallés
- Laboratorio de Enzimas Hidrolíticas, Facultad de Ciencias, Universidad de la República (UdelaR), Montevideo, Uruguay
| | - Mauricio Adaro
- Instituto de Física Aplicada (INFAP)-Centro Científico Tecnológico (CCT) San Luis-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), San Luis, Argentina.,Laboratorio de Control de Calidad y Desarrollo de Bromatología, Universidad Nacional de San Luis, San Luis, Argentina
| | - Sonia Barberis
- Instituto de Física Aplicada (INFAP)-Centro Científico Tecnológico (CCT) San Luis-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), San Luis, Argentina.,Laboratorio de Control de Calidad y Desarrollo de Bromatología, Universidad Nacional de San Luis, San Luis, Argentina
| | - Alba E Vega
- Laboratorio de Microbiología e Inmunología, Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, San Luis, Argentina
| |
Collapse
|
32
|
Retnakumar R, Nath AN, Nair GB, Chattopadhyay S. Gastrointestinal microbiome in the context of Helicobacter pylori infection in stomach and gastroduodenal diseases. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2022; 192:53-95. [DOI: 10.1016/bs.pmbts.2022.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
33
|
Wang N, Zhou F, Chen C, Luo H, Guo J, Wang W, Yang J, Li L. Role of Outer Membrane Vesicles From Helicobacter pylori in Atherosclerosis. Front Cell Dev Biol 2021; 9:673993. [PMID: 34790655 PMCID: PMC8591407 DOI: 10.3389/fcell.2021.673993] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 09/02/2021] [Indexed: 01/12/2023] Open
Abstract
Infection is thought to be involved in the pathogenesis of atherosclerosis. Studies have shown the association between helicobacter pylori (H. pylori) and coronary artery disease. It is interesting to find H. pylori DNA and cytotoxin-associated gene A (CagA) protein in atherosclerotic plaque. Outer membrane vesicles (OMVs), secreted by H. pylori, exert effects in the distant organ or tissue. However, whether or not OMVs from H. pylori are involved in the pathogenesis of atherosclerosis remains unknown. Our present study found that treatment with OMVs from CagA-positive H. pylori accelerated atherosclerosis plaque formation in ApoE–/– mice. H. pylori-derived OMVs inhibited proliferation and promoted apoptosis of human umbilical vein endothelial cells (HUVECs), which was also reflected in in vivo studies. These effects were normalized to some degree after treatment with lipopolysaccharide (LPS)-depleted CagA-positive OMVs or CagA-negative OMVs. Treatment with H. pylori-derived OMVs increased reactive oxygen species (ROS) levels and enhanced the activation of nuclear factor-κB (NF-κB) in HUVECs, which were reversed to some degree in the presence of a superoxide dismutase mimetic TEMPOL and a NF-κB inhibitor BAY11-7082. Expressions of interleukin-6 (IL-6) and tumor necrosis factor alpha (TNF-α), two inflammatory factors, were augmented after treatment with OMVs from H. pylori. These suggest that H. pylori-derived OMVs accelerate atherosclerosis plaque formation via endothelium injury. CagA and LPS from H. pylori-OMVs, at least in part, participate in these processes, which may be involved with the activation of ROS/NF-κB signaling pathway. These may provide a novel strategy to reduce the incidence and development of atherosclerosis.
Collapse
Affiliation(s)
- Na Wang
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, China.,Chongqing Key Laboratory of Hypertension Research, Chongqing Institute of Cardiology, Chongqing, China
| | - Faying Zhou
- Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital, The Third Military Medical University, Chongqing, China
| | - Caiyu Chen
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, China.,Chongqing Key Laboratory of Hypertension Research, Chongqing Institute of Cardiology, Chongqing, China
| | - Hao Luo
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, China.,Chongqing Key Laboratory of Hypertension Research, Chongqing Institute of Cardiology, Chongqing, China
| | - Jingwen Guo
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, China.,Chongqing Key Laboratory of Hypertension Research, Chongqing Institute of Cardiology, Chongqing, China
| | - Wei Wang
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, China.,Chongqing Key Laboratory of Hypertension Research, Chongqing Institute of Cardiology, Chongqing, China
| | - Jian Yang
- Department of Clinical Nutrition, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Liangpeng Li
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, China.,Chongqing Key Laboratory of Hypertension Research, Chongqing Institute of Cardiology, Chongqing, China
| |
Collapse
|
34
|
Hedayati MA, Ahmadi S, Servatyari K, Sheikhesmaeili F. PREX2 gene's expression in gastric antral epithelial cells of patients with H. pylori infection. ARQUIVOS DE GASTROENTEROLOGIA 2021; 58:353-358. [PMID: 34705970 DOI: 10.1590/s0004-2803.202100000-59] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 03/03/2021] [Indexed: 11/21/2022]
Abstract
BACKGROUND The Prex2 protein is a member of the Rac family proteins that belongs to small G proteins with a critical role in cell migration, cell proliferation, and apoptosis through its effects on PI3K cell signaling pathway and phosphatase activity of PTEN protein. The effect of PREX2 gene expression has been shown in some cancer cells. A survey of PREX2 gene expression in gastric antral epithelial cells of gastric cancer patients with Helicobacter pylori various genotypes infection can conduct to better understanding H. pylori infection's carcinogenesis. METHODS In a case-control study, PREX2 gene expression was evaluated in gastric antral biopsy samples on four groups of patients referred to Sanandaj hospitals, including gastritis with (n=23) and without (n=27) H. pylori infection and gastric cancer with (n=21) and without (n=32) H. pylori infection. Each gastric biopsy sample's total RNA was extracted and cDNA synthesized by using Kits (Takara Company). The PREX2 gene expression was measured using the relative quantitative real-time RT-PCR method and ΔΔCt formula. RESULTS The PREX2 gene expression increased in gastric antral biopsy samples of gastritis and gastric cancer patients with H. pylori infection (case groups) than patients without H. pylori infection (control groups) 2.38 and 2.27 times, respectively. The patients with H. pylori vacA s1m1 and sabB genotypes infection showed a significant increase of PREX2 gene expression in gastric cancer antral epithelial cells. CONCLUSION H. pylori vacA s1m1 and sabB genotypes have the positive correlations with PREX2 gene expression in gastric antral epithelial cells of gastritis and gastric cancer patients.
Collapse
Affiliation(s)
- Manouchehr Ahmadi Hedayati
- Liver and Digestive Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran.,Department of Microbiology, Faculty of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Sanaz Ahmadi
- Department of Microbiology, Faculty of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran.,Student Research Committee, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Karo Servatyari
- Student Research Committee, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Farshad Sheikhesmaeili
- Liver and Digestive Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| |
Collapse
|
35
|
Mucolytic bacteria: prevalence in various pathological diseases. World J Microbiol Biotechnol 2021; 37:176. [PMID: 34519941 DOI: 10.1007/s11274-021-03145-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 09/07/2021] [Indexed: 02/07/2023]
Abstract
All mucins are highly glycosylated and a key constituent of the mucus layer that is vigilant against pathogens in many organ systems of animals and humans. The viscous layer is organized in bilayers, i.e., an outer layer that is loosely arranged, variable in thickness, home to the commensal microbiota that grows in the complex environment, and an innermost layer that is stratified, non-aspirated, firmly adherent to the epithelial cells and devoid of any microorganisms. The O-glycosylation moiety represents the site of adhesion for pathogens and due to the increase of motility, mucolytic activity, and upregulation of virulence factors, some microorganisms can circumvent the component of the mucus layer and cause disruption in organ homeostasis. A dysbiotic microbiome, defective mucus barrier, and altered immune response often result in various diseases. In this review, paramount emphasis is given to the role played by the bacterial species directly or indirectly involved in mucin degradation, alteration in mucus secretion or its composition or mucin gene expression, which instigates many diseases in the digestive, respiratory, and other organ systems. A systematic view can help better understand the etiology of some complex disorders such as cystic fibrosis, ulcerative colitis and expand our knowledge about mucin degraders to develop new therapeutic approaches to correct ill effects caused by these mucin-dwelling pathogens.
Collapse
|
36
|
Baltierra-Uribe SL, Montañez-Barragán A, Romero-Ramírez H, Klimov-Kravtchenko K, Martínez-Pedro KI, Sánchez-Salguero E, Camorlinga-Ponce M, Torres J, Santos-Argumedo L. Colostrum IgA1 antibodies recognize antigens from Helicobacter pylori and prevent cytoskeletal changes in human epithelial cells. Eur J Immunol 2021; 51:2641-2650. [PMID: 34398472 DOI: 10.1002/eji.202049117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 06/11/2021] [Accepted: 08/13/2021] [Indexed: 11/06/2022]
Abstract
Helicobacter pylori is a gram-negative bacterium found on the luminal surface of the gastric mucosa in at least 50% of the world's human population. The protective effect of breastfeeding against H. pylori infection has been extensively reported; however, the mechanisms behind this protection remain poorly understood. Human IgA from colostrum has reactivity against H. pylori antigens. Despite that IgA1 and IgA2 display structural and functional differences, their reactivity against H. pylori had not been previously determined. We attested titers and reactivity of human colostrum-IgA subclasses by ELISA, immunoblot, and flow cytometry. Colostrum samples from healthy mothers had higher titers of IgA; and IgA1 mostly recognized H. pylori antigens. Moreover, we found a correlation between IgA1 reactivity and their neutralizing effect determined by inhibition of cytoskeletal changes in AGS cells infected with H. pylori. In conclusion, colostrum-IgA reduces H. pylori infection of epithelial gastric cells, suggesting an important role in preventing the bacteria establishment during the first months of life. As a whole, these results suggest that IgA1 from human colostrum provides protection that may help in the development of the mucosal immune system of newborn children. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Shantal Lizbeth Baltierra-Uribe
- Department of Molecular Biomedicine, Center for Research and Advanced Studies of the National Polytechnic Institute (CINVESTAV-IPN), Mexico City, Mexico
| | - Alejandra Montañez-Barragán
- Department of Molecular Biomedicine, Center for Research and Advanced Studies of the National Polytechnic Institute (CINVESTAV-IPN), Mexico City, Mexico
| | - Héctor Romero-Ramírez
- Department of Molecular Biomedicine, Center for Research and Advanced Studies of the National Polytechnic Institute (CINVESTAV-IPN), Mexico City, Mexico
| | - Ksenia Klimov-Kravtchenko
- Department of Molecular Biomedicine, Center for Research and Advanced Studies of the National Polytechnic Institute (CINVESTAV-IPN), Mexico City, Mexico.,University Center of Biological and Agricultural Sciences (CUCBA), University of Guadalajara, Zapopan, Jalisco, Mexico
| | - Karla Ivette Martínez-Pedro
- Department of Molecular Biomedicine, Center for Research and Advanced Studies of the National Polytechnic Institute (CINVESTAV-IPN), Mexico City, Mexico.,"La Cañada" University (UNCA), Oaxaca, Mexico
| | - Erick Sánchez-Salguero
- Department of Molecular Biomedicine, Center for Research and Advanced Studies of the National Polytechnic Institute (CINVESTAV-IPN), Mexico City, Mexico
| | - Margarita Camorlinga-Ponce
- Infectious and Parasitic Disease Medical Research Unit (UIMEIP) at Pediatric Hospital in National Medical Center (CMN- SIGLO XXI) Mexican Institute of Social Security (IMSS), Mexico City, Mexico
| | - Javier Torres
- Infectious and Parasitic Disease Medical Research Unit (UIMEIP) at Pediatric Hospital in National Medical Center (CMN- SIGLO XXI) Mexican Institute of Social Security (IMSS), Mexico City, Mexico
| | - Leopoldo Santos-Argumedo
- Department of Molecular Biomedicine, Center for Research and Advanced Studies of the National Polytechnic Institute (CINVESTAV-IPN), Mexico City, Mexico
| |
Collapse
|
37
|
Role of the Outer Inflammatory Protein A/Cystine-Glutamate Transporter Pathway in Gastric Mucosal Injury Induced by Helicobacter pylori. Clin Transl Gastroenterol 2021; 11:e00178. [PMID: 32677810 PMCID: PMC7263648 DOI: 10.14309/ctg.0000000000000178] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Helicobacter pylori infection is a major cause of gastrointestinal diseases. However, the pathogenesis of gastric mucosal injury by H. pylori remains unclear. Exogenous glutamate supplementation protects against gastric mucosal injury caused by H. pylori. Previously, we showed that aspirin-induced gastric injury is associated with reduction in glutamate release by inhibition of cystine–glutamate transporter (xCT) activity. We hypothesized that the xCT pathway is involved in H. pylori-induced gastric mucosal injury. In this study, we tested the activity of xCT and evaluated the regulatory effect of outer inflammatory protein (Oip) A on xCT in H. pylori-induced gastric mucosal injury.
Collapse
|
38
|
Lee DH, Ha JH, Shin JI, Kim KM, Choi JG, Park S, Park JS, Seo JH, Park JS, Shin MK, Baik SC, Lee WK, Youn HS, Cho MJ, Kang HL, Jung M. Increased Risk of Severe Gastric Symptoms by Virulence Factors vacAs1c, alpA, babA2, and hopZ in Helicobacter pylori Infection. J Microbiol Biotechnol 2021; 31:368-379. [PMID: 33622995 PMCID: PMC9705970 DOI: 10.4014/jmb.2101.01023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 02/03/2021] [Accepted: 02/06/2021] [Indexed: 12/15/2022]
Abstract
Two virulence factors of Helicobacter pylori, cagA and vacA, have been known to play a role in the development of severe gastric symptoms. However, they are not always associated with peptic ulcer or gastric cancer. To predict the disease outcome more accurately, it is necessary to understand the risk of severe symptoms linked to other virulence factors. Several other virulence factors of H. pylori have also been reported to be associated with disease outcomes, although there are many controversial descriptions. H. pylori isolates from Koreans may be useful in evaluating the relevance of other virulence factors to clinical symptoms of gastric diseases because the majority of Koreans are infected by toxigenic strains of H. pylori bearing cagA and vacA. In this study, a total of 116 H. pylori strains from Korean patients with chronic gastritis, peptic ulcers, and gastric cancers were genotyped. The presence of virulence factors vacAs1c, alpA, babA2, hopZ, and the extremely strong vacuolating toxin was found to contribute significantly to the development of severe gastric symptoms. The genotype combination vacAs1c/alpA/babA2 was the most predictable determinant for the development of severe symptoms, and the presence of babA2 was found to be the most critical factor. This study provides important information on the virulence factors that contribute to the development of severe gastric symptoms and will assist in predicting clinical disease outcomes due to H. pylori infection.
Collapse
Affiliation(s)
- Dong-Hae Lee
- Department of Microbiology, College of Medicine, Gyeongsang National University, Jinju 52727, Republic of Korea,BK21 Center for Human Resource Development in the Bio-Health Industry, Department of Convergence Medical Science, Gyeongsang National University, Jinju 52727, Republic of Korea
| | - Jong-Hun Ha
- Department of Microbiology, College of Medicine, Gyeongsang National University, Jinju 52727, Republic of Korea,BK21 Center for Human Resource Development in the Bio-Health Industry, Department of Convergence Medical Science, Gyeongsang National University, Jinju 52727, Republic of Korea
| | - Jeong-Ih Shin
- Department of Microbiology, College of Medicine, Gyeongsang National University, Jinju 52727, Republic of Korea,BK21 Center for Human Resource Development in the Bio-Health Industry, Department of Convergence Medical Science, Gyeongsang National University, Jinju 52727, Republic of Korea
| | - Kyu-Min Kim
- Department of Microbiology, College of Medicine, Gyeongsang National University, Jinju 52727, Republic of Korea,BK21 Center for Human Resource Development in the Bio-Health Industry, Department of Convergence Medical Science, Gyeongsang National University, Jinju 52727, Republic of Korea
| | - Jeong-gyu Choi
- Department of Microbiology, College of Medicine, Gyeongsang National University, Jinju 52727, Republic of Korea,BK21 Center for Human Resource Development in the Bio-Health Industry, Department of Convergence Medical Science, Gyeongsang National University, Jinju 52727, Republic of Korea
| | - Seorin Park
- Department of Microbiology, College of Medicine, Gyeongsang National University, Jinju 52727, Republic of Korea,BK21 Center for Human Resource Development in the Bio-Health Industry, Department of Convergence Medical Science, Gyeongsang National University, Jinju 52727, Republic of Korea
| | - Jin-Sik Park
- Department of Microbiology, College of Medicine, Gyeongsang National University, Jinju 52727, Republic of Korea
| | - Ji-Hyeun Seo
- Department of Pediatrics, College of Medicine, Gyeongsang National University, Jinju 52727, Republic of Korea,Institute of Health Science, Gyeongsang National University, Jinju 52727, Republic of Korea
| | - Ji-Shook Park
- Department of Pediatrics, College of Medicine, Gyeongsang National University, Jinju 52727, Republic of Korea,Institute of Health Science, Gyeongsang National University, Jinju 52727, Republic of Korea
| | - Min-Kyoung Shin
- Department of Microbiology, College of Medicine, Gyeongsang National University, Jinju 52727, Republic of Korea,BK21 Center for Human Resource Development in the Bio-Health Industry, Department of Convergence Medical Science, Gyeongsang National University, Jinju 52727, Republic of Korea,Institute of Health Science, Gyeongsang National University, Jinju 52727, Republic of Korea,Research Institute of Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Seung-Chul Baik
- Department of Microbiology, College of Medicine, Gyeongsang National University, Jinju 52727, Republic of Korea,Institute of Health Science, Gyeongsang National University, Jinju 52727, Republic of Korea
| | - Woo-Kon Lee
- Department of Microbiology, College of Medicine, Gyeongsang National University, Jinju 52727, Republic of Korea,Institute of Health Science, Gyeongsang National University, Jinju 52727, Republic of Korea,Research Institute of Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Hee-Shang Youn
- Department of Pediatrics, College of Medicine, Gyeongsang National University, Jinju 52727, Republic of Korea,Institute of Health Science, Gyeongsang National University, Jinju 52727, Republic of Korea
| | - Myung-Je Cho
- Department of Microbiology, College of Medicine, Gyeongsang National University, Jinju 52727, Republic of Korea,Research Institute of Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Hyung-Lyun Kang
- Department of Microbiology, College of Medicine, Gyeongsang National University, Jinju 52727, Republic of Korea,Institute of Health Science, Gyeongsang National University, Jinju 52727, Republic of Korea,Research Institute of Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea,H.L. Kang Phone: +82-55-772-8085 Fax: +82-55-772-8089 E-mail:
| | - Myunghwan Jung
- Department of Microbiology, College of Medicine, Gyeongsang National University, Jinju 52727, Republic of Korea,BK21 Center for Human Resource Development in the Bio-Health Industry, Department of Convergence Medical Science, Gyeongsang National University, Jinju 52727, Republic of Korea,Institute of Health Science, Gyeongsang National University, Jinju 52727, Republic of Korea,Research Institute of Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea,Corresponding authors M. Jung Phone: +82-55-772-8082 Fax: +82-55-772-8089 E-mail:
| |
Collapse
|
39
|
Xu X, Chen J, Huang X, Feng S, Zhang X, She F, Wen Y. The Role of a Dipeptide Transporter in the Virulence of Human Pathogen, Helicobacter pylori. Front Microbiol 2021; 12:633166. [PMID: 33732225 PMCID: PMC7959749 DOI: 10.3389/fmicb.2021.633166] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 02/05/2021] [Indexed: 12/16/2022] Open
Abstract
Helicobacter pylori harbors a dipeptide (Dpp) transporter consisting of a substrate-binding protein (DppA), two permeases (DppB and C), and two ATPases (DppD and F). The Dpp transporter is responsible for the transportation of dipeptides and short peptides. We found that its expression is important for the growth of H. pylori. To understand the role of the Dpp transporter in the pathogenesis of H. pylori, the expression of virulence factors and H. pylori-induced IL-8 production were investigated in H. pylori wild-type and isogenic H. pylori Dpp transporter mutants. We found that expression of CagA was downregulated, while expression of type 4 secretion system (T4SS) components was upregulated in Dpp transporter mutants. The DppA mutant strain expressed higher levels of outer membrane proteins (OMPs), including BabA, HopZ, OipA, and SabA, and showed a higher adhesion level to gastric epithelial AGS cells compared with the H. pylori 26695 wild-type strain. After infection of AGS cells, H. pylori ΔdppA induced a higher level of NF-κB activation and IL-8 production compared with wild-type. These results suggested that in addition to supporting the growth of H. pylori, the Dpp transporter causes bacteria to alter the expression of virulence factors and reduces H. pylori-induced NF-κB activation and IL-8 production in gastric epithelial cells.
Collapse
Affiliation(s)
- Xiaohong Xu
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, Fuzhou, China.,Fujian Key Laboratory of Tumor Microbiology, Department of Medical Microbiology, Fujian Medical University, Fuzhou, China.,Fujian Medical University Union Hospital, Fuzhou, China
| | - Junwei Chen
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, Fuzhou, China.,Fujian Key Laboratory of Tumor Microbiology, Department of Medical Microbiology, Fujian Medical University, Fuzhou, China
| | - Xiaoxing Huang
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, Fuzhou, China.,Fujian Key Laboratory of Tumor Microbiology, Department of Medical Microbiology, Fujian Medical University, Fuzhou, China
| | - Shunhang Feng
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, Fuzhou, China.,Fujian Key Laboratory of Tumor Microbiology, Department of Medical Microbiology, Fujian Medical University, Fuzhou, China
| | - Xiaoyan Zhang
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, Fuzhou, China.,Fujian Key Laboratory of Tumor Microbiology, Department of Medical Microbiology, Fujian Medical University, Fuzhou, China
| | - Feifei She
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, Fuzhou, China.,Fujian Key Laboratory of Tumor Microbiology, Department of Medical Microbiology, Fujian Medical University, Fuzhou, China
| | - Yancheng Wen
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, Fuzhou, China.,Fujian Key Laboratory of Tumor Microbiology, Department of Medical Microbiology, Fujian Medical University, Fuzhou, China
| |
Collapse
|
40
|
Reshetnyak VI, Burmistrov AI, Maev IV. Helicobacter pylori: Commensal, symbiont or pathogen? World J Gastroenterol 2021; 27:545-560. [PMID: 33642828 PMCID: PMC7901052 DOI: 10.3748/wjg.v27.i7.545] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 12/28/2020] [Accepted: 01/21/2021] [Indexed: 02/06/2023] Open
Abstract
This review considers the data on Helicobacter pylori (H. pylori), which have been accumulated over 40 years since its description as an etiological factor in gastrointestinal diseases. The majority of modern publications are devoted to the study of the pathogenic properties of the microorganism in the development of chronic gastritis, peptic ulcer disease, and gastric cancer, as well as methods for its eradication. However, in recent years, there have been more and more studies which have suggested that H. pylori has a beneficial, or potentially positive, effect on the human body. The authors have attempted to objectively analyze the information accumulated in the literature on H. pylori. Some studies consider it as one of the recently identified human bacterial pathogens, and special attention is paid to the evidence suggesting that it is probably part of the composition of the human microbiome as a commensal (commensal from French to English is a table companion) or even a symbiont. The presented data discussing the presence or absence of the effect of H. pylori on human health suggest that there is an apparent ambiguity of the problem. The re-assessment of the data available on H. pylori infection is important in order to answer the question of whether it is necessary to create a program of mass H. pylori eradication or to apply a more personalized approach to treating patients with H. pylori-associated gastrointestinal diseases and to perform eradication therapy.
Collapse
Affiliation(s)
- Vasiliy Ivanovich Reshetnyak
- Department of Propaedeutic of Internal Diseases and Gastroenterology, A.I. Yevdokimov Moscow State University of Medicine and Dentistry, Moscow 127473, Russia
| | - Alexandr Igorevich Burmistrov
- Department of Propaedeutic of Internal Diseases and Gastroenterology, A.I. Yevdokimov Moscow State University of Medicine and Dentistry, Moscow 127473, Russia
| | - Igor Veniaminovich Maev
- Department of Propaedeutic of Internal Diseases and Gastroenterology, A.I. Yevdokimov Moscow State University of Medicine and Dentistry, Moscow 127473, Russia
| |
Collapse
|
41
|
Chang RH, Feng DD, Peng LH, Zhu YT, Liang X, Yang JL. Complete genome sequence of Shewanella marisflavi ECSMB14101, a red pigment synthesizing bacterium isolated from the East China Sea. Mar Genomics 2021; 58:100846. [PMID: 34217483 DOI: 10.1016/j.margen.2021.100846] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 01/24/2021] [Accepted: 01/25/2021] [Indexed: 11/30/2022]
Abstract
Bacteria of the genus Shewanella have been studied for their versatile electron-accepting abilities, particularly for extracellular electron transfer via minerals. Shewanella marisflavi ECSMB14101 was isolated from naturally formed biofilms in the East China Sea. The genome of S. marisflavi ECSMB14101 encodes 3891 genes with a total size of 4,343,492 bp in one chromosome. Its GC content is 49.89%. S. marisflavi ECSMB14101 is able to synthesize a red pigment, which may be achieved through Cytochrome c3 and electron transfer to reduce Fe(III) oxide. The genomic data presented here could provide fundamental insights to better understand the physiological characteristics of S. marisflavi, the ecological significance of red pigment synthesis, and its inductive effects on the settlement of marine invertebrate larvae.
Collapse
Affiliation(s)
- Rui-Heng Chang
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China
| | - Dan-Dan Feng
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China
| | - Li-Hua Peng
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China
| | - You-Ting Zhu
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China
| | - Xiao Liang
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China.
| | - Jin-Long Yang
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China; Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, China
| |
Collapse
|
42
|
FitzGerald R, Sinha C, Yadegar A, Smith SM. Helicobacter pylori Virulence Factor Genotyping. Methods Mol Biol 2021; 2283:93-106. [PMID: 33765313 DOI: 10.1007/978-1-0716-1302-3_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Helicobacter pylori (H. pylori) infection causes chronic gastritis, peptic ulcers, gastric adenocarcinoma, and mucosa-associated lymphoid tissue (MALT) lymphoma. Bacterial, host, and environmental factors influence the progression of disease from superficial gastritis to cancer. H. pylori is genetically diverse, and expression of its specific virulence factors has been linked to increased risk of more severe pathologies. Described in this chapter is a protocol for detecting important H. pylori virulence factors by firstly extracting DNA from culture material or stomach tissue biopsies, followed by PCR amplification and agarose gel electrophoresis.
Collapse
Affiliation(s)
| | - Chavi Sinha
- School of Medicine, Trinity College Dublin, Dublin, Ireland
| | - Abbas Yadegar
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sinéad M Smith
- Department of Clinical Medicine, School of Medicine, Trinity College Dublin, Dublin 2, Ireland.
| |
Collapse
|
43
|
Thanaphongdecha P, Karinshak SE, Ittiprasert W, Mann VH, Chamgramol Y, Pairojkul C, Fox JG, Suttiprapa S, Sripa B, Brindley PJ. Infection with Helicobacter pylori Induces Epithelial to Mesenchymal Transition in Human Cholangiocytes. Pathogens 2020; 9:E971. [PMID: 33233485 PMCID: PMC7700263 DOI: 10.3390/pathogens9110971] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 11/14/2020] [Accepted: 11/18/2020] [Indexed: 02/08/2023] Open
Abstract
Recent reports suggest that the East Asian liver fluke infection, caused by Opisthorchis viverrini, which is implicated in opisthorchiasis-associated cholangiocarcinoma, serves as a reservoir of Helicobacter pylori. The opisthorchiasis-affected cholangiocytes that line the intrahepatic biliary tract are considered to be the cell of origin of this malignancy. Here, we investigated interactions in vitro among human cholangiocytes, Helicobacter pylori strain NCTC 11637, and the congeneric bacillus, Helicobacter bilis. Exposure to increasing numbers of H. pylori at 0, 1, 10, 100 bacilli per cholangiocyte of the H69 cell line induced phenotypic changes including the profusion of thread-like filopodia and a loss of cell-cell contact, in a dose-dependent fashion. In parallel, following exposure to H. pylori, changes were evident in levels of mRNA expression of epithelial to mesenchymal transition (EMT)-encoding factors including snail, slug, vimentin, matrix metalloprotease, zinc finger E-box-binding homeobox, and the cancer stem cell marker CD44. Analysis to quantify cellular proliferation, migration, and invasion in real-time by both H69 cholangiocytes and CC-LP-1 line of cholangiocarcinoma cells using the xCELLigence approach and Matrigel matrix revealed that exposure to 10 H. pylori bacilli per cell stimulated migration and invasion by the cholangiocytes. In addition, 10 bacilli of H. pylori stimulated contact-independent colony establishment in soft agar. These findings support the hypothesis that infection by H. pylori contributes to the malignant transformation of the biliary epithelium.
Collapse
Affiliation(s)
- Prissadee Thanaphongdecha
- Research Center for Neglected Tropical Diseases of Poverty, Department of Microbiology, Immunology and Tropical Medicine, School of Medicine & Health Sciences, The George Washington University, Washington, DC 20037, USA; (P.T.); (S.E.K.); (W.I.); (V.H.M.)
- Tropical Disease Research Laboratory, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand;
| | - Shannon E. Karinshak
- Research Center for Neglected Tropical Diseases of Poverty, Department of Microbiology, Immunology and Tropical Medicine, School of Medicine & Health Sciences, The George Washington University, Washington, DC 20037, USA; (P.T.); (S.E.K.); (W.I.); (V.H.M.)
| | - Wannaporn Ittiprasert
- Research Center for Neglected Tropical Diseases of Poverty, Department of Microbiology, Immunology and Tropical Medicine, School of Medicine & Health Sciences, The George Washington University, Washington, DC 20037, USA; (P.T.); (S.E.K.); (W.I.); (V.H.M.)
| | - Victoria H. Mann
- Research Center for Neglected Tropical Diseases of Poverty, Department of Microbiology, Immunology and Tropical Medicine, School of Medicine & Health Sciences, The George Washington University, Washington, DC 20037, USA; (P.T.); (S.E.K.); (W.I.); (V.H.M.)
| | - Yaovalux Chamgramol
- Department of Pathology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; (Y.C.); (C.P.)
| | - Chawalit Pairojkul
- Department of Pathology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; (Y.C.); (C.P.)
| | - James G. Fox
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, MA 02139, USA;
| | - Sutas Suttiprapa
- Tropical Disease Research Laboratory, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand;
| | - Banchob Sripa
- Tropical Disease Research Laboratory, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand;
- Department of Pathology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; (Y.C.); (C.P.)
| | - Paul J. Brindley
- Research Center for Neglected Tropical Diseases of Poverty, Department of Microbiology, Immunology and Tropical Medicine, School of Medicine & Health Sciences, The George Washington University, Washington, DC 20037, USA; (P.T.); (S.E.K.); (W.I.); (V.H.M.)
| |
Collapse
|
44
|
Watanabe Y, Oikawa R, Kodaka Y, Sato Y, Ono S, Kenmochi T, Suzuki H, Futagami S, Kato M, Yamamoto H, Itoh F. Cancer-related genetic variants of Helicobacter pylori strains determined using gastric wash-based whole-genome analysis with single-molecule real-time technology. Int J Cancer 2020; 148:178-192. [PMID: 32803883 DOI: 10.1002/ijc.33257] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 06/22/2020] [Accepted: 08/04/2020] [Indexed: 12/17/2022]
Abstract
Helicobacter pylori (H. pylori) are a primary factor in the pathogenesis of gastric cancer (GC); GC ranks third among cancer-related mortality. A clear understanding of the H. pylori genome factors underlying GC is necessary to develop more effective methods to prevent GC. A single-molecule real-time DNA sequencing-based H. pylori genome-wide association study analysis was performed using the H. pylori genome present in five early-stage GC (EGC) and five non-GC clinical DNA samples recovered from gastric washes. A total of 275 genes with 702 nucleotide variants (NVs) were found to be common to three or more patients with EGC but no non-GC patients (single-NV: 654/702, 93.2%; multi-NV: 40/702, 5.7%; deletion: 3/702, 0.4%; insertion: 3/702, 0.7%). Gene ontology analysis of H. pylori revealed that genes involved in the mitochondrial electron transport system, glycolytic processes and the TCA cycle were highly enriched. Cancer-related NVs were most frequently found in a member of the Helicobacter outer membrane protein family, hopL. In particular, one of the NVs in hopL was a novel six-nucleotide insertion (1159095̂1159096, TACTTC); this mutant was detected more frequently in a validation set of 50 additional EGC samples (22/50, 44.0%) than in 18 non-GC samples (3/18, 16.7%, P = .04). These results suggest that the hopL variant is associated with the development of GC and may serve as a genetic biomarker of H. pylori virulence and GC risk. Our assay can serve as a potent tool to expand our understanding of bacteria-associated tumorigenesis.
Collapse
Affiliation(s)
- Yoshiyuki Watanabe
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, St. Marianna University School of Medicine, Kawasaki, Japan.,Department of Internal Medicine, Kawasaki Rinko General Hospital, Kawasaki, Japan
| | - Ritsuko Oikawa
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, St. Marianna University School of Medicine, Kawasaki, Japan
| | - Yasuhiro Kodaka
- Division of Gastroenterology, Musashikosugi Hospital, Nippon Medical School, Kawasaki, Japan
| | - Yoshinori Sato
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, St. Marianna University School of Medicine, Kawasaki, Japan
| | - Shoko Ono
- Department of Gastroenterology, Hokkaido University Hospital, Sapporo, Japan
| | - Takeshi Kenmochi
- Department of Gastroenterology, Saiseikai Kanagawa Hospital, Yokohama, Japan
| | - Hideo Suzuki
- Department of Gastroenterology, Institute of Clinical Medicine, University of Tsukuba, Tsukuba, Japan
| | - Seiji Futagami
- Division of Gastroenterology, Musashikosugi Hospital, Nippon Medical School, Kawasaki, Japan
| | - Mototsugu Kato
- Department of Gastroenterology, National Hospital Organization Hakodate Hospital, Hakodate, Japan
| | - Hiroyuki Yamamoto
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, St. Marianna University School of Medicine, Kawasaki, Japan
| | - Fumio Itoh
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, St. Marianna University School of Medicine, Kawasaki, Japan
| |
Collapse
|
45
|
Xu C, Soyfoo DM, Wu Y, Xu S. Virulence of Helicobacter pylori outer membrane proteins: an updated review. Eur J Clin Microbiol Infect Dis 2020; 39:1821-1830. [PMID: 32557327 PMCID: PMC7299134 DOI: 10.1007/s10096-020-03948-y] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 06/09/2020] [Indexed: 02/07/2023]
Abstract
Helicobacter pylori (H. pylori) infection is associated with some gastric diseases, such as gastritis, peptic ulcer, and gastric cancer. CagA and VacA are known virulence factors of H. pylori, which play a vital role in severe clinical outcomes. Additionally, the expression of outer membrane proteins (OMPs) helps H. pylori attach to gastric epithelial cells at the primary stage and increases the virulence of H. pylori. In this review, we have summarized the paralogs of H. pylori OMPs, their genomic loci, and the different receptors of OMPs identified so far. We focused on five OMPs, BabA (HopS), SabA (HopP), OipA (HopH), HopQ, and HopZ, and one family of OMPs: Hom. We highlight the coexpression of OMPs with other virulence factors and their relationship with clinical outcomes. In conclusion, OMPs are closely related to the pathogenic processes of adhesion, colonization, persistent infection, and severe clinical consequences. They are potential targets for the prevention and treatment of H. pylori–related diseases.
Collapse
Affiliation(s)
- Chenjing Xu
- Sir Run Run Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | | | - Yao Wu
- Sir Run Run Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Shunfu Xu
- Sir Run Run Hospital, Nanjing Medical University, Nanjing, Jiangsu, China. .,Jiangsu Province Hospital, Nanjing Medical University, Nanjing, Jiangsu, China.
| |
Collapse
|
46
|
Sukri A, Hanafiah A, Mohamad Zin N, Kosai NR. Epidemiology and role of Helicobacter pylori virulence factors in gastric cancer carcinogenesis. APMIS 2020; 128:150-161. [PMID: 32352605 DOI: 10.1111/apm.13034] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 02/09/2020] [Indexed: 02/06/2023]
Abstract
Infection with Helicobacter pylori is associated with the development of gastric cancer. Although the prevalence of gastric cancer has declined throughout years due to improvement in early screening strategy, mortality due to gastric cancer has not changed. Incidence and mortality due to gastric cancer are higher in developing countries as compared to developed countries. Diagnosis and prognosis of gastric cancer are still poor with patients usually diagnosed with cancer at an advanced stage. Eradication of H. pylori is pertinent for the prevention of gastric cancer. However, the rise in antimicrobial resistance among H. pylori isolates has complicated the prevention strategy. H. pylori express multiple virulence factors for survival in the hostile acid gastric environment. The expression of oncogenic protein cytotoxin-associated gene A (CagA), vacuolating cytotoxin A (VacA), and outer inflammatory protein is essential for H. pylori to exert pathogenesis towards the host. Interestingly, <3% of H. pylori-infected subjects develop gastric cancer, suggesting a unique way of interaction between the host's immune response and H. pylori virulence factors. This article is aimed to review the epidemiology and role of H. pylori in gastric carcinogenesis. A better understanding of the interaction between H. pylori virulence factors and host is required for better gastric cancer prevention.
Collapse
Affiliation(s)
- Asif Sukri
- Programme of Biomedical Science, Faculty of Health Science, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Alfizah Hanafiah
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Noraziah Mohamad Zin
- Programme of Biomedical Science, Faculty of Health Science, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Nik Ritza Kosai
- Department of Surgery, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| |
Collapse
|
47
|
Zhao Q, Song C, Wang K, Li D, Yang Y, Liu D, Wang L, Zhou N, Xie Y. Prevalence of Helicobacter pylori babA, oipA, sabA, and homB genes in isolates from Chinese patients with different gastroduodenal diseases. Med Microbiol Immunol 2020; 209:565-577. [PMID: 32219508 DOI: 10.1007/s00430-020-00666-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 03/16/2020] [Indexed: 02/06/2023]
Abstract
Disease outcome is associated with virulence factors of Helicobacter pylori (H. pylori), which are partially attributed to the outer membrane protein (OMP). This study aimed to investigate the correlation between the four OMP genes (babA, oipA, sabA, and homB) and gastroduodenal diseases. One hundred and seventy-seven H. pylori strains were isolated from Chinese patients with different gastroduodenal diseases (49 chronic gastritis, 19 gastric ulcer, 33 gastric cancer, and 76 duodenal ulcer), 94 of which contained pathological information (41 superficial gastritis, 24 intestinal hyperplasia, and 29 gastric adenocarcinoma). The full-length amplification of babA, oipA, sabA, and homB genes was acquired and sequenced. Then, the genetic polymorphism was analyzed to compare with the reference strains from the GenBank database. Functional status and cluster analysis were also performed to evaluate the impact of genetic polymorphism on disease outcome. The prevalence of babA, oipA, sabA, and homB genes were 91.5%, 100%, 94.0%, and 95.5%, respectively. The four OMP genes were characterized by genetic polymorphism and in the status of positive selection (Ka/Ks> 1). The proportion of strains with functional status on for oipA and sabA gene was 100% and 76.2%, respectively. The sequences of four OMP genes were mainly clustered together with the East Asian references. The four OMP genes were not different in patients with gastroduodenal diseases and pathologic changes (P > 0.05). H. pylori babA, oipA, sabA, and homB genes were common in the Chinese populations, but did not seem to be involved in the development of gastroduodenal diseases.
Collapse
Affiliation(s)
- Qiaoyun Zhao
- Department of Gastroenterology, First Affiliated Hospital of Nanchang University, No.17 Yongwaizheng Street, Donghu District, Nanchang, 330006, Jiangxi, China.,Microbiology Laboratory, Gastroenterology Institute of Jiangxi Province, Nanchang, 330006, Jiangxi, China.,Gastroenterology Research Center, Key Laboratory of Digestive Diseases of Jiangxi Province, Nanchang, 330006, Jiangxi, China
| | - Conghua Song
- Department of Gastroenterology, First Affiliated Hospital of Nanchang University, No.17 Yongwaizheng Street, Donghu District, Nanchang, 330006, Jiangxi, China.,Microbiology Laboratory, Gastroenterology Institute of Jiangxi Province, Nanchang, 330006, Jiangxi, China.,Gastroenterology Research Center, Key Laboratory of Digestive Diseases of Jiangxi Province, Nanchang, 330006, Jiangxi, China.,Department of Gastroenterology, Affiliated Hospital of Putian University, Putian, 351100, Fujian, China
| | - Ke Wang
- Laboratory of Biochemistry and Molecular Biology, Jiangxi Institute of Medical Sciences, Nanchang, 330006, Jiangxi, China
| | - Donghong Li
- Laboratory of Biochemistry and Molecular Biology, Jiangxi Institute of Medical Sciences, Nanchang, 330006, Jiangxi, China
| | - Yang Yang
- Department of Gastroenterology, First Affiliated Hospital of Nanchang University, No.17 Yongwaizheng Street, Donghu District, Nanchang, 330006, Jiangxi, China.,Microbiology Laboratory, Gastroenterology Institute of Jiangxi Province, Nanchang, 330006, Jiangxi, China.,Gastroenterology Research Center, Key Laboratory of Digestive Diseases of Jiangxi Province, Nanchang, 330006, Jiangxi, China
| | - Dongsheng Liu
- Microbiology Laboratory, Gastroenterology Institute of Jiangxi Province, Nanchang, 330006, Jiangxi, China.,Gastroenterology Research Center, Key Laboratory of Digestive Diseases of Jiangxi Province, Nanchang, 330006, Jiangxi, China
| | - Le Wang
- Microbiology Laboratory, Gastroenterology Institute of Jiangxi Province, Nanchang, 330006, Jiangxi, China.,Gastroenterology Research Center, Key Laboratory of Digestive Diseases of Jiangxi Province, Nanchang, 330006, Jiangxi, China
| | - Nanjin Zhou
- Laboratory of Biochemistry and Molecular Biology, Jiangxi Institute of Medical Sciences, Nanchang, 330006, Jiangxi, China
| | - Yong Xie
- Department of Gastroenterology, First Affiliated Hospital of Nanchang University, No.17 Yongwaizheng Street, Donghu District, Nanchang, 330006, Jiangxi, China. .,Microbiology Laboratory, Gastroenterology Institute of Jiangxi Province, Nanchang, 330006, Jiangxi, China. .,Gastroenterology Research Center, Key Laboratory of Digestive Diseases of Jiangxi Province, Nanchang, 330006, Jiangxi, China.
| |
Collapse
|
48
|
Xia M, Chen H, Liu S. The synergy of resveratrol and alcohol against Helicobacter pylori and underlying anti-Helicobacter pylori mechanism of resveratrol. J Appl Microbiol 2019; 128:1179-1190. [PMID: 31774610 DOI: 10.1111/jam.14531] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 11/10/2019] [Accepted: 11/23/2019] [Indexed: 12/13/2022]
Abstract
AIMS To determine individual antibacterial and synergistic antibacterial effects of resveratrol and alcohol against Helicobacter pylori 26695 in vitro, and to elucidate the underlying mechanism of action of resveratrol against H. pylori. METHODS AND RESULTS The minimum inhibitory concentrations (MICs) and time-killing curve of resveratrol and alcohol were determined. Transcriptome analysis by RNA sequencing was used to elucidate the underlying mechanism of action of resveratrol against H. pylori. Our results showed that the MICs of resveratrol and alcohol against H. pylori 26695 are about 64 μg ml-1 and 4% (v/v) respectively. The synergy was found: resveratrol at concentration of 64 μg ml-1 in combination with alcohol at concentration of 4% (v/v) showed >10 000-fold decrease in the mount of viable bacteria compared with resveratrol and alcohol used alone. Transcriptome analysis showed 152 genes were downregulated and 111 genes were upregulated in the presence of resveratrol. Genes involved in protein translation (17·1%), outer membrane proteins (OMPs) (9·9%) and transports (11·2%) comprise 38·2% of the downregulated genes. In comparison, genes involved in redox (13·5%), pathogenesis and motility (9·9%) and iron homeostasis (4·5%) comprise 27·9% of the upregulated genes. CONCLUSIONS The synergy of resveratrol and alcohol against H. pylori was found in this study. The underlying mechanism of action of resveratrol against H. pylori may be mainly attributed to its inhibitory effect on translation, OMPs, transports, ATP synthase and possible oxidative damage. SIGNIFICANCE AND IMPACT OF THIS STUDY Our study provides a global insight into the anti-H. pylori mechanism of resveratrol. Both resveratrol and alcohol can contribute to inhibition of ribosomes, changes in OMPs and oxidative damage, which may be the explanations of synergistic effect against H. pylori elicited by resveratrol and alcohol.
Collapse
Affiliation(s)
- M Xia
- Department of Clinical Laboratory, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - H Chen
- College of Life Science, Sichuan Agricultural University, Ya'an, China
| | - S Liu
- Department of Clinical Laboratory, First Affiliated Hospital of Dalian Medical University, Dalian, China
| |
Collapse
|
49
|
Isaeva GS. Pangenomic studies of Helicobacter pylori: a key to understanding pathogenesis and human history. MINERVA BIOTECNOL 2019. [DOI: 10.23736/s1120-4826.19.02564-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
50
|
Helicobacter pylori lipids can form ordered membrane domains (rafts). BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2019; 1861:183050. [PMID: 31449801 DOI: 10.1016/j.bbamem.2019.183050] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 08/09/2019] [Accepted: 08/21/2019] [Indexed: 02/07/2023]
Abstract
Ordered lipid domains (rafts) are generally considered to be features of eukaryotic cells, but ordered lipid domains formed by cholesterol lipids have been identified in bacteria from the genus Borrelia, and similar cholesterol lipids exist in the bacterium Helicobacter pylori. To determine whether H. pylori lipids could form ordered membrane domains, we investigated domain formation in aqueous dispersions of H. pylori whole lipid extracts, individual H. pylori lipids, or defined mixtures of H. pylori lipids and other membrane-forming lipids. DPH (1,6-diphenyl-1,3,5-hexatriene) anisotropy measurements were used to assay membrane order and FRET (Förster resonance energy transfer) was used to detect the presence of co-existing ordered and disordered domains. We found that H. pylori membrane lipid extracts spontaneously formed lipid domains. Domain formation was more stable when lipids were extracted from H. pylori cells grown in the presence of cholesterol. Certain isolated H. pylori lipids (by themselves or when mixed with other lipids) also had the ability to form ordered domains. To be specific, H. pylori cholesteryl-6-O-tetradecanoyl-α-D-glucopyranoside (CAG) and cholesterol-6-O-phosphatidyl-α-D-glucopyranoside (CPG) had the ability to form and/or stabilize ordered domain formation, while H. pylori phosphatidylethanolamine did not, behaving similarly to unsaturated phosphatidylethanolamines. We conclude that specific H. pylori cholesterol lipids have a marked ability to form ordered lipid domains.
Collapse
|