1
|
Ali S, Mehboob A, Arshad M, Mammadova K, Ahmad MU. Bacterial oncolytic therapy as a novel approach for cancer treatment in humans. Cancer Treat Res Commun 2025; 43:100892. [PMID: 40088595 DOI: 10.1016/j.ctarc.2025.100892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 02/25/2025] [Accepted: 03/07/2025] [Indexed: 03/17/2025]
Abstract
Cancer is the leading cause of death worldwide. Conventional cancer therapies, such as chemotherapy, radiation therapy, and immunotherapy often face certain limitations in treating cancer, such as toxicity, resistance, and ineffectiveness against different cancer types. Therefore, there is an urgent need for alternative treatment strategies. One emerging area of interest is the use of bacterial oncolytic therapy. It employs the natural properties of bacteria to target and destroy cancer cells. Both natural and genetically modified bacterial strains have shown potential to target the hypoxic regions of tumors, which are often resistant to conventional treatments. These bacteria also produce therapeutic molecules that induce cancer cell death. Furthermore, they can stimulate immune responses against tumors, making them helpful in developing cancer vaccines and exploiting antitumor bacterial metabolites. The versatility of bacterial oncolytic therapy extends beyond direct tumor targeting. It can be combined with conventional methods to enhance overall treatment efficacy. Moreover, bacteria can also serve as delivery vehicles for anticancer drugs, ensuring more precise targeting and reduced side effects. Different bacterial genera, such as Salmonella, Clostridium, Bifidobacterium, and Listeria, have demonstrated significant anticancer potential. This review aims to provide a comprehensive overview of bacterial oncolytic therapy, exploring its various applications and potential in conjunction with traditional cancer treatments.
Collapse
Affiliation(s)
- Sikander Ali
- Ikram-ul-Haq Institute of Industrial Biotechnology, Government College University, Lahore, Pakistan.
| | - Asma Mehboob
- Ikram-ul-Haq Institute of Industrial Biotechnology, Government College University, Lahore, Pakistan.
| | - Muhammad Arshad
- Biochemistry Section, Jhang-campus, University of Veterinary and Animal Sciences Lahore, Pakistan.
| | - Khayala Mammadova
- Medical and Biological Physics Department, Azerbaijan Medical University, Azerbaijan.
| | - Muhammad Usman Ahmad
- Ikram-ul-Haq Institute of Industrial Biotechnology, Government College University, Lahore, Pakistan.
| |
Collapse
|
2
|
Wang C, Feng Q, Shi S, Qin Y, Lu H, Zhang P, Liu J, Chen B. The Rational Engineered Bacteria Based Biohybrid Living System for Tumor Therapy. Adv Healthc Mater 2024; 13:e2401538. [PMID: 39051784 DOI: 10.1002/adhm.202401538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 07/16/2024] [Indexed: 07/27/2024]
Abstract
Living therapy based on bacterial cells has gained increasing attention for their applications in tumor treatments. Bacterial cells can naturally target to tumor sites and active the innate immunological responses. The intrinsic advantages of bacteria attribute to the development of biohybrid living carriers for targeting delivery toward hypoxic environments. The rationally engineered bacterial cells integrate various functions to enhance the tumor therapy and reduce toxic side effects. In this review, the antitumor effects of bacteria and their application are discussed as living therapeutic agents across multiple antitumor platforms. The various kinds of bacteria used for cancer therapy are first introduced and demonstrated the mechanism of antitumor effects as well as the immunological effects. Additionally, this study focused on the genetically modified bacteria for the production of antitumor agents as living delivery system to treat cancer. The combination of living bacterial cells with functional nanomaterials is then discussed in the cancer treatments. In brief, the rational design of living therapy based on bacterial cells highlighted a rapid development in tumor therapy and pointed out the potentials in clinical applications.
Collapse
Affiliation(s)
- Chen Wang
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, Guangdong, 518107, China
| | - Qiliner Feng
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, Guangdong, 518107, China
| | - Si Shi
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, Guangdong, 518107, China
| | - Yuxuan Qin
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, Guangdong, 518107, China
| | - Hongli Lu
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, Guangdong, 518107, China
| | - Peng Zhang
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, Guangdong, 518107, China
| | - Jie Liu
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, Guangdong, 518107, China
| | - Baizhu Chen
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, Guangdong, 518107, China
- Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument, Sun Yat-Sen University, Shenzhen, Guangdong, 518107, China
| |
Collapse
|
3
|
Han H, Santos HA. Nano- and Micro-Platforms in Therapeutic Proteins Delivery for Cancer Therapy: Materials and Strategies. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2409522. [PMID: 39263818 DOI: 10.1002/adma.202409522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/26/2024] [Indexed: 09/13/2024]
Abstract
Proteins have emerged as promising therapeutics in oncology due to their great specificity. Many treatment strategies are developed based on protein biologics, such as immunotherapy, starvation therapy, and pro-apoptosis therapy, while some protein biologics have entered the clinics. However, clinical translation is severely impeded by instability, short circulation time, poor transmembrane transportation, and immunogenicity. Micro- and nano-particles-based drug delivery platforms are designed to solve those problems and enhance protein therapeutic efficacy. This review first summarizes the different types of therapeutic proteins in clinical and research stages, highlighting their administration limitations. Next, various types of micro- and nano-particles are described to demonstrate how they can overcome those limitations. The potential of micro- and nano-particles are then explored to enhance the therapeutic efficacy of proteins by combinational therapies. Finally, the challenges and future directions of protein biologics carriers are discussed for optimized protein delivery.
Collapse
Affiliation(s)
- Huijie Han
- Department of Biomaterials and Biomedical Technology, The Personalized Medicine Research Institute (PRECISION), University Medical Center Groningen (UMCG), University of Groningen, Ant. Deusinglaan 1, Groningen, 9713 AV, The Netherlands
| | - Hélder A Santos
- Department of Biomaterials and Biomedical Technology, The Personalized Medicine Research Institute (PRECISION), University Medical Center Groningen (UMCG), University of Groningen, Ant. Deusinglaan 1, Groningen, 9713 AV, The Netherlands
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, FI-00014, Finland
| |
Collapse
|
4
|
Upton C, Healey J, Rothnie AJ, Goddard AD. Insights into membrane interactions and their therapeutic potential. Arch Biochem Biophys 2024; 755:109939. [PMID: 38387829 DOI: 10.1016/j.abb.2024.109939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 01/31/2024] [Accepted: 02/19/2024] [Indexed: 02/24/2024]
Abstract
Recent research into membrane interactions has uncovered a diverse range of therapeutic opportunities through the bioengineering of human and non-human macromolecules. Although the majority of this research is focussed on fundamental developments, emerging studies are showcasing promising new technologies to combat conditions such as cancer, Alzheimer's and inflammatory and immune-based disease, utilising the alteration of bacteriophage, adenovirus, bacterial toxins, type 6 secretion systems, annexins, mitochondrial antiviral signalling proteins and bacterial nano-syringes. To advance the field further, each of these opportunities need to be better understood, and the therapeutic models need to be further optimised. Here, we summarise the knowledge and insights into several membrane interactions and detail their current and potential uses therapeutically.
Collapse
Affiliation(s)
- Calum Upton
- School of Biosciences, Health & Life Science, Aston University, Birmingham, B4 7ET, UK
| | - Joseph Healey
- Nanosyrinx, The Venture Centre, University of Warwick Science Park, Coventry, CV4 7EZ, UK
| | - Alice J Rothnie
- School of Biosciences, Health & Life Science, Aston University, Birmingham, B4 7ET, UK
| | - Alan D Goddard
- School of Biosciences, Health & Life Science, Aston University, Birmingham, B4 7ET, UK.
| |
Collapse
|
5
|
Shikalov A, Koman I, Kogan NM. Targeted Glioma Therapy-Clinical Trials and Future Directions. Pharmaceutics 2024; 16:100. [PMID: 38258110 PMCID: PMC10820492 DOI: 10.3390/pharmaceutics16010100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/05/2024] [Accepted: 01/08/2024] [Indexed: 01/24/2024] Open
Abstract
Glioblastoma multiforme (GBM) is the most common type of glioma, with a median survival of 14.6 months post-diagnosis. Understanding the molecular profile of such tumors allowed the development of specific targeted therapies toward GBM, with a major role attributed to tyrosine kinase receptor inhibitors and immune checkpoint inhibitors. Targeted therapeutics are drugs that work by specific binding to GBM-specific or overexpressed markers on the tumor cellular surface and therefore contain a recognition moiety linked to a cytotoxic agent, which produces an antiproliferative effect. In this review, we have summarized the available information on the targeted therapeutics used in clinical trials of GBM and summarized current obstacles and advances in targeted therapy concerning specific targets present in GBM tumor cells, outlined efficacy endpoints for major classes of investigational drugs, and discussed promising strategies towards an increase in drug efficacy in GBM.
Collapse
Affiliation(s)
| | | | - Natalya M. Kogan
- Department of Molecular Biology, Institute of Personalized and Translational Medicine, Ariel University, Ariel 40700, Israel; (A.S.); (I.K.)
| |
Collapse
|
6
|
Zheng X, Fang Y, Zou X, Wang X, Li Z. Therapeutic potential of Pseudomonas aeruginosa-mannose sensitive hemagglutinin (PA-MSHA) in cancer treatment. Microb Pathog 2023; 185:106422. [PMID: 37871855 DOI: 10.1016/j.micpath.2023.106422] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/19/2023] [Accepted: 10/20/2023] [Indexed: 10/25/2023]
Abstract
Pseudomonas aeruginosa is a Gram-negative bacteria and it has been demonstrated that immunization with the outer membrane proteins of the microbe produces most of the relevant human antibodies. The peritrichous P. aeruginosa strain with MSHA fimbriae (PA-MSHA strain) has been found to be effective in the inhibition of growth and proliferation of different types of cancer cells. Furthermore, it has been revealed that PA-MSHA exhibits cytotoxicity because of the presence of MSHA and therefore it possesses anti-carcinogenic ability against different types of human cancer cell lines including, gastric, breast, hepatocarcinoma and nasopharyngeal cells. Studies have revealed that PA-MSHA exhibits therapeutic potential against cancer growth by induction of apoptosis, arrest of cell cycle, activating NF-κB/TLR5 pathway, etc. In China, PA-MSHA injections have been approved for the treatment of malignant tumor patients from very long back. The present review article demonstrates the therapeutic potential of PA-MSHA against various types of human cancers and explains the underlying mechanism.
Collapse
Affiliation(s)
- Xun Zheng
- Department of Thyroid & Parathyroid Surgery, West China Hospital, Sichuan University, No 37 Guo Xue Street, 610041, Chengdu, Sichuan, China
| | - Yiqiao Fang
- Department of Thyroid & Parathyroid Surgery, West China Hospital, Sichuan University, No 37 Guo Xue Street, 610041, Chengdu, Sichuan, China
| | - Xiuhe Zou
- Department of Thyroid & Parathyroid Surgery, West China Hospital, Sichuan University, No 37 Guo Xue Street, 610041, Chengdu, Sichuan, China
| | - Xiaofei Wang
- Department of Thyroid & Parathyroid Surgery, West China Hospital, Sichuan University, No 37 Guo Xue Street, 610041, Chengdu, Sichuan, China
| | - Zhihui Li
- Department of Thyroid & Parathyroid Surgery, West China Hospital, Sichuan University, No 37 Guo Xue Street, 610041, Chengdu, Sichuan, China.
| |
Collapse
|
7
|
Ghasemitarei M, Ghorbi T, Yusupov M, Zhang Y, Zhao T, Shali P, Bogaerts A. Effects of Nitro-Oxidative Stress on Biomolecules: Part 1-Non-Reactive Molecular Dynamics Simulations. Biomolecules 2023; 13:1371. [PMID: 37759771 PMCID: PMC10527456 DOI: 10.3390/biom13091371] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/04/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023] Open
Abstract
Plasma medicine, or the biomedical application of cold atmospheric plasma (CAP), is an expanding field within plasma research. CAP has demonstrated remarkable versatility in diverse biological applications, including cancer treatment, wound healing, microorganism inactivation, and skin disease therapy. However, the precise mechanisms underlying the effects of CAP remain incompletely understood. The therapeutic effects of CAP are largely attributed to the generation of reactive oxygen and nitrogen species (RONS), which play a crucial role in the biological responses induced by CAP. Specifically, RONS produced during CAP treatment have the ability to chemically modify cell membranes and membrane proteins, causing nitro-oxidative stress, thereby leading to changes in membrane permeability and disruption of cellular processes. To gain atomic-level insights into these interactions, non-reactive molecular dynamics (MD) simulations have emerged as a valuable tool. These simulations facilitate the examination of larger-scale system dynamics, including protein-protein and protein-membrane interactions. In this comprehensive review, we focus on the applications of non-reactive MD simulations in studying the effects of CAP on cellular components and interactions at the atomic level, providing a detailed overview of the potential of CAP in medicine. We also review the results of other MD studies that are not related to plasma medicine but explore the effects of nitro-oxidative stress on cellular components and are therefore important for a broader understanding of the underlying processes.
Collapse
Affiliation(s)
- Maryam Ghasemitarei
- Department of Physics, Sharif University of Technology, Tehran 14588-89694, Iran
- Research Group PLASMANT, Department of Chemistry, University of Antwerp, 2610 Antwerp, Belgium
| | - Tayebeh Ghorbi
- Department of Physics, Sharif University of Technology, Tehran 14588-89694, Iran
| | - Maksudbek Yusupov
- School of Engineering, New Uzbekistan University, Tashkent 100007, Uzbekistan
- School of Engineering, Central Asian University, Tashkent 111221, Uzbekistan
- Laboratory of Thermal Physics of Multiphase Systems, Arifov Institute of Ion-Plasma and Laser Technologies, Academy of Sciences of Uzbekistan, Tashkent 100125, Uzbekistan
- Research Group PLASMANT, Department of Chemistry, University of Antwerp, 2610 Antwerp, Belgium
| | - Yuantao Zhang
- School of Electrical Engineering, Shandong University, Jinan 250061, China
| | - Tong Zhao
- School of Electrical Engineering, Shandong University, Jinan 250061, China
| | - Parisa Shali
- Research Unit Plasma Technology, Department of Applied Physics, Faculty of Engineering and Agriculture, Ghent University, 9000 Ghent, Belgium
| | - Annemie Bogaerts
- Research Group PLASMANT, Department of Chemistry, University of Antwerp, 2610 Antwerp, Belgium
| |
Collapse
|
8
|
Yin L, Thaker H. Cancer Drug Delivery Systems Using Bacterial Toxin Translocation Mechanisms. Bioengineering (Basel) 2023; 10:813. [PMID: 37508840 PMCID: PMC10376142 DOI: 10.3390/bioengineering10070813] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/16/2023] [Accepted: 06/21/2023] [Indexed: 07/30/2023] Open
Abstract
Recent advances in targeted cancer therapy hold great promise for both research and clinical applications and push the boundaries in finding new treatments for various currently incurable cancers. However, these therapies require specific cell-targeting mechanisms for the efficient delivery of drug cargo across the cell membrane to reach intracellular targets and avoid diffusion to unwanted tissues. Traditional drug delivery systems suffer from a limited ability to travel across the barriers posed by cell membranes and, therefore, there is a need for high doses, which are associated with adverse reactions and safety concerns. Bacterial toxins have evolved naturally to specifically target cell subtypes via their receptor binding module, penetrating the cell membrane efficiently through the membrane translocation process and then successfully delivering the toxic cargo into the host cytosol. They have, thus, been harnessed for the delivery of various drugs. In this review, we focus on bacterial toxin translocation mechanisms and recent progress in the targeted delivery systems of cancer therapy drugs that have been inspired by the receptor binding and membrane translocation processes of the anthrax toxin protective antigen, diphtheria toxin, and Pseudomonas exotoxin A. We also discuss the challenges and limitations of these studies that should be addressed before bacterial toxin-based drug delivery systems can become a viable new generation of drug delivery approaches in clinical translation.
Collapse
Affiliation(s)
- Linxiang Yin
- Department of Urology, Boston Children's Hospital, Boston, MA 02115, USA
- Department of Surgery, Harvard Medical School, Boston, MA 02115, USA
- Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA
| | - Hatim Thaker
- Department of Urology, Boston Children's Hospital, Boston, MA 02115, USA
- Department of Surgery, Harvard Medical School, Boston, MA 02115, USA
- Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
9
|
Dong Z, Shi R, Li P, Song X, Dong F, Zhu J, Wu R, Liang Z, Du M, Wang J, Yang Z. Does postcholecystectomy increase the risk of colorectal cancer? Front Microbiol 2023; 14:1194419. [PMID: 37426004 PMCID: PMC10324655 DOI: 10.3389/fmicb.2023.1194419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 05/31/2023] [Indexed: 07/11/2023] Open
Abstract
With the increasing number of cholecystectomy and the high proportion of colorectal cancer in malignant tumors, the question of whether cholecystectomy is a risk factor for colorectal disease has been widely concerned. After reviewing the literature at home and abroad, the authors will summarize the research progress of the correlation between the occurrence of colorectal tumors after cholecystectomy, in order to provide help for the prevention and treatment of colorectal tumors.
Collapse
Affiliation(s)
- Zhenyu Dong
- Department of General Surgery, Baotou Central Hospital, Baotou, Inner Mongolia, China
- Baotou Medical College, Baotou, Inner Mongolia, China
| | - Ruixian Shi
- Department of Neurology, Baotou Central Hospital, Baotou, Inner Mongolia, China
- Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
| | - Pengda Li
- Department of General Surgery, Baotou Central Hospital, Baotou, Inner Mongolia, China
- Baotou Medical College, Baotou, Inner Mongolia, China
| | - Xiaobiao Song
- Department of General Surgery, Baotou Central Hospital, Baotou, Inner Mongolia, China
| | - Fan Dong
- Department of General Surgery, Baotou Central Hospital, Baotou, Inner Mongolia, China
| | - Jianmin Zhu
- Department of General Surgery, Baotou Central Hospital, Baotou, Inner Mongolia, China
| | - Riga Wu
- Department of General Surgery, The Second Affiliated Hospital of Baotou Medical College, Baotou, Inner Mongolia, China
| | - Zhi Liang
- Baotou Medical College, Baotou, Inner Mongolia, China
| | - Mingyue Du
- Baotou Medical College, Baotou, Inner Mongolia, China
| | - Jijun Wang
- Department of General Surgery, Baotou Central Hospital, Baotou, Inner Mongolia, China
| | - Zhigang Yang
- Department of Urology, Baotou Central Hospital, Baotou, Inner Mongolia, China
| |
Collapse
|
10
|
Koczurkiewicz-Adamczyk P, Grabowska K, Karnas E, Piska K, Wnuk D, Klaś K, Galanty A, Wójcik-Pszczoła K, Michalik M, Pękala E, Fuchs H, Podolak I. Saponin Fraction CIL1 from Lysimachia ciliata L. Enhances the Effect of a Targeted Toxin on Cancer Cells. Pharmaceutics 2023; 15:pharmaceutics15051350. [PMID: 37242592 DOI: 10.3390/pharmaceutics15051350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/22/2023] [Accepted: 04/26/2023] [Indexed: 05/28/2023] Open
Abstract
Saponins are plant metabolites that possess multidirectional biological activities, among these is antitumor potential. The mechanisms of anticancer activity of saponins are very complex and depend on various factors, including the chemical structure of saponins and the type of cell they target. The ability of saponins to enhance the efficacy of various chemotherapeutics has opened new perspectives for using them in combined anticancer chemotherapy. Co-administration of saponins with targeted toxins makes it possible to reduce the dose of the toxin and thus limit the side effects of overall therapy by mediating endosomal escape. Our study indicates that the saponin fraction CIL1 of Lysimachia ciliata L. can improve the efficacy of the EGFR-targeted toxin dianthin (DE). We investigated the effect of cotreatment with CIL1 + DE on cell viability in a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, on proliferation in a crystal violet assay (CV) and on pro-apoptotic activity using Annexin V/7 Actinomycin D (7-AAD) staining and luminescence detection of caspase levels. Cotreatment with CIL1 + DE enhanced the target cell-specific cytotoxicity, as well as the antiproliferative and proapoptotic properties. We found a 2200-fold increase in both the cytotoxic and antiproliferative efficacy of CIL1 + DE against HER14-targeted cells, while the effect on control NIH3T3 off-target cells was less profound (6.9- or 5.4-fold, respectively). Furthermore, we demonstrated that the CIL1 saponin fraction has a satisfactory in vitro safety profile with a lack of cytotoxic and mutagenic potential.
Collapse
Affiliation(s)
- Paulina Koczurkiewicz-Adamczyk
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Jagiellonian University Medical College, 30-688 Kraków, Poland
- Institute of Diagnostic Laboratory Medicine, Clinical Chemistry and Pathobiochemistry, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 13353 Berlin, Germany
| | - Karolina Grabowska
- Department of Pharmacognosy, Faculty of Pharmacy, Jagiellonian University Medical College, 30-688 Kraków, Poland
| | - Elżbieta Karnas
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Kraków, Poland
| | - Kamil Piska
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Jagiellonian University Medical College, 30-688 Kraków, Poland
| | - Dawid Wnuk
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Kraków, Poland
| | - Katarzyna Klaś
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Jagiellonian University Medical College, 30-688 Kraków, Poland
| | - Agnieszka Galanty
- Department of Pharmacognosy, Faculty of Pharmacy, Jagiellonian University Medical College, 30-688 Kraków, Poland
| | - Katarzyna Wójcik-Pszczoła
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Jagiellonian University Medical College, 30-688 Kraków, Poland
| | - Marta Michalik
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Kraków, Poland
| | - Elżbieta Pękala
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Jagiellonian University Medical College, 30-688 Kraków, Poland
| | - Hendrik Fuchs
- Institute of Diagnostic Laboratory Medicine, Clinical Chemistry and Pathobiochemistry, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 13353 Berlin, Germany
| | - Irma Podolak
- Department of Pharmacognosy, Faculty of Pharmacy, Jagiellonian University Medical College, 30-688 Kraków, Poland
| |
Collapse
|
11
|
Kumkoon T, Noree C, Boonserm P. Engineering BinB Pore-Forming Toxin for Selective Killing of Breast Cancer Cells. Toxins (Basel) 2023; 15:toxins15040297. [PMID: 37104235 PMCID: PMC10145556 DOI: 10.3390/toxins15040297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/07/2023] [Accepted: 04/13/2023] [Indexed: 04/28/2023] Open
Abstract
Breast cancer is one of the most common cancers in women worldwide. Conventional cancer chemotherapy always has adverse side effects on the patient's healthy tissues. Consequently, combining pore-forming toxins with cell-targeting peptides (CTPs) is a promising anticancer strategy for selectively destroying cancer cells. Here, we aim to improve the target specificity of the BinB toxin produced from Lysinibacillus sphaericus (Ls) by fusing a luteinizing hormone-releasing hormone (LHRH) peptide to its pore-forming domain (BinBC) to target MCF-7 breast cancer cells as opposed to human fibroblast cells (Hs68). The results showed that LHRH-BinBC inhibited MCF-7 cell proliferation in a dose-dependent manner while leaving Hs68 cells unaffected. BinBC, at any concentration tested, did not affect the proliferation of MCF-7 or Hs68 cells. In addition, the LHRH-BinBC toxin caused the efflux of the cytoplasmic enzyme lactate dehydrogenase (LDH), demonstrating the efficacy of the LHRH peptide in directing the BinBC toxin to damage the plasma membranes of MCF-7 cancer cells. LHRH-BinBC also caused MCF-7 cell apoptosis by activating caspase-8. In addition, LHRH-BinBC was predominantly observed on the cell surface of MCF-7 and Hs68 cells, without colocalization with mitochondria. Overall, our findings suggest that LHRH-BinBC could be investigated further as a potential cancer therapeutic agent.
Collapse
Affiliation(s)
- Tipaporn Kumkoon
- Institute of Molecular Biosciences, Mahidol University, Salaya, Phuttamonthon, Nakhon Pathom 73170, Thailand
| | - Chalongrat Noree
- Institute of Molecular Biosciences, Mahidol University, Salaya, Phuttamonthon, Nakhon Pathom 73170, Thailand
| | - Panadda Boonserm
- Institute of Molecular Biosciences, Mahidol University, Salaya, Phuttamonthon, Nakhon Pathom 73170, Thailand
| |
Collapse
|
12
|
Targeting the Inside of Cells with Biologicals: Toxin Routes in a Therapeutic Context. BioDrugs 2023; 37:181-203. [PMID: 36729328 PMCID: PMC9893211 DOI: 10.1007/s40259-023-00580-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/12/2023] [Indexed: 02/03/2023]
Abstract
Numerous toxins translocate to the cytosol in order to fulfil their function. This demonstrates the existence of routes for proteins from the extracellular space to the cytosol. Understanding these routes is relevant to multiple aspects related to therapeutic applications. These include the development of anti-toxin treatments, the potential use of toxins as shuttles for delivering macromolecular cargo to the cytosol or the use of drugs based on toxins. Compared with other strategies for delivery, such as chemicals as carriers for macromolecular delivery or physical methods like electroporation, toxin routes present paths into the cell that potentially cause less damage and can be specifically targeted. The efficiency of delivery via toxin routes is limited. However, low-delivery efficiencies can be entirely sufficient, if delivered cargoes possess an amplification effect or if very few molecules are sufficient for inducing the desired effects. This is known for example from RNA-based vaccines that have been developed during the coronavirus disease 2019 pandemic as well as for other approved RNA-based drugs, which elicited the desired effect despite their typically low delivery efficiencies. The different mechanisms by which toxins enter cells may have implications for their technological utility. We review the mechanistic principles of the translocation pathway of toxins from the extracellular space to the cytosol, the delivery efficiencies, and therapeutic strategies or applications that exploit toxin routes for intracellular delivery.
Collapse
|
13
|
Kaur T, Sharma D. Fundamentals of utilizing microbes in advanced cancer therapeutics: Current understanding and potential applications. ADVANCES IN APPLIED MICROBIOLOGY 2023. [PMID: 37400175 DOI: 10.1016/bs.aambs.2023.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2023]
Abstract
One of the biggest health related issues in the twenty-first century is cancer. The current therapeutic platforms have not advanced enough to keep up with the number of rising cases. The traditional therapeutic approaches frequently fail to produce the desired outcomes. Therefore, developing new and more potent remedies is crucial. Recently, investigating microorganisms as potential anti-cancer treatments have garnered a lot of attention. Tumor-targeting microorganisms are more versatile at inhibiting cancer than the majority of standard therapies. Bacteria preferentially gather and thrive inside tumors, where they can trigger anti-cancer immune responses. They can be further trained to generate and distribute anticancer drugs based on clinical requirements using straightforward genetic engineering approaches. To improve clinical outcomes, therapeutic strategies utilizing live tumor-targeting bacteria can be used either alone or in combination with existing anticancer treatments. On the other hand, oncolytic viruses that target cancer cells, gene therapy via viral vectors, and viral immunotherapy are other popular areas of biotechnological investigation. Therefore, viruses serve as a unique candidate for anti-tumor therapy. This chapter describes the role of microbes, primarily bacteria and viruses in anti-cancer therapeutics. The various approaches to utilizing microbes in cancer therapy are discussed and examples of microorganisms that are now in use or that are undergoing experimental research are briefly discussed. We further point out the hurdles and the prospects of microbes-based remedies for cancer treatment.
Collapse
|
14
|
Exploiting the Endogenous Ubiquitin Proteasome System in Targeted Cancer Treatment. Cancers (Basel) 2022; 15:cancers15010256. [PMID: 36612252 PMCID: PMC9818074 DOI: 10.3390/cancers15010256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 12/15/2022] [Accepted: 12/26/2022] [Indexed: 01/03/2023] Open
Abstract
To overcome the lack of specificity of cancer therapeutics and thus create a more potent and effective treatment, we developed a novel chimeric protein, IL2-Smurf2. Here, we describe the production of this chimeric IL2-Smurf2 protein and its variants, with inactive or over-active killing components. Using Western blots, we demonstrated the chimeric protein's ability to specifically enter target cells alone. After entering the cells, the protein showed biological activity, causing cell death that was not seen with an inactive variant, and that was shown to be apoptotic. The chimeric protein also proved to be active as an E3 ligase, as demonstrated by testing total ubiquitination levels along with targeted ubiquitination for degradation. Finally, we tested IL2-Smurf2 and its variants in an in vivo mouse model of leukemia and demonstrated its potential as a drug for the targeted treatment of cancer cells. In the course of this work, we established for the first time the feasibility of the use of Smurf2 as a killing component in chimeric targeting proteins. Utilizing the IL2 cytokine to target cells overexpressing IL-2R and Smurf2 to cause protein degradation, we were able to produce a chimeric protein with dual functionality which causes targeted cell death.
Collapse
|
15
|
Recent advances in microbial toxin-related strategies to combat cancer. Semin Cancer Biol 2022; 86:753-768. [PMID: 34271147 DOI: 10.1016/j.semcancer.2021.07.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 07/01/2021] [Accepted: 07/09/2021] [Indexed: 02/08/2023]
Abstract
It is a major concern to treat cancer successfully, due to the distinctive pathophysiology of cancer cells and the gradual manifestation of resistance. Specific action, adverse effects and development of resistance has prompted the urgent requirement of exploring alternative anti-tumour treatment therapies. The naturally derived microbial toxins as a therapy against cancer cells are a promisingly new dimension. Various important microbial toxins such as Diphtheria toxin, Vibrio cholera toxin, Aflatoxin, Patulin, Cryptophycin-55, Chlorella are derived from several bacterial, fungal and algal species. These agents act on different biotargets such as inhibition of protein synthesis, reduction in cell growth, regulation of cell cycle and many cellular processes. Bacterial toxins produce actions primarily by targeting protein moieties and some immunomodulation and few acts through DNA. Fungal toxins appear to have more DNA damaging activity and affect the cell cycle. Algal toxins produce alteration in mitochondrial phosphorylation. In conclusion, microbial toxins and their metabolites appear to have a great potential to provide a promising option for the treatment and management to combat cancer.
Collapse
|
16
|
Dicks LMT, Vermeulen W. Do Bacteria Provide an Alternative to Cancer Treatment and What Role Does Lactic Acid Bacteria Play? Microorganisms 2022; 10:microorganisms10091733. [PMID: 36144335 PMCID: PMC9501580 DOI: 10.3390/microorganisms10091733] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/17/2022] [Accepted: 08/26/2022] [Indexed: 11/16/2022] Open
Abstract
Cancer is one of the leading causes of mortality and morbidity worldwide. According to 2022 statistics from the World Health Organization (WHO), close to 10 million deaths have been reported in 2020 and it is estimated that the number of cancer cases world-wide could increase to 21.6 million by 2030. Breast, lung, thyroid, pancreatic, liver, prostate, bladder, kidney, pelvis, colon, and rectum cancers are the most prevalent. Each year, approximately 400,000 children develop cancer. Treatment between countries vary, but usually includes either surgery, radiotherapy, or chemotherapy. Modern treatments such as hormone-, immuno- and antibody-based therapies are becoming increasingly popular. Several recent reports have been published on toxins, antibiotics, bacteriocins, non-ribosomal peptides, polyketides, phenylpropanoids, phenylflavonoids, purine nucleosides, short chain fatty acids (SCFAs) and enzymes with anticancer properties. Most of these molecules target cancer cells in a selective manner, either directly or indirectly through specific pathways. This review discusses the role of bacteria, including lactic acid bacteria, and their metabolites in the treatment of cancer.
Collapse
|
17
|
Mielecki M, Ziemniak M, Ozga M, Borowski R, Antosik J, Kaczyńska A, Pająk B. Structure-Activity Relationship of the Dimeric and Oligomeric Forms of a Cytotoxic Biotherapeutic Based on Diphtheria Toxin. Biomolecules 2022; 12:biom12081111. [PMID: 36009005 PMCID: PMC9406121 DOI: 10.3390/biom12081111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/08/2022] [Accepted: 08/09/2022] [Indexed: 11/29/2022] Open
Abstract
Protein aggregation is a well-recognized problem in industrial preparation, including biotherapeutics. These low-energy states constantly compete with a native-like conformation, which is more pronounced in the case of macromolecules of low stability in the solution. A better understanding of the structure and function of such aggregates is generally required for the more rational development of therapeutic proteins, including single-chain fusion cytotoxins to target specific receptors on cancer cells. Here, we identified and purified such particles as side products of the renaturation process of the single-chain fusion cytotoxin, composed of two diphtheria toxin (DT) domains and interleukin 13 (IL-13), and applied various experimental techniques to comprehensively understand their molecular architecture and function. Importantly, we distinguished soluble purified dimeric and fractionated oligomeric particles from aggregates. The oligomers are polydisperse and multimodal, with a distribution favoring lower and even stoichiometries, suggesting they are composed of dimeric building units. Importantly, all these oligomeric particles and the monomer are cystine-dependent as their innate disulfide bonds have structural and functional roles. Their reduction triggers aggregation. Presumably the dimer and lower oligomers represent the metastable state, retaining the native disulfide bond. Although significantly reduced in contrast to the monomer, they preserve some fraction of bioactivity, manifested by their IL-13RA2 receptor affinity and selective cytotoxic potency towards the U-251 glioblastoma cell line. These molecular assemblies probably preserve structural integrity and native-like fold, at least to some extent. As our study demonstrated, the dimeric and oligomeric cytotoxin may be an exciting model protein, introducing a new understanding of its monomeric counterpart’s molecular characteristics.
Collapse
|
18
|
Raddeanin A synergistically enhances the anti-tumor effect of MAP30 in multiple ways, more than promoting endosomal escape. Toxicol Appl Pharmacol 2022; 449:116139. [PMID: 35750203 DOI: 10.1016/j.taap.2022.116139] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 06/15/2022] [Accepted: 06/18/2022] [Indexed: 11/23/2022]
Abstract
Biomacromolecules such as proteins and nucleic acids are very attractive due to their high efficiency and specificity as cancer therapeutics. In fact, the endocytosed macromolecules are often trapped in the endosomes and cannot exhibit pharmacological effects well. Many strategies have been used to address this bottleneck, and one promising approach is to exploit the endosomal escape-promoting effect of triterpenoid saponins to aid in the release of biomacromolecules. Here, Raddeanin A (RA, an oleanane-type triterpenoid saponin) was proved to significantly promote endosomal escape as it recruited Galectin-9, an endosomal escape event reporter. As expected, RA effectively enhanced the anti-tumor effect of MAP30 (a type I ribosome-inactivating protein derived from Momordica charantia). However, based on the results of fluorescent colocalization, RA did not significantly promote MAP30 release from endosomes, suggesting that RA enhances MAP30 activity not only by promoting endosomal escape. Furthermore, it was found that the inhibitors of micropinocytosis and caveolae could almost completely inhibit the cytotoxicity of MAP30 combined with RA without affecting the cytotoxicity of MAP30 alone, indicating that RA may regulate the endocytic pathway of MAP30. Meanwhile, the effect of RA is related to the intra vesicular pH and cholesterol content on cell membrane, and is also cell-type dependent. Therefore, RA enhanced the anti-tumor effect of MAP30 in multiple ways, not just by promoting endosomal escape. Our findings will help to further decipher the possible mechanisms by which triterpenoid saponins enhance drug activity, and provide a new perspective for improving the activity of endocytosed drugs.
Collapse
|
19
|
Pei D, Dalbey RE. Membrane Translocation of Folded Proteins. J Biol Chem 2022; 298:102107. [PMID: 35671825 PMCID: PMC9251779 DOI: 10.1016/j.jbc.2022.102107] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 05/31/2022] [Accepted: 06/01/2022] [Indexed: 12/01/2022] Open
Abstract
An ever-increasing number of proteins have been shown to translocate across various membranes of bacterial as well as eukaryotic cells in their folded states as a part of physiological and/or pathophysiological processes. Herein we provide an overview of the systems/processes that are established or likely to involve the membrane translocation of folded proteins, such as protein export by the twin-arginine translocation (TAT) system in bacteria and chloroplasts, unconventional protein secretion (UPS) and protein import into the peroxisome in eukaryotes, and the cytosolic entry of proteins (e.g., bacterial toxins) and viruses into eukaryotes. We also discuss the various mechanistic models that have previously been proposed for the membrane translocation of folded proteins including pore/channel formation, local membrane disruption, membrane thinning, and transport by membrane vesicles. Finally, we introduce a newly discovered vesicular transport mechanism, vesicle budding and collapse (VBC), and present evidence that VBC may represent a unifying mechanism that drives some (and potentially all) of folded protein translocation processes.
Collapse
Affiliation(s)
- Dehua Pei
- Department of Chemistry and Biochemistry, The Ohio State University, 484 West 12(th) Avenue, Columbus, OH 43210.
| | - Ross E Dalbey
- Department of Chemistry and Biochemistry, The Ohio State University, 484 West 12(th) Avenue, Columbus, OH 43210.
| |
Collapse
|
20
|
Pang Z, Gu MD, Tang T. Pseudomonas aeruginosa in Cancer Therapy: Current Knowledge, Challenges and Future Perspectives. Front Oncol 2022; 12:891187. [PMID: 35574361 PMCID: PMC9095937 DOI: 10.3389/fonc.2022.891187] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 04/04/2022] [Indexed: 12/20/2022] Open
Abstract
Drug resistance, undesirable toxicity and lack of selectivity are the major challenges of conventional cancer therapies, which cause poor clinical outcomes and high mortality in many cancer patients. Development of alternative cancer therapeutics are highly required for the patients who are resistant to the conventional cancer therapies, including radiotherapy and chemotherapy. The success of a new cancer therapy depends on its high specificity to cancer cells and low toxicity to normal cells. Utilization of bacteria has emerged as a promising strategy for cancer treatment. Attenuated or genetically modified bacteria were used to inhibit tumor growth, modulate host immunity, or deliver anti-tumor agents. The bacteria-derived immunotoxins were capable of destructing tumors with high specificity. These bacteria-based strategies for cancer treatment have shown potent anti-tumor effects both in vivo and in vitro, and some of them have proceeded to clinical trials. Pseudomonas aeruginosa, a Gram-negative bacterial pathogen, is one of the common bacteria used in development of bacteria-based cancer therapy, particularly known for the Pseudomonas exotoxin A-based immunotoxins, which have shown remarkable anti-tumor efficacy and specificity. This review concisely summarizes the current knowledge regarding the utilization of P. aeruginosa in cancer treatment, and discusses the challenges and future perspectives of the P. aeruginosa-based therapeutic strategies.
Collapse
Affiliation(s)
- Zheng Pang
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Meng-Di Gu
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Tong Tang
- School of Art & Design, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| |
Collapse
|
21
|
Cytolysin A (ClyA): A Bacterial Virulence Factor with Potential Applications in Nanopore Technology, Vaccine Development, and Tumor Therapy. Toxins (Basel) 2022; 14:toxins14020078. [PMID: 35202106 PMCID: PMC8880466 DOI: 10.3390/toxins14020078] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 01/14/2022] [Accepted: 01/18/2022] [Indexed: 12/26/2022] Open
Abstract
Cytolysin A (ClyA) is a pore-forming toxin that is produced by some bacteria from the Enterobacteriaceae family. This review provides an overview of the current state of knowledge regarding ClyA, including the prevalence of the encoding gene and its transcriptional regulation, the secretion pathway used by the protein, and the mechanism of protein assembly, and highlights potential applications of ClyA in biotechnology. ClyA expression is regulated at the transcriptional level, primarily in response to environmental stressors, and ClyA can exist stably both as a soluble monomer and as an oligomeric membrane complex. At high concentrations, ClyA induces cytolysis, whereas at low concentrations ClyA can affect intracellular signaling. ClyA is secreted in outer membrane vesicles (OMVs), which has important implications for biotechnology applications. For example, the native pore-forming ability of ClyA suggests that it could be used as a component of nanopore-based technologies, such as sequencing platforms. ClyA has also been exploited in vaccine development owing to its ability to present antigens on the OMV surface and provoke a robust immune response. In addition, ClyA alone or OMVs carrying ClyA fusion proteins have been investigated for their potential use as anti-tumor agents.
Collapse
|
22
|
Ma Y, Qu R, Zhang Y, Jiang C, Zhang Z, Fu W. Progress in the Study of Colorectal Cancer Caused by Altered Gut Microbiota After Cholecystectomy. Front Endocrinol (Lausanne) 2022; 13:815999. [PMID: 35282463 PMCID: PMC8907136 DOI: 10.3389/fendo.2022.815999] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 02/01/2022] [Indexed: 12/26/2022] Open
Abstract
Epidemiological studies have found an increased incidence of colorectal cancer (CRC) in people who undergo cholecystectomy compared to healthy individuals. After cholecystectomy, bile enters the duodenum directly, unregulated by the timing of meals. Disruption of the balance of bile acid metabolism and increased production of primary bile acids, which in turn affects the composition and abundance of intestinal microorganisms. The link among cholecystectomy, the gut microbiota, and the occurrence and development of CRC is becoming clearer. However, due to the complexity of the microbial community, the mechanistic connections are less well understood. In this review, we summarize the changes of gut microbiota after cholecystectomy and illuminate the potential mechanisms on CRC, such as inflammation and immune regulation, production of genotoxins, metabolism of dietary ingredients, activation of signaling pathways, and so on. By reviewing these, we aimed to unravel the interactions between the gut microbiota and its host and be better positioned to develop treatments for CRC after cholecystectomy.
Collapse
Affiliation(s)
- Yanpeng Ma
- Department of General Surgery, Peking University Third Hospital, Beijing, China
- Cancer Center, Peking University Third Hospital, Beijing, China
| | - Ruize Qu
- Department of General Surgery, Peking University Third Hospital, Beijing, China
- Cancer Center, Peking University Third Hospital, Beijing, China
| | - Yi Zhang
- Department of General Surgery, Peking University Third Hospital, Beijing, China
- Cancer Center, Peking University Third Hospital, Beijing, China
| | - Changtao Jiang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing, China
- Key Laboratory of Molecular Cardiovascular Science (Peking University), Ministry of Education, Beijing, China
- Center of Basic Medical Research, Institute of Medical Innovation and Research, Third Hospital, Peking University, Beijing, China
- Center for Obesity and Metabolic Disease Research, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Zhipeng Zhang
- Department of General Surgery, Peking University Third Hospital, Beijing, China
- Cancer Center, Peking University Third Hospital, Beijing, China
- *Correspondence: Zhipeng Zhang, ; Wei Fu,
| | - Wei Fu
- Department of General Surgery, Peking University Third Hospital, Beijing, China
- Cancer Center, Peking University Third Hospital, Beijing, China
- *Correspondence: Zhipeng Zhang, ; Wei Fu,
| |
Collapse
|
23
|
ADP-ribosyl transferase activity and gamma radiation cytotoxicity of Pseudomonas aeruginosa exotoxin A. AMB Express 2021; 11:173. [PMID: 34936047 PMCID: PMC8695647 DOI: 10.1186/s13568-021-01332-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 12/10/2021] [Indexed: 11/28/2022] Open
Abstract
This work explores the ADP-ribosyltransferase activity of Pseudomonas (P.) aeruginosa exotoxin A using the guanyl hydrazone derivative, nitrobenzylidine aminoguanidine (NBAG) and the impact of gamma radiation on its efficacy. Unlike the conventional detection methods, NBAG was used as the acceptor of ADP ribose moiety instead of wheat germ extract elongation factor 2. Exotoxin A was extracted from P. aeruginosa clinical isolates and screened for toxA gene using standard PCR. NBAG was synthesized using aminoguanidine bicarbonate and 4-nitrobenzaldehyde and its identity has been confirmed by UV, FTIR, Mass and 13C-NMR spectroscopy. The ADP-ribosyl transferase activity of exotoxin A on NBAG in the presence of Nicotinamide adenine dinucleotide (NAD+) was recorded using UV spectroscopy and HPLC. In vitro ADP-ribosyl transferase activity of exotoxin A protein extract was also explored by monitoring its cytotoxicity on Hep-2 cells using sulforhodamine B cytotoxicity assay. Bacterial broths were irradiated at 5, 10, 15, 24 Gy and exotoxin A protein extract activity were assessed post exposure. Exotoxin A extract exerted an ADP-ribosyltransferase ability which was depicted by the appearance of a new ʎmax after the addition of exotoxin A to NBAG/NAD+ mixture, fragmentation of NAD+ and development of new peaks in HPLC chromatograms. Intracellular enzyme activity was confirmed by the prominent cytotoxic effects of exotoxin A extract on cultured cells. In conclusion, the activity of Exotoxin A can be monitored via its ADP-ribosyltransferase activity and low doses of gamma radiation reduced its activity. Therefore, coupling radiotherapy with exotoxin A in cancer therapy should be carefully monitored.
Collapse
|
24
|
Gupta KH, Nowicki C, Giurini EF, Marzo AL, Zloza A. Bacterial-Based Cancer Therapy (BBCT): Recent Advances, Current Challenges, and Future Prospects for Cancer Immunotherapy. Vaccines (Basel) 2021; 9:vaccines9121497. [PMID: 34960243 PMCID: PMC8707929 DOI: 10.3390/vaccines9121497] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 11/22/2021] [Indexed: 12/19/2022] Open
Abstract
Currently approximately 10 million people die each year due to cancer, and cancer is the cause of every sixth death worldwide. Tremendous efforts and progress have been made towards finding a cure for cancer. However, numerous challenges have been faced due to adverse effects of chemotherapy, radiotherapy, and alternative cancer therapies, including toxicity to non-cancerous cells, the inability of drugs to reach deep tumor tissue, and the persistent problem of increasing drug resistance in tumor cells. These challenges have increased the demand for the development of alternative approaches with greater selectivity and effectiveness against tumor cells. Cancer immunotherapy has made significant advancements towards eliminating cancer. Our understanding of cancer-directed immune responses and the mechanisms through which immune cells invade tumors have extensively helped us in the development of new therapies. Among immunotherapies, the application of bacteria and bacterial-based products has promising potential to be used as treatments that combat cancer. Bacterial targeting of tumors has been developed as a unique therapeutic option that meets the ongoing challenges of cancer treatment. In comparison with other cancer therapeutics, bacterial-based therapies have capabilities for suppressing cancer. Bacteria are known to accumulate and proliferate in the tumor microenvironment and initiate antitumor immune responses. We are currently well-informed regarding various methods by which bacteria can be manipulated by simple genetic engineering or synthetic bioengineering to induce the production of anti-cancer drugs. Further, bacterial-based cancer therapy (BBCT) can be either used as a monotherapy or in combination with other anticancer therapies for better clinical outcomes. Here, we review recent advances, current challenges, and prospects of bacteria and bacterial products in the development of BBCTs.
Collapse
Affiliation(s)
- Kajal H. Gupta
- Division of Hematology, Oncology, and Cell Therapy, Department of Internal Medicine, Rush University Medical Center, Chicago, IL 60612, USA; (K.H.G.); (C.N.); (E.F.G.); (A.L.M.)
- Division of Translational and Precision Medicine, Department of Internal Medicine, Rush University Medical Center, Chicago, IL 60612, USA
| | - Christina Nowicki
- Division of Hematology, Oncology, and Cell Therapy, Department of Internal Medicine, Rush University Medical Center, Chicago, IL 60612, USA; (K.H.G.); (C.N.); (E.F.G.); (A.L.M.)
- Division of Translational and Precision Medicine, Department of Internal Medicine, Rush University Medical Center, Chicago, IL 60612, USA
| | - Eileena F. Giurini
- Division of Hematology, Oncology, and Cell Therapy, Department of Internal Medicine, Rush University Medical Center, Chicago, IL 60612, USA; (K.H.G.); (C.N.); (E.F.G.); (A.L.M.)
- Division of Translational and Precision Medicine, Department of Internal Medicine, Rush University Medical Center, Chicago, IL 60612, USA
| | - Amanda L. Marzo
- Division of Hematology, Oncology, and Cell Therapy, Department of Internal Medicine, Rush University Medical Center, Chicago, IL 60612, USA; (K.H.G.); (C.N.); (E.F.G.); (A.L.M.)
- Division of Translational and Precision Medicine, Department of Internal Medicine, Rush University Medical Center, Chicago, IL 60612, USA
| | - Andrew Zloza
- Division of Hematology, Oncology, and Cell Therapy, Department of Internal Medicine, Rush University Medical Center, Chicago, IL 60612, USA; (K.H.G.); (C.N.); (E.F.G.); (A.L.M.)
- Division of Translational and Precision Medicine, Department of Internal Medicine, Rush University Medical Center, Chicago, IL 60612, USA
- Correspondence:
| |
Collapse
|
25
|
Fighting Cancer with Bacteria and Their Toxins. Int J Mol Sci 2021; 22:ijms222312980. [PMID: 34884780 PMCID: PMC8657867 DOI: 10.3390/ijms222312980] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/26/2021] [Accepted: 11/29/2021] [Indexed: 12/26/2022] Open
Abstract
Cancer is one of the most important global health problems that continues to demand new treatment strategies. Many bacteria that cause persistent infections play a role in carcinogenesis. However, since bacteria are well studied in terms of molecular mechanisms, they have been proposed as an interesting solution to treat cancer. In this review, we present the use of bacteria, and particularly bacterial toxins, in cancer therapy, highlighting the advantages and limitations of bacterial toxins. Proteomics, as one of the omics disciplines, is essential for the study of bacterial toxins. Advances in proteomics have contributed to better characterization of bacterial toxins, but also to the development of anticancer drugs based on bacterial toxins. In addition, we highlight the current state of knowledge in the rapidly developing field of bacterial extracellular vesicles, with a focus on their recent application as immunotherapeutic agents.
Collapse
|
26
|
Eijkenboom L, Palacio-Castañeda V, Groenman F, Braat D, Beerendonk C, Brock R, Verdurmen W, Peek R. Assessing the use of tumor-specific DARPin-toxin fusion proteins for ex vivo purging of cancer metastases from human ovarian cortex before autotransplantation. F&S SCIENCE 2021; 2:330-344. [PMID: 35559858 DOI: 10.1016/j.xfss.2021.09.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 09/16/2021] [Accepted: 09/17/2021] [Indexed: 06/15/2023]
Abstract
OBJECTIVE To assess the use of tumor-specific designed ankyrin repeat proteins (DARPins) fused to a domain of Pseudomonas aeruginosa exotoxin A for purging of cancer metastases from the ovarian cortex. DESIGN Experimental study. SETTING University medical center. PATIENT(S) Human ovarian cortex. INTERVENTION(S) Ovarian cortex harboring artificially induced breast cancer metastases was treated with DARPins targeted to epithelial cell adhesion molecule (EpCAM) and human epidermal growth factor receptor 2 (HER2). MAIN OUTCOME MEASURE(S) The presence of any remaining cancer cells after purging was analyzed by (immuno)histochemistry and reverse transcriptase polymerase chain reaction. Effects on the viability of the ovarian cortex were determined by (immuno)histology, a follicular viability assay, and an assay to determine the in vitro growth capacity of small follicles. RESULT(S) After purging with EpCAM-targeted DARPin, all EpCAM-positive breast cancer cells were eradicated from the ovarian cortex. Although treatment had no effect on the morphology or viability of small follicles, a sharp decrease in oocyte viability during in vitro growth was observed, presumably due to low-level expression of EpCAM on oocytes. The HER2-targeted DARPins had no detrimental effects on the morphology, viability, or in vitro growth of small follicles. HER2-positive breast cancer foci were fully eliminated from the ovarian cortex, and the reverse transcriptase polymerase chain reaction showed a decrease to basal levels of HER2 mRNA after purging. CONCLUSION(S) Purging cancer metastases from ovarian cortex without impairing ovarian tissue integrity is possible by targeting tumor cell surface proteins with exotoxin A-fused DARPins. By adapting the target specificity of the cytotoxic DARPin fusions, it should be possible to eradicate metastases from all types of malignancies.
Collapse
Affiliation(s)
- Lotte Eijkenboom
- Department of Obstetrics and Gynaecology, Radboud University Medical Center, Nijmegen, Netherlands.
| | - Valentina Palacio-Castañeda
- Department of Biochemistry, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Freek Groenman
- Department of Obstetrics and Gynecology, Amsterdam University Medical Center, Location Vrije Universiteit, Amsterdam, Netherlands
| | - Didi Braat
- Department of Obstetrics and Gynaecology, Radboud University Medical Center, Nijmegen, Netherlands
| | - Catharina Beerendonk
- Department of Obstetrics and Gynaecology, Radboud University Medical Center, Nijmegen, Netherlands
| | - Roland Brock
- Department of Biochemistry, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands; Department of Medical Biochemistry, College of Medicine and Medical Sciences, Arabian Gulf University, Kingdom of Bahrain
| | - Wouter Verdurmen
- Department of Biochemistry, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Ronald Peek
- Department of Obstetrics and Gynaecology, Radboud University Medical Center, Nijmegen, Netherlands
| |
Collapse
|
27
|
Bacterial-based cancer therapy: An emerging toolbox for targeted drug/gene delivery. Biomaterials 2021; 277:121124. [PMID: 34534860 DOI: 10.1016/j.biomaterials.2021.121124] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 08/30/2021] [Accepted: 09/07/2021] [Indexed: 01/01/2023]
Abstract
Precise targeting and high therapeutic efficiency are the major requisites of personalized cancer treatment. However, some unique features of the tumor microenvironment (TME) such as hypoxia, low pH and elevated interstitial fluid pressure cause cancer cells resistant to most therapies. Bacteria are increasingly being considered for targeted tumor therapy owing to their intrinsic tumor tropism, high motility as well as the ability to rapidly colonize in the favorable TME. Compared to other nano-strategies using peptides, aptamers, and other biomolecules, tumor-targeting bacteria are largely unaffected by the tumor cells and microenvironment. On the contrary, the hypoxic TME is highly conducive to the growth of facultative anaerobes and obligate anaerobes. Live bacteria can be further integrated with anti-cancer drugs and nanomaterials to increase the latter's targeted delivery and accumulation in the tumors. Furthermore, anaerobic and facultatively anaerobic bacteria have also been combined with other anti-cancer therapies to enhance therapeutic effects. In this review, we have summarized the applications and advantages of using bacteria for targeted tumor therapy (Scheme 1) in order to aid in the design of novel intelligent drug delivery systems. The current challenges and future prospects of tumor-targeting bacterial nanocarriers have also been discussed.
Collapse
|
28
|
Mohamed MF, Wood SJ, Roy R, Reiser J, Kuzel TM, Shafikhani SH. Pseudomonas aeruginosa ExoT induces G1 cell cycle arrest in melanoma cells. Cell Microbiol 2021; 23:e13339. [PMID: 33821556 PMCID: PMC8277761 DOI: 10.1111/cmi.13339] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 03/31/2021] [Accepted: 04/01/2021] [Indexed: 12/19/2022]
Abstract
Recently, we demonstrated that Pseudomonas aeruginosa Exotoxin T (ExoT) employs two distinct mechanisms to induce potent apoptotic cytotoxicity in a variety of cancer cell lines. We further demonstrated that it can significantly reduce tumour growth in an animal model for melanoma. During these studies, we observed that melanoma cells that were transfected with ExoT failed to undergo mitosis, regardless of whether they eventually succumbed to ExoT-induced apoptosis or survived in ExoT's presence. In this report, we sought to investigate ExoT's antiproliferative activity in melanoma. We delivered ExoT into B16 melanoma cells by bacteria (to show necessity) and by transfection (to show sufficiency). Our data indicate that ExoT exerts a potent antiproliferative function in melanoma cells. We show that ExoT causes cell cycle arrest in G1 interphase in melanoma cells by dampening the G1/S checkpoint proteins. Our data demonstrate that both domains of ExoT; (the ADP-ribosyltransferase (ADPRT) domain and the GTPase activating protein (GAP) domain); contribute to ExoT-induced G1 cell cycle arrest in melanoma. Finally, we show that the ADPRT-induced G1 cell cycle arrest in melanoma cells likely involves the Crk adaptor protein. Our data reveal a novel virulence function for ExoT and further highlight the therapeutic potential of ExoT against cancer.
Collapse
Affiliation(s)
- Mohamed F. Mohamed
- Department of Medicine/ Division of Hematology/Oncology/Cell Therapy, Rush University Medical Center, Chicago, IL, USA
- Department of Bacteriology, Mycology and Immunology, Faculty of Veterinary Medicine, Beni-Suef University, Egypt
| | - Stephen J. Wood
- Department of Microbial Pathogens and Immunity, Rush University Medical Center, Chicago, IL, USA
| | - Ruchi Roy
- Department of Medicine/ Division of Hematology/Oncology/Cell Therapy, Rush University Medical Center, Chicago, IL, USA
| | - Jochen Reiser
- Department of Medicine/ Division of Hematology/Oncology/Cell Therapy, Rush University Medical Center, Chicago, IL, USA
| | - Timothy M. Kuzel
- Department of Medicine/ Division of Hematology/Oncology/Cell Therapy, Rush University Medical Center, Chicago, IL, USA
| | - Sasha H. Shafikhani
- Department of Medicine/ Division of Hematology/Oncology/Cell Therapy, Rush University Medical Center, Chicago, IL, USA
- Department of Microbial Pathogens and Immunity, Rush University Medical Center, Chicago, IL, USA
- Cancer Center, Rush University Medical Center, Chicago, IL, USA
| |
Collapse
|
29
|
Liu W, Nestorovich EM. Anthrax toxin channel: What we know based on over 30 years of research. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2021; 1863:183715. [PMID: 34332985 DOI: 10.1016/j.bbamem.2021.183715] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 07/21/2021] [Accepted: 07/24/2021] [Indexed: 10/20/2022]
Abstract
Protective antigen channel is the central component of the deadly anthrax exotoxin responsible for binding and delivery of the toxin's enzymatic lethal and edema factor components into the cytosol. The channel, which is more than three times longer than the lipid bilayer membrane thickness and has a 6-Å limiting diameter, is believed to provide a sophisticated unfoldase and translocase machinery for the foreign protein transport into the host cell cytosol. The tripartite toxin can be reengineered, one component at a time or collectively, to adapt it for the targeted cancer therapeutic treatments. In this review, we focus on the biophysical studies of the protective antigen channel-forming activity, small ion transport properties, enzymatic factor translocation, and blockage comparing it with the related clostridial binary toxin channels. We address issues linked to the anthrax toxin channel structural dynamics and lipid dependence, which are yet to become generally recognized as parts of the toxin translocation machinery.
Collapse
Affiliation(s)
- Wenxing Liu
- Department of Biology, The Catholic University of America, 620 Michigan Ave, Washington, DC 20064, USA
| | - Ekaterina M Nestorovich
- Department of Biology, The Catholic University of America, 620 Michigan Ave, Washington, DC 20064, USA.
| |
Collapse
|
30
|
Ras Isoforms from Lab Benches to Lives-What Are We Missing and How Far Are We? Int J Mol Sci 2021; 22:ijms22126508. [PMID: 34204435 PMCID: PMC8233758 DOI: 10.3390/ijms22126508] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 06/09/2021] [Accepted: 06/11/2021] [Indexed: 11/21/2022] Open
Abstract
The central protein in the oncogenic circuitry is the Ras GTPase that has been under intense scrutiny for the last four decades. From its discovery as a viral oncogene and its non-oncogenic contribution to crucial cellular functioning, an elaborate genetic, structural, and functional map of Ras is being created for its therapeutic targeting. Despite decades of research, there still exist lacunae in our understanding of Ras. The complexity of the Ras functioning is further exemplified by the fact that the three canonical Ras genes encode for four protein isoforms (H-Ras, K-Ras4A, K-Ras4B, and N-Ras). Contrary to the initial assessment that the H-, K-, and N-Ras isoforms are functionally similar, emerging data are uncovering crucial differences between them. These Ras isoforms exhibit not only cell-type and context-dependent functions but also activator and effector specificities on activation by the same receptor. Preferential localization of H-, K-, and N-Ras in different microdomains of the plasma membrane and cellular organelles like Golgi, endoplasmic reticulum, mitochondria, and endosome adds a new dimension to isoform-specific signaling and diverse functions. Herein, we review isoform-specific properties of Ras GTPase and highlight the importance of considering these towards generating effective isoform-specific therapies in the future.
Collapse
|
31
|
Mughal MJ, Kwok HF. Multidimensional role of bacteria in cancer: Mechanisms insight, diagnostic, preventive and therapeutic potential. Semin Cancer Biol 2021; 86:1026-1044. [PMID: 34119644 DOI: 10.1016/j.semcancer.2021.06.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 05/28/2021] [Accepted: 06/08/2021] [Indexed: 02/08/2023]
Abstract
The active role of bacteria in oncogenesis has long been a topic of debate. Although, it was speculated to be a transmissible cause of cancer as early as the 16th-century, yet the idea about the direct involvement of bacteria in cancer development has only been explored in recent decades. More recently, several studies have uncovered the mechanisms behind the carcinogenic potential of bacteria which are inflammation, immune evasion, pro-carcinogenic metabolite production, DNA damage and genomic instability. On the other side, the recent development on the understanding of tumor microenvironment and technological advancements has turned this enemy into an ally. Studies using bacteria for cancer treatment and detection have shown noticeable effects. Therapeutic abilities of bioengineered live bacteria such as high specificity, selective cytotoxicity to cancer cells, responsiveness to external signals and control after ingestion have helped to overcome the challenges faced by conventional cancer therapies and highlighted the bacterial based therapy as an ideal approach for cancer treatment. In this review, we have made an effort to compile substantial evidence to support the multidimensional role of bacteria in cancer. We have discussed the multifaceted role of bacteria in cancer by highlighting the wide impact of bacteria on different cancer types, their mechanisms of actions in inducing carcinogenicity, followed by the diagnostic and therapeutic potential of bacteria in cancers. Moreover, we have also highlighted the existing gaps in the knowledge of the association between bacteria and cancer as well as the limitation and advantage of bacteria-based therapies in cancer. A better understanding of these multidimensional roles of bacteria in cancer can open up the new doorways to develop early detection strategies, prevent cancer, and develop therapeutic tactics to cure this devastating disease.
Collapse
Affiliation(s)
- Muhammad Jameel Mughal
- Cancer Centre, Faculty of Health Sciences, University of Macau, Avenida de Universidade, Taipa, Macau
| | - Hang Fai Kwok
- Cancer Centre, Faculty of Health Sciences, University of Macau, Avenida de Universidade, Taipa, Macau; MOE Frontiers Science Center for Precision Oncology, University of Macau, Avenida de Universidade, Taipa, Macau.
| |
Collapse
|
32
|
Attri P, Kaushik NK, Kaushik N, Hammerschmid D, Privat-Maldonado A, De Backer J, Shiratani M, Choi EH, Bogaerts A. Plasma treatment causes structural modifications in lysozyme, and increases cytotoxicity towards cancer cells. Int J Biol Macromol 2021; 182:1724-1736. [PMID: 34051258 DOI: 10.1016/j.ijbiomac.2021.05.146] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 05/19/2021] [Accepted: 05/21/2021] [Indexed: 02/07/2023]
Abstract
Bacterial and mammalian proteins, such as lysozyme, are gaining increasing interest as anticancer drugs. This study aims to modify the lysozyme structure using cold atmospheric plasma to boost its cancer cell killing effect. We investigated the structure at acidic and neutral pH using various experimental techniques (circular dichroism, fluorescence, and mass spectrometry) and molecular dynamics simulations. The controlled structural modification of lysozyme at neutral pH enhances its activity, while the activity was lost at acidic pH at the same treatment conditions. Indeed, a larger number of amino acids were oxidized at acidic pH after plasma treatment, which results in a greater distortion of the lysozyme structure, whereas only limited structural changes were observed in lysozyme after plasma treatment at neutral pH. We found that the plasma-treated lysozyme significantly induced apoptosis to the cancer cells. Our results reveal that plasma-treated lysozyme could have potential as a new cancer cell killing drug.
Collapse
Affiliation(s)
- Pankaj Attri
- Center of Plasma Nano-interface Engineering, Kyushu University, Fukuoka 819-0395, Japan; Graduate School of Information Science and Electrical Engineering, Kyushu University, Fukuoka 819-0395, Japan; Research Group PLASMANT, Department of Chemistry, University of Antwerp, Antwerp, Belgium.
| | - Nagendra Kumar Kaushik
- Department of Electrical and Biological Physics, Kwangwoon University, Seoul 01897, Republic of Korea
| | - Neha Kaushik
- Department of Biotechnology, College of Engineering, University of Suwon, Hwaseong 18323, Republic of Korea
| | - Dietmar Hammerschmid
- Research Group PPES, Department of Biomedical Sciences, University of Antwerp, Universiteitsplein 1, Antwerp, Belgium
| | | | - Joey De Backer
- Research Group PPES, Department of Biomedical Sciences, University of Antwerp, Universiteitsplein 1, Antwerp, Belgium
| | - Masaharu Shiratani
- Center of Plasma Nano-interface Engineering, Kyushu University, Fukuoka 819-0395, Japan; Graduate School of Information Science and Electrical Engineering, Kyushu University, Fukuoka 819-0395, Japan
| | - Eun Ha Choi
- Department of Electrical and Biological Physics, Kwangwoon University, Seoul 01897, Republic of Korea
| | - Annemie Bogaerts
- Research Group PLASMANT, Department of Chemistry, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
33
|
Abstract
The natural world has provided a host of materials and inspiration for the field of nanomedicine. By taking design cues from naturally occurring systems, the nanoengineering of advanced biomimetic platforms has significantly accelerated over the past decade. In particular, the biomimicry of bacteria, with their motility, taxis, immunomodulation, and overall dynamic host interactions, has elicited substantial interest and opened up exciting avenues of research. More recently, advancements in genetic engineering have given way to more complex and elegant systems with tunable control characteristics. Furthermore, bacterial derivatives such as membrane ghosts, extracellular vesicles, spores, and toxins have proven advantageous for use in nanotherapeutic applications, as they preserve many of the features from the original bacteria while also offering distinct advantages. Overall, bacteria-inspired nanomedicines can be employed in a range of therapeutic settings, from payload delivery to immunotherapy, and have proven successful in combatting both cancer and infectious disease.
Collapse
Affiliation(s)
- Maya Holay
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA
| | - Zhongyuan Guo
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA
| | - Jessica Pihl
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA
| | - Jiyoung Heo
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA
| | - Joon Ho Park
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA
| | - Ronnie H. Fang
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA
| | - Liangfang Zhang
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
34
|
Vannini E, Mori E, Tantillo E, Schmidt G, Caleo M, Costa M. CTX-CNF1 Recombinant Protein Selectively Targets Glioma Cells In Vivo. Toxins (Basel) 2021; 13:194. [PMID: 33800135 PMCID: PMC7998600 DOI: 10.3390/toxins13030194] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 02/24/2021] [Accepted: 02/25/2021] [Indexed: 01/11/2023] Open
Abstract
Current strategies for glioma treatment are only partly effective because of the poor selectivity for tumoral cells. Hence, the necessity to identify novel approaches is urgent. Recent studies highlighted the effectiveness of the bacterial protein cytotoxic necrotizing factor 1 (CNF1) in reducing tumoral mass, increasing survival of glioma-bearing mice and protecting peritumoral neural tissue from dysfunction. However, native CNF1 needs to be delivered into the brain, because of its incapacity to cross the blood-brain barrier (BBB) per se, thus hampering its clinical translation. To allow a non-invasive administration of CNF1, we here developed a chimeric protein (CTX-CNF1) conjugating CNF1 with chlorotoxin (CTX), a peptide already employed in clinics due to its ability of passing the BBB and selectively binding glioma cells. After systemic administration, we found that CTX-CNF1 is able to target glioma cells and significantly prolong survival of glioma-bearing mice. Our data point out the potentiality of CTX-CNF1 as a novel effective tool to treat gliomas.
Collapse
Affiliation(s)
- Eleonora Vannini
- Neuroscience Institute, National Research Council (CNR), via G. Moruzzi 1, 56124 Pisa, Italy; (E.T.); (M.C.); (M.C.)
- Fondazione Umberto Veronesi, 20122 Milan, Italy
| | | | - Elena Tantillo
- Neuroscience Institute, National Research Council (CNR), via G. Moruzzi 1, 56124 Pisa, Italy; (E.T.); (M.C.); (M.C.)
| | - Gudula Schmidt
- Medizinische Fakultät, Institut für Experimentelle und Klinische Pharmakologie und Toxikologie, University of Freiburg, 79085 Freiburg, Germany;
| | - Matteo Caleo
- Neuroscience Institute, National Research Council (CNR), via G. Moruzzi 1, 56124 Pisa, Italy; (E.T.); (M.C.); (M.C.)
- Department of Biomedical Sciences, University of Padua, 35122 Padua, Italy
| | - Mario Costa
- Neuroscience Institute, National Research Council (CNR), via G. Moruzzi 1, 56124 Pisa, Italy; (E.T.); (M.C.); (M.C.)
| |
Collapse
|
35
|
Desai SA, Manjappa A, Khulbe P. Drug delivery nanocarriers and recent advances ventured to improve therapeutic efficacy against osteosarcoma: an overview. J Egypt Natl Canc Inst 2021; 33:4. [PMID: 33555490 DOI: 10.1186/s43046-021-00059-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 01/18/2021] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Osteosarcoma (OS) is one of the key cancers affecting the bone tissues, primarily occurred in children and adolescence. Recently, chemotherapy followed by surgery and then post-operative adjuvant chemotherapy is widely used for the treatment of OS. However, the lack of selectivity and sensitivity to tumor cells, the development of multi-drug resistance (MDR), and dangerous side effects have restricted the use of chemotherapeutics. MAIN BODY There is an unmet need for novel drug delivery strategies for effective treatment and management of OS. Advances in nanotechnology have led to momentous progress in the design of tumor-targeted drug delivery nanocarriers (NCs) as well as functionalized smart NCs to achieve targeting and to treat OS effectively. The present review summarizes the drug delivery challenges in OS, and how organic nanoparticulate approaches are useful in overcoming barriers will be explained. The present review describes the various organic nanoparticulate approaches such as conventional nanocarriers, stimuli-responsive NCs, and ligand-based active targeting strategies tested against OS. The drug conjugates prepared with copolymer and ligand having bone affinity, and advanced promising approaches such as gene therapy, gene-directed enzyme prodrug therapy, and T cell therapy tested against OS along with their reported limitations are also briefed in this review. CONCLUSION The nanoparticulate drugs, drug conjugates, and advanced therapies such as gene therapy, and T cell therapy have promising and potential application in the effective treatment of OS. However, many of the above approaches are still at the preclinical stage, and there is a long transitional period before their clinical application.
Collapse
Affiliation(s)
- Sujit Arun Desai
- School of Pharmacy, Suresh Gyan Vihar University, Mahal Rd, Mahal, Jagatpura, Jaipur, Rajasthan, 302017, India. .,Annasaheb Dange College of D Pharmacy, Ashta, Tal: Walwa, Dist., Sangli, Maharashtra, 416301, India.
| | - Arehalli Manjappa
- Tatyasaheb Kore College of Pharmacy, Warananagar, Tal: Panhala, Dist., Kolhapur, Maharashtra, 416113, India
| | - Preeti Khulbe
- School of Pharmacy, Suresh Gyan Vihar University, Mahal Rd, Mahal, Jagatpura, Jaipur, Rajasthan, 302017, India
| |
Collapse
|
36
|
Chen YA, Lai YR, Wu HY, Lo YJ, Chang YF, Hung CL, Lin CJ, Lo UG, Lin H, Hsieh JT, Chiu CH, Lin YH, Lai CH. Bacterial Genotoxin-Coated Nanoparticles for Radiotherapy Sensitization in Prostate Cancer. Biomedicines 2021; 9:biomedicines9020151. [PMID: 33557143 PMCID: PMC7913852 DOI: 10.3390/biomedicines9020151] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/17/2021] [Accepted: 01/20/2021] [Indexed: 12/25/2022] Open
Abstract
Prostate cancer (PCa) is one of the most commonly diagnosed cancers in men and usually becomes refractory because of recurrence and metastasis. CD44, a transmembrane glycoprotein, serves as a receptor for hyaluronic acid (HA). It has been found to be abundantly expressed in cancer stem cells (CSCs) that often exhibit a radioresistant phenotype. Cytolethal distending toxin (CDT), produced by Campylobacter jejuni, is a tripartite genotoxin composed of CdtA, CdtB, and CdtC subunits. Among the three, CdtB acts as a type I deoxyribonuclease (DNase I), which creates DNA double-strand breaks (DSBs). Nanoparticles loaded with antitumor drugs and specific ligands that recognize cancerous cell receptors are promising methods to overcome the therapeutic challenges. In this study, HA-decorated nanoparticle-encapsulated CdtB (HA-CdtB-NPs) were prepared and their targeted therapeutic activity in radioresistant PCa cells was evaluated. Our results showed that HA-CdtB-NPs sensitized radioresistant PCa cells by enhancing DSB and causing G2/M cell-cycle arrest, without affecting the normal prostate epithelial cells. HA-CdtB-NPs possess maximum target specificity and delivery efficiency of CdtB into the nucleus and enhance the effect of radiation in radioresistant PCa cells. These findings demonstrate that HA-CdtB-NPs exert target specificity accompanied with radiomimetic activity and can be developed as an effective strategy against radioresistant PCa.
Collapse
Affiliation(s)
- Yu-An Chen
- Department of Microbiology and Immunology, Graduate Institute of Biomedical Sciences, Chang Gung University, Taoyuan 33302, Taiwan; (Y.-A.C.); (Y.-R.L.); (H.-Y.W.); (Y.-J.L.); (Y.-F.C.)
- Department of Life Sciences, National Chung Hsing University, Taichung 40227, Taiwan;
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; (C.-J.L.); (U.-G.L.); (J.-T.H.)
| | - Yi-Ru Lai
- Department of Microbiology and Immunology, Graduate Institute of Biomedical Sciences, Chang Gung University, Taoyuan 33302, Taiwan; (Y.-A.C.); (Y.-R.L.); (H.-Y.W.); (Y.-J.L.); (Y.-F.C.)
| | - Hui-Yu Wu
- Department of Microbiology and Immunology, Graduate Institute of Biomedical Sciences, Chang Gung University, Taoyuan 33302, Taiwan; (Y.-A.C.); (Y.-R.L.); (H.-Y.W.); (Y.-J.L.); (Y.-F.C.)
| | - Yen-Ju Lo
- Department of Microbiology and Immunology, Graduate Institute of Biomedical Sciences, Chang Gung University, Taoyuan 33302, Taiwan; (Y.-A.C.); (Y.-R.L.); (H.-Y.W.); (Y.-J.L.); (Y.-F.C.)
| | - Yu-Fang Chang
- Department of Microbiology and Immunology, Graduate Institute of Biomedical Sciences, Chang Gung University, Taoyuan 33302, Taiwan; (Y.-A.C.); (Y.-R.L.); (H.-Y.W.); (Y.-J.L.); (Y.-F.C.)
| | - Chiu-Lien Hung
- Targeted Drug and Delivery Technology Division, Biomedical Technology and Device Research Laboratories, Industrial Technology Research Institute, Hsinchu 30011, Taiwan;
| | - Chun-Jung Lin
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; (C.-J.L.); (U.-G.L.); (J.-T.H.)
| | - U-Ging Lo
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; (C.-J.L.); (U.-G.L.); (J.-T.H.)
| | - Ho Lin
- Department of Life Sciences, National Chung Hsing University, Taichung 40227, Taiwan;
| | - Jer-Tsong Hsieh
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; (C.-J.L.); (U.-G.L.); (J.-T.H.)
- Department of Medical Research, School of Medicine, China Medical University and Hospital, Taichung 40447, Taiwan
| | - Cheng-Hsun Chiu
- Department of Microbiology and Immunology, Graduate Institute of Biomedical Sciences, Chang Gung University, Taoyuan 33302, Taiwan; (Y.-A.C.); (Y.-R.L.); (H.-Y.W.); (Y.-J.L.); (Y.-F.C.)
- Molecular Infectious Disease Research Center, Department of Pediatrics, Chang Gung Memorial Hospital, Linkou 33305, Taiwan
- Correspondence: (C.-H.C.); (Y.-H.L.); (C.-H.L.)
| | - Yu-Hsin Lin
- Department of Medical Research, School of Medicine, China Medical University and Hospital, Taichung 40447, Taiwan
- Center for Advanced Pharmaceutics and Drug Delivery Research, Department and Institute of Pharmacology, Institute of Biopharmaceutical Sciences, Faculty of Pharmacy, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan
- Correspondence: (C.-H.C.); (Y.-H.L.); (C.-H.L.)
| | - Chih-Ho Lai
- Department of Microbiology and Immunology, Graduate Institute of Biomedical Sciences, Chang Gung University, Taoyuan 33302, Taiwan; (Y.-A.C.); (Y.-R.L.); (H.-Y.W.); (Y.-J.L.); (Y.-F.C.)
- Department of Medical Research, School of Medicine, China Medical University and Hospital, Taichung 40447, Taiwan
- Molecular Infectious Disease Research Center, Department of Pediatrics, Chang Gung Memorial Hospital, Linkou 33305, Taiwan
- Department of Nursing, Asia University, Taichung 41354, Taiwan
- Correspondence: (C.-H.C.); (Y.-H.L.); (C.-H.L.)
| |
Collapse
|
37
|
Wang W, Tan X, Jiang J, Cai Y, Feng F, Zhang L, Li W. Targeted biological effect of an affitoxin composed of an HPV16E7 affibody fused with granzyme B (ZHPV16E7-GrB) against cervical cancer in vitro and in vivo. Curr Cancer Drug Targets 2020; 21:CCDT-EPUB-112118. [PMID: 33292132 DOI: 10.2174/1568009620666201207145720] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 10/17/2020] [Accepted: 10/25/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND High risk type 16 of human papillomavirus (HPV16) is associated with 50% of cervical cancer, for which reliable targeted therapies are lacking. HPV early protein 7 (E7) is an oncoprotein responsible for cell malignant transformation. In our previous work, a highly specific affibody targeting HPV16E7 (ZHPV16E7) was developed. OBJECTIVE In order to improve the targeted therapeutic effect, the present study prepared an affitoxin consisting of ZHPV16E7 fused with granzyme B (GrB), namely, ZHPV16E7-GrB, and evaluated its targeting action in vitro and in vivo. METHODS The ZHPV16E7-GrB fusion protein was produced in a prokaryotic expression system. The targeted binding properties of the ZHPV16E7-GrB to the HPV16E7 were confirmed by immunofluorescence assay (IFA) in cervical cancer cell lines, by immunohistochemical assay (IHA) in cervical cancer tissue from clinical specimens and by near-infrared imaging in tumour-bearing mice. The anti-tumour effect on both cervical cancer cells in vitro and tumour-bearing mice in vivo were further evaluated. RESULTS A 34-kDa ZHPV16E7-GrB fusion protein was produced in E. coli and displayed corresponding immunoreactivity. IFA revealed that ZHPV16E7-GrB bound specifically to HPV16-positive TC-1 and SiHa cells. IHA showed that ZHPV16E7-GrB also bound specifically to HPV16-positive clinical tissue specimens. In addition, the near-infrared imaging results showed that ZHPV16E7-GrB was enriched in tumour tissues. Moreover, both the ZHPV16E7-GrB affitoxin and ZHPV16E7 affibody (without GrB) significantly reduced the proliferation of cervical cancer cells in vitro and tumour-bearing mice in vivo, and the antiproliferative effect of ZHPV16E7-GrB was higher than that of the ZHPV16E7 affibody. CONCLUSIONS The affitoxin by coupling the affibody with GrB is a promising targeted therapeutic agent with the dual advantages of the targeted affibody and the GrB cytotoxin.
Collapse
Affiliation(s)
- Wenhuan Wang
- Wenzhou Key Laboratory of Gynecology and Obstetrics, Wenzhou People's Hospital, Wenzhou, Zhejiang Province. China
| | - Xiaochun Tan
- Department of Microbiology and Immunology, Wenzhou Medical University, Wenzhou, Zhejiang Province. China
| | - Jie Jiang
- Department of Microbiology and Immunology, Wenzhou Medical University, Wenzhou, Zhejiang Province. China
| | - Yiqi Cai
- Department of Microbiology and Immunology, Wenzhou Medical University, Wenzhou, Zhejiang Province. China
| | - Fangfang Feng
- Department of Microbiology and Immunology, Wenzhou Medical University, Wenzhou, Zhejiang Province. China
| | - Lifang Zhang
- Department of Microbiology and Immunology, Wenzhou Medical University, Wenzhou, Zhejiang Province. China
| | - Wenshu Li
- Department of Microbiology and Immunology, Wenzhou Medical University, Wenzhou, Zhejiang Province. China
| |
Collapse
|
38
|
Azizian K, Pustokhina I, Ghanavati R, Hamblin MR, Amini A, Kouhsari E. The potential use of theranostic bacteria in cancer. J Cell Physiol 2020; 236:4184-4194. [PMID: 33174198 DOI: 10.1002/jcp.30152] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/04/2020] [Accepted: 10/29/2020] [Indexed: 02/06/2023]
Abstract
Conventional chemotherapy approaches have not been fully successful in the treatment of cancer, due to limitations imposed by the pathophysiology of solid tumors, leading to nonspecific drug uptake by healthy cells, poor bioavailability, and toxicity. Thus, novel therapeutic modalities for more efficient cancer treatment are urgently required. Living bacteria can be used as a theranostic approach for the simultaneous diagnosis and therapy of tumors. Herein, we summarize the currently available literature focused on the advantages and challenges for the use of theranostic bacteria in cancer therapy.
Collapse
Affiliation(s)
- Khalil Azizian
- Department of Laboratory Sciences, Sirjan School of Medical Sciences, Sirjan, Iran
| | - Inna Pustokhina
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | | | - Michael R Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, Massachusetts, USA.,Department of Dermatology, Harvard Medical School, Boston, Massachusetts, USA.,Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein, South Africa
| | - Abolfazl Amini
- Department of Medical Biotechnology, Faculty of Advanced Technologies in Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| | - Ebrahim Kouhsari
- Laboratory Sciences Research Center, Golestan University of Medical Sciences, Gorgan, Iran.,Department of Laboratory Sciences, Faculty of Paramedicine, Golestan University of Medical Sciences, Gorgan, Iran
| |
Collapse
|
39
|
Sadeghpour SD, Karimi F, Alizadeh H. Predictive and fluorescent nanosensing experimental methods for evaluating anthrax protective antigen and lethal factor interactions for therapeutic applications. Int J Biol Macromol 2020; 160:1158-1167. [DOI: 10.1016/j.ijbiomac.2020.05.190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 05/22/2020] [Accepted: 05/22/2020] [Indexed: 10/24/2022]
|
40
|
Gut Microbiota and Colon Cancer: A Role for Bacterial Protein Toxins? Int J Mol Sci 2020; 21:ijms21176201. [PMID: 32867331 PMCID: PMC7504354 DOI: 10.3390/ijms21176201] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 08/25/2020] [Accepted: 08/26/2020] [Indexed: 02/06/2023] Open
Abstract
Accumulating evidence indicates that the human intestinal microbiota can contribute to the etiology of colorectal cancer. Triggering factors, including inflammation and bacterial infections, may favor the shift of the gut microbiota from a mutualistic to a pro-carcinogenic configuration. In this context, certain bacterial pathogens can exert a pro-tumoral activity by producing enzymatically-active protein toxins that either directly induce host cell DNA damage or interfere with essential host cell signaling pathways involved in cell proliferation, apoptosis, and inflammation. This review is focused on those toxins that, by mimicking carcinogens and cancer promoters, could represent a paradigm for bacterially induced carcinogenesis.
Collapse
|
41
|
Dróżdż M, Makuch S, Cieniuch G, Woźniak M, Ziółkowski P. Obligate and facultative anaerobic bacteria in targeted cancer therapy: Current strategies and clinical applications. Life Sci 2020; 261:118296. [PMID: 32822716 DOI: 10.1016/j.lfs.2020.118296] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 08/06/2020] [Accepted: 08/15/2020] [Indexed: 02/07/2023]
Abstract
Traditional methods for cancer therapy, including radiotherapy, chemotherapy, and immunotherapy are characterized by inherent limitations. Bacteria-mediated tumor therapy is becoming a promising approach in cancer treatment due to the ability of obligate or facultative anaerobic microorganisms to penetrate and proliferate in hypoxic regions of tumors. It is widely known that anaerobic bacteria cause the regression of tumors and inhibition of metastasis through a variety of mechanisms, including toxin production, anaerobic lifestyle and synergy with anti-cancer drugs. These features have the potential to be used as a supplement to conventional cancer treatment. To the best of our knowledge, no reports have been published regarding the most common tumor-targeting bacterial agents with special consideration of obligate anaerobes (such as Clostridium sp., Bifidobacterium sp.) and facultative anaerobes (including Salmonella sp., Listeria monocytogenes, Lactobacillus sp., Escherichia coli, Corynebacterium diphtheriae and Pseudomonas sp). In this review, we summarize the latest literature on the role of these bacteria in cancer treatment.
Collapse
Affiliation(s)
- Mateusz Dróżdż
- Department of Microbiology, Institute of Genetics and Microbiology, Wroclaw, Poland
| | - Sebastian Makuch
- Department of Pathology, Wroclaw Medical University, Wroclaw, Poland.
| | - Gabriela Cieniuch
- Department of Microbiology, Institute of Genetics and Microbiology, Wroclaw, Poland
| | - Marta Woźniak
- Department of Pathology, Wroclaw Medical University, Wroclaw, Poland
| | - Piotr Ziółkowski
- Department of Pathology, Wroclaw Medical University, Wroclaw, Poland
| |
Collapse
|
42
|
Aminnezhad S, Abdi-Ali A, Ghazanfari T, Bandehpour M, Zarrabi M. Immunoinformatics design of multivalent chimeric vaccine for modulation of the immune system in Pseudomonas aeruginosa infection. INFECTION GENETICS AND EVOLUTION 2020; 85:104462. [PMID: 32682863 DOI: 10.1016/j.meegid.2020.104462] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 06/20/2020] [Accepted: 07/11/2020] [Indexed: 11/19/2022]
Abstract
Increasing in drug-resistant Pseudomonas aeruginosa and high mortality and morbidity rate have become a health challenge worldwide; therefore, developing the novel therapeutic strategies such as immunogenic vaccine candidate are required. Despite a substantial research effort, the future of immunization against P. aeruginosa due to failure in covering two separate stages of infection, and furthermore, inducing ineffective type of immune response, still remains controversial. In this study, immunoinformatics approach was utilized to design multivalent chimeric vaccine from both stages of infection containing Lectin, HIV TAT peptide, N-terminal fragment of exotoxin A and Epi8 of outer membrane protein F (OprF) with hydrophobic linkers which have a high density of B-cell, T Lymphocytes (HTL), T Lymphocytes (CTL), and IFN-γ epitopes. The physicochemical properties, antigenicity, and allergenicity for designed vaccine were analyzed. 3D model generation and refinement further validation of the final vaccine were followed by computational docking with molecular dynamics analyses that demonstrated high- affinity interaction between vaccine and TLR-4. Finally, designed vaccine was in silico cloned in pET22b. We have expected that the designed vaccine able to elucidate innate, humoral and cellular innate immune responses and control the interaction of P. aeruginosa with host and maybe overcome to P. aeruginosa vaccines drawback.
Collapse
Affiliation(s)
- Sargol Aminnezhad
- Department of Microbiology, Faculty of Biological Sciences, Alzahra University, Tehran, Iran
| | - Ahya Abdi-Ali
- Department of Microbiology, Faculty of Biological Sciences, Alzahra University, Tehran, Iran.
| | - Tooba Ghazanfari
- Immunoregulation Research Center, Shahed University, Tehran, Iran.
| | - Mojgan Bandehpour
- Cellular and Molecular Biology Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahboobe Zarrabi
- Department of Biotechnology, Faculty of Biological Sciences, Alzahra University, Tehran, Iran
| |
Collapse
|
43
|
Bacteria and cancer: Different sides of the same coin. Life Sci 2020; 246:117398. [PMID: 32032647 DOI: 10.1016/j.lfs.2020.117398] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 01/20/2020] [Accepted: 02/01/2020] [Indexed: 12/14/2022]
Abstract
Conventional cancer therapies such as chemotherapy, radiation therapy, and immunotherapy due to the complexity of cancer have been unsuccessful in the complete eradication of tumor cells. Thus, there is a need for new therapeutic strategies toward cancer. Recently, the therapeutic role of bacteria in different fields of medicine and pharmaceutical research has attracted attention in recent decades. Although several bacteria are notorious as cancer-causing agents, recent research revealed intriguing results suggesting the bacterial potential in cancer therapy. Thus, bacterial cancer therapy is an alternative anticancer approach that has promising results on tumor cells in-vivo. Moreover, with the aid of genetic engineering, some natural or genetically modified bacterial strains can directly target hypoxic regions of tumors and secrete therapeutic molecules leading to cancer cell death. Additionally, stimulation of immune cells by bacteria, bacterial cancer DNA vaccine and antitumor bacterial metabolites are other therapeutic applications of bacteria in cancer therapy. The present study is a comprehensive review of different aspects of bacterial cancer therapy alone and in combination with conventional methods, for improving cancer therapy.
Collapse
|
44
|
Jack S, Madhivanan K, Ramadesikan S, Subramanian S, Edwards DF, Elzey BD, Dhawan D, McCluskey A, Kischuk EM, Loftis AR, Truex N, Santos M, Lu M, Rabideau A, Pentelute B, Collier J, Kaimakliotis H, Koch M, Ratliff TL, Knapp DW, Aguilar RC. A novel, safe, fast and efficient treatment for Her2-positive and negative bladder cancer utilizing an EGF-anthrax toxin chimera. Int J Cancer 2019; 146:449-460. [PMID: 31584195 DOI: 10.1002/ijc.32719] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 08/10/2019] [Accepted: 09/11/2019] [Indexed: 12/20/2022]
Abstract
Bladder cancer is the sixth most common cancer in the United States, and it exhibits an alarming 70% recurrence rate. Thus, the development of more efficient antibladder cancer approaches is a high priority. Accordingly, this work provides the basis for a transformative anticancer strategy that takes advantage of the unique characteristics of the bladder. Unlike mucin-shielded normal bladder cells, cancer cells are exposed to the bladder lumen and overexpress EGFR. Therefore, we used an EGF-conjugated anthrax toxin that after targeting EGFR was internalized and triggered apoptosis in exposed bladder cancer cells. This unique agent presented advantages over other EGF-based technologies and other toxin-derivatives. In contrast to known agents, this EGF-toxin conjugate promoted its own uptake via receptor microclustering even in the presence of Her2 and induced cell death with a LC50 < 1 nM. Furthermore, our data showed that exposures as short as ≈3 min were enough to commit human (T24), mouse (MB49) and canine (primary) bladder cancer cells to apoptosis. Exposure of tumor-free mice and dogs with the agent resulted in no toxicity. In addition, the EGF-toxin was able to eliminate cells from human patient tumor samples. Importantly, the administration of EGF-toxin to dogs with spontaneous bladder cancer, who had failed or were not eligible for other therapies, resulted in ~30% average tumor reduction after one treatment cycle. Because of its in vitro and in vivo high efficiency, fast action (reducing treatment time from hours to minutes) and safety, we propose that this EGF-anthrax toxin conjugate provides the basis for new, transformative approaches against bladder cancer.
Collapse
Affiliation(s)
- Sherwin Jack
- Purdue University Center for Cancer Research, West Lafayette, IN.,Department of Biological Sciences, Purdue University, West Lafayette, IN
| | - Kayalvizhi Madhivanan
- Purdue University Center for Cancer Research, West Lafayette, IN.,Department of Biological Sciences, Purdue University, West Lafayette, IN
| | - Swetha Ramadesikan
- Purdue University Center for Cancer Research, West Lafayette, IN.,Department of Biological Sciences, Purdue University, West Lafayette, IN
| | - Sneha Subramanian
- Purdue University Center for Cancer Research, West Lafayette, IN.,Department of Biological Sciences, Purdue University, West Lafayette, IN
| | - Daniel F Edwards
- Purdue University Center for Cancer Research, West Lafayette, IN.,Department of Biological Sciences, Purdue University, West Lafayette, IN
| | - Bennett D Elzey
- Purdue University Center for Cancer Research, West Lafayette, IN.,Department of Comparative Pathobiology, Purdue University, West Lafayette, IN.,Department of Urology, Indiana University School of Medicine, Indianapolis, IN
| | - Deepika Dhawan
- Department of Veterinary Clinical Sciences, Purdue University, West Lafayette, IN
| | | | - Erin M Kischuk
- Purdue University Center for Cancer Research, West Lafayette, IN.,Department of Comparative Pathobiology, Purdue University, West Lafayette, IN
| | - Alexander R Loftis
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA
| | - Nicholas Truex
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA
| | - Michael Santos
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA
| | - Mike Lu
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA
| | - Amy Rabideau
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA
| | - Bradley Pentelute
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA.,Koch Institute MIT, Cambridge, MA.,Broad Institute of Harvard and MIT, Cambridge, MA.,Center for Environmental Health Sciences MIT, Cambridge, MA
| | - John Collier
- Department of Microbiology, Harvard Medical School, Boston, MA
| | | | - Michael Koch
- Department of Urology, Indiana University School of Medicine, Indianapolis, IN
| | - Timothy L Ratliff
- Purdue University Center for Cancer Research, West Lafayette, IN.,Department of Comparative Pathobiology, Purdue University, West Lafayette, IN
| | - Deborah W Knapp
- Purdue University Center for Cancer Research, West Lafayette, IN.,Department of Veterinary Clinical Sciences, Purdue University, West Lafayette, IN
| | - Ruben C Aguilar
- Purdue University Center for Cancer Research, West Lafayette, IN.,Department of Biological Sciences, Purdue University, West Lafayette, IN
| |
Collapse
|
45
|
Zarkar N, Nasiri Khalili MA, Khodadadi S, Zeinoddini M, Ahmadpour F. Expression and purification of soluble and functional fusion protein DAB 389 IL-2 into the E. coli strain Rosetta-gami (DE3). Biotechnol Appl Biochem 2019; 67:206-212. [PMID: 31600001 DOI: 10.1002/bab.1833] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 09/03/2019] [Indexed: 11/10/2022]
Abstract
DAB389 IL-2 (Denileukin diftitox) is considered an immunotoxin, and it is the first immunotoxin approved by Food and Drug Administration. It is used for the treatment of a cutaneous form of T-cell lymphoma. This fusion protein has two disulfide bonds in its structure that play an essential role in toxicity and functionality of the immunotoxin. Escherichia coli (E. coli) strain BL21 (DE3) is not capable of making disulfide bonds in its reductive cytoplasm, but the E. coli strain Rosetta-gami (DE3) is a proper strain for the correct expression of the protein due to mutations in glutaredoxin reductase and thioredoxin reductase. In this study, a pET21a vector with the His6-tag fused at the N-terminus of DAB389 IL-2 was used to express the soluble immunotoxin in E. coli Rosetta-gami (DE3). After the purification of the soluble protein by two-step column chromatographies, the structure of DAB389 IL-2 was analyzed using the Native-PAGE and circular dichroism methods. In the following, the nuclease activity of soluble DAB389 IL-2 and its cytotoxicity activity were determined. It is concluded that the soluble recombinant protein expressed in the E. coli Rosetta-gami (DE3) has an intact structure and also functional; hence, this form of immunotoxin could be competitive with its commercial counterparts.
Collapse
Affiliation(s)
| | | | | | | | - Fathollah Ahmadpour
- Trauma Research Centre, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
46
|
Application of therapeutic protein-based fusion toxins. Mol Cell Toxicol 2019. [DOI: 10.1007/s13273-019-0040-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
47
|
The role of bacterial toxins and spores in cancer therapy. Life Sci 2019; 235:116839. [PMID: 31499068 DOI: 10.1016/j.lfs.2019.116839] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 08/21/2019] [Accepted: 09/04/2019] [Indexed: 12/16/2022]
Abstract
Cancer is one of the leading causes of human death worldwide. Conventional anticancer therapies are ineffective in treating cancer patients due to various reasons. Thus, more effective and accessible alternative anticancer strategies have been evolved with time with high specificity towards tumor cells and with less or no adverse effects to normal cells. One such promising therapy is the use of bacterial toxins and spores to treat advanced solid tumors. Initially, Coley paved the way towards the bacterial anticancer therapy several decades ago and now it has emerged as a potential tool to eliminate tumor cells. Bacterial spores of obligate anaerobes exclusively germinate in the hypoxic/necrotic areas and not in the well-oxygenated areas of the body. This unique phenomenon has been exploited in using bacterial spores as a remedy for cancer. Bacterial toxins also play a significant role in either directly killing tumor cells or altering the cellular processes of the tumor cells which ultimately leads to the inhibition and regression of the solid tumor. With the advancement of molecular techniques, a number of genetically-modified non-pathogenic bacteria have been developed to use in bacterial anticancer strategies. Although promising results have shown so far, further investigations are required to ensure the efficacy and the safety of the bacterial spores and toxins in treating cancer.
Collapse
|
48
|
Sedighi M, Zahedi Bialvaei A, Hamblin MR, Ohadi E, Asadi A, Halajzadeh M, Lohrasbi V, Mohammadzadeh N, Amiriani T, Krutova M, Amini A, Kouhsari E. Therapeutic bacteria to combat cancer; current advances, challenges, and opportunities. Cancer Med 2019; 8:3167-3181. [PMID: 30950210 PMCID: PMC6558487 DOI: 10.1002/cam4.2148] [Citation(s) in RCA: 124] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 03/17/2019] [Accepted: 03/20/2019] [Indexed: 12/26/2022] Open
Abstract
Successful treatment of cancer remains a challenge, due to the unique pathophysiology of solid tumors, and the predictable emergence of resistance. Traditional methods for cancer therapy including radiotherapy, chemotherapy, and immunotherapy all have their own limitations. A novel approach is bacteriotherapy, either used alone, or in combination with conventional methods, has shown a positive effect on regression of tumors and inhibition of metastasis. Bacteria-assisted tumor-targeted therapy used as therapeutic/gene/drug delivery vehicles has great promise in the treatment of tumors. The use of bacteria only, or in combination with conventional methods was found to be effective in some experimental models of cancer (tumor regression and increased survival rate). In this article, we reviewed the major advantages, challenges, and prospective directions for combinations of bacteria with conventional methods for tumor therapy.
Collapse
Affiliation(s)
- Mansour Sedighi
- Department of Microbiology, School of MedicineIran University of Medical SciencesTehranIran
| | - Abed Zahedi Bialvaei
- Department of Microbiology, School of MedicineIran University of Medical SciencesTehranIran
| | - Michael R. Hamblin
- Wellman Center for PhotomedicineMassachusetts General HospitalBostonMassachusetts
- Department of DermatologyHarvard Medical SchoolBostonMassachusetts
- Harvard‐MIT Division of Health Sciences and TechnologyCambridgeMassachusetts
| | - Elnaz Ohadi
- Department of Microbiology, School of MedicineIran University of Medical SciencesTehranIran
| | - Arezoo Asadi
- Department of Microbiology, School of MedicineIran University of Medical SciencesTehranIran
| | - Masoumeh Halajzadeh
- Department of Microbiology, School of MedicineIran University of Medical SciencesTehranIran
| | - Vahid Lohrasbi
- Department of Microbiology, School of MedicineIran University of Medical SciencesTehranIran
| | - Nima Mohammadzadeh
- Department of Microbiology, School of MedicineIran University of Medical SciencesTehranIran
| | - Taghi Amiriani
- Golestan Research Center of Gastroenterology and HepatologyGolestan University of Medical SciencesGorganIran
| | - Marcela Krutova
- 2nd Faculty of Medicine, Department of Medical MicrobiologyCharles University and Motol University HospitalPragueCzech Republic
| | - Abolfazl Amini
- Laboratory Sciences Research CenterGolestan University of Medical SciencesGorganIran
| | - Ebrahim Kouhsari
- Department of Microbiology, School of MedicineIran University of Medical SciencesTehranIran
- Laboratory Sciences Research CenterGolestan University of Medical SciencesGorganIran
| |
Collapse
|
49
|
Abstract
Intracellular delivery of biological agents such as peptides, proteins, and nucleic acids generally rely on the endocytic pathway as the major uptake mechanism, resulting in their entrapment inside the endosome and lysosome. The recent discovery of cell-penetrating molecules of exceptionally high endosomal escape and cytosolic delivery efficiencies and elucidation of their mechanism of action represent major breakthroughs in this field. In this Topical Review, we provide an overview of the recent progress in understanding and enhancing the endosomal escape process and the new opportunities opened up by these recent findings.
Collapse
Affiliation(s)
- Dehua Pei
- Department of Chemistry and Biochemistry, The Ohio State University, 484 West 12 Avenue, Columbus, Ohio 43210, USA
| | - Marina Buyanova
- Department of Chemistry and Biochemistry, The Ohio State University, 484 West 12 Avenue, Columbus, Ohio 43210, USA
| |
Collapse
|
50
|
Naran K, Nundalall T, Chetty S, Barth S. Principles of Immunotherapy: Implications for Treatment Strategies in Cancer and Infectious Diseases. Front Microbiol 2018; 9:3158. [PMID: 30622524 PMCID: PMC6308495 DOI: 10.3389/fmicb.2018.03158] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 12/05/2018] [Indexed: 12/13/2022] Open
Abstract
The advances in cancer biology and pathogenesis during the past two decades, have resulted in immunotherapeutic strategies that have revolutionized the treatment of malignancies, from relatively non-selective toxic agents to specific, mechanism-based therapies. Despite extensive global efforts, infectious diseases remain a leading cause of morbidity and mortality worldwide, necessitating novel, innovative therapeutics that address the current challenges of increasing antimicrobial resistance. Similar to cancer pathogenesis, infectious pathogens successfully fashion a hospitable environment within the host and modulate host metabolic functions to support their nutritional requirements, while suppressing host defenses by altering regulatory mechanisms. These parallels, and the advances made in targeted therapy in cancer, may inform the rational development of therapeutic interventions for infectious diseases. Although "immunotherapy" is habitually associated with the treatment of cancer, this review accentuates the evolving role of key targeted immune interventions that are approved, as well as those in development, for various cancers and infectious diseases. The general features of adoptive therapies, those that enhance T cell effector function, and ligand-based therapies, that neutralize or eliminate diseased cells, are discussed in the context of specific diseases that, to date, lack appropriate remedial treatment; cancer, HIV, TB, and drug-resistant bacterial and fungal infections. The remarkable diversity and versatility that distinguishes immunotherapy is emphasized, consequently establishing this approach within the armory of curative therapeutics, applicable across the disease spectrum.
Collapse
Affiliation(s)
- Krupa Naran
- Medical Biotechnology and Immunotherapy Unit, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Trishana Nundalall
- Medical Biotechnology and Immunotherapy Unit, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Shivan Chetty
- Medical Biotechnology and Immunotherapy Unit, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Stefan Barth
- Medical Biotechnology and Immunotherapy Unit, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- South African Research Chair in Cancer Biotechnology, Department of Integrative Biomedical Sciences, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| |
Collapse
|