1
|
Sapoznikov A, Evgy Y, Ben-Shmuel A, Schwartz A, Alcalay R, Aftalion M, Ben David A, Erez N, Falach R. Short- and long-term outcomes of pulmonary exposure to a sublethal dose of ricin in mice. Sci Rep 2024; 14:11637. [PMID: 38773158 PMCID: PMC11109263 DOI: 10.1038/s41598-024-62222-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 05/15/2024] [Indexed: 05/23/2024] Open
Abstract
Ricin, an extremely potent toxin produced from the seeds of castor plant, Ricinus communis, is ribosome-inactivating protein that blocks cell-protein synthesis. It is considered a biological threat due to worldwide availability of castor beans, massive quantities as a by-product of castor oil production, high stability and ease of production. The consequence of exposure to lethal dose of ricin was extensively described in various animal models. However, it is assumed that in case of aerosolized ricin bioterror attack, the majority of individuals would be exposed to sublethal doses rather than to lethal ones. Therefore, the purpose of current study was to assess short- and long-term effects on physiological parameters and function following sublethal pulmonary exposure. We show that in the short-term, sublethal exposure of mice to ricin resulted in acute lung injury, including interstitial pneumonia, cytokine storm, neutrophil influx, edema and cellular death. This damage was manifested in reduced lung performance and physiological function. Interestingly, although in the long-term, mice recovered from acute lung damage and restored pulmonary and physiological functionality, the reparative process was associated with lasting fibrotic lesions. Therefore, restriction of short-term acute phase of the disease and management of long-term pulmonary fibrosis by medical countermeasures is expected to facilitate the quality of life of exposed survivors.
Collapse
Affiliation(s)
- Anita Sapoznikov
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, 74100, Ness-Ziona, Israel
| | - Yentl Evgy
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, 74100, Ness-Ziona, Israel
| | - Amir Ben-Shmuel
- Department of Infectious Diseases, Israel Institute for Biological Research, 74100, Ness-Ziona, Israel
| | - Arieh Schwartz
- Department of Biotechnology, Israel Institute for Biological Research, 74100, Ness-Ziona, Israel
| | - Ron Alcalay
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, 74100, Ness-Ziona, Israel
| | - Moshe Aftalion
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, 74100, Ness-Ziona, Israel
| | - Alon Ben David
- Department of Biotechnology, Israel Institute for Biological Research, 74100, Ness-Ziona, Israel
| | - Noam Erez
- Department of Infectious Diseases, Israel Institute for Biological Research, 74100, Ness-Ziona, Israel.
| | - Reut Falach
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, 74100, Ness-Ziona, Israel.
| |
Collapse
|
2
|
Sapoznikov A, Gal Y, Alcalay R, Evgy Y, Sabo T, Kronman C, Falach R. Characterization of Lung Injury following Abrin Pulmonary Intoxication in Mice: Comparison to Ricin Poisoning. Toxins (Basel) 2022; 14:614. [PMID: 36136552 PMCID: PMC9504197 DOI: 10.3390/toxins14090614] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 08/29/2022] [Accepted: 08/31/2022] [Indexed: 11/25/2022] Open
Abstract
Abrin is a highly toxic protein obtained from the seeds of the rosary pea plant Abrus precatorius, and it is closely related to ricin in terms of its structure and chemical properties. Both toxins inhibit ribosomal function, halt protein synthesis and lead to cellular death. The major clinical manifestations following pulmonary exposure to these toxins consist of severe lung inflammation and consequent respiratory insufficiency. Despite the high similarity between abrin and ricin in terms of disease progression, the ability to protect mice against these toxins by postexposure antibody-mediated treatment differs significantly, with a markedly higher level of protection achieved against abrin intoxication. In this study, we conducted an in-depth comparison between the kinetics of in vivo abrin and ricin intoxication in a murine model. The data demonstrated differential binding of abrin and ricin to the parenchymal cells of the lungs. Accordingly, toxin-mediated injury to the nonhematopoietic compartment was shown to be markedly lower in the case of abrin intoxication. Thus, profiling of alveolar epithelial cells demonstrated that although toxin-induced damage was restricted to alveolar epithelial type II cells following abrin intoxication, as previously reported for ricin, it was less pronounced. Furthermore, unlike following ricin intoxication, no direct damage was detected in the lung endothelial cell population following abrin exposure. Reduced impairment of intercellular junction molecules following abrin intoxication was detected as well. In contrast, similar damage to the endothelial surface glycocalyx layer was observed for the two toxins. We assume that the reduced damage to the lung stroma, which maintains a higher level of tissue integrity following pulmonary exposure to abrin compared to ricin, contributes to the high efficiency of the anti-abrin antibody treatment at late time points after exposure.
Collapse
Affiliation(s)
- Anita Sapoznikov
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness-Ziona 74100, Israel
| | | | | | | | | | | | - Reut Falach
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness-Ziona 74100, Israel
| |
Collapse
|
3
|
Falach R, Sapoznikov A, Evgy Y, Aftalion M, Makovitzki A, Agami A, Mimran A, Lerer E, Ben David A, Zichel R, Katalan S, Rosner A, Sabo T, Kronman C, Gal Y. Post-Exposure Anti-Ricin Treatment Protects Swine Against Lethal Systemic and Pulmonary Exposures. Toxins (Basel) 2020; 12:toxins12060354. [PMID: 32481526 PMCID: PMC7354453 DOI: 10.3390/toxins12060354] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 05/21/2020] [Accepted: 05/25/2020] [Indexed: 12/04/2022] Open
Abstract
Ricin, a plant-derived toxin originating from the seeds of Ricinus communis (castor bean plant), is one of the most lethal toxins known. To date, there is no approved post-exposure therapy for ricin exposures. This work demonstrates for the first time the therapeutic efficacy of equine-derived anti-ricin F(ab’)2 antibodies against lethal pulmonary and systemic ricin exposures in swine. While administration of the antitoxin at 18 h post-exposure protected more than 80% of both intratracheally and intramuscularly ricin-intoxicated swine, treatment at 24 h post-exposure protected 58% of the intramuscular-exposed swine, as opposed to 26% of the intratracheally exposed animals. Quantitation of the anti-ricin neutralizing units in the anti-toxin preparations confirmed that the disparate protection conferred to swine subjected to the two routes of exposure stems from variance between the two models. Furthermore, dose response experiments showed that approximately 3 times lesser amounts of antibody are needed for high-level protection of the intramuscularly compared to the intratracheally intoxicated swine. This study, which demonstrates the high-level post-exposure efficacy of anti-ricin antitoxin at clinically relevant time-points in a large animal model, can serve as the basis for the formulation of post-exposure countermeasures against ricin poisoning in humans.
Collapse
Affiliation(s)
- Reut Falach
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness-Ziona 76100, Israel; (R.F.); (A.S.); (Y.E.); (M.A.); (T.S.)
| | - Anita Sapoznikov
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness-Ziona 76100, Israel; (R.F.); (A.S.); (Y.E.); (M.A.); (T.S.)
| | - Yentl Evgy
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness-Ziona 76100, Israel; (R.F.); (A.S.); (Y.E.); (M.A.); (T.S.)
| | - Moshe Aftalion
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness-Ziona 76100, Israel; (R.F.); (A.S.); (Y.E.); (M.A.); (T.S.)
| | - Arik Makovitzki
- Department of Biotechnology, Israel Institute for Biological Research, Ness-Ziona 76100, Israel; (A.M.); (A.A.); (A.M.); (E.L.); (A.B.D.); (R.Z.)
| | - Avi Agami
- Department of Biotechnology, Israel Institute for Biological Research, Ness-Ziona 76100, Israel; (A.M.); (A.A.); (A.M.); (E.L.); (A.B.D.); (R.Z.)
| | - Avishai Mimran
- Department of Biotechnology, Israel Institute for Biological Research, Ness-Ziona 76100, Israel; (A.M.); (A.A.); (A.M.); (E.L.); (A.B.D.); (R.Z.)
| | - Elad Lerer
- Department of Biotechnology, Israel Institute for Biological Research, Ness-Ziona 76100, Israel; (A.M.); (A.A.); (A.M.); (E.L.); (A.B.D.); (R.Z.)
| | - Alon Ben David
- Department of Biotechnology, Israel Institute for Biological Research, Ness-Ziona 76100, Israel; (A.M.); (A.A.); (A.M.); (E.L.); (A.B.D.); (R.Z.)
| | - Ran Zichel
- Department of Biotechnology, Israel Institute for Biological Research, Ness-Ziona 76100, Israel; (A.M.); (A.A.); (A.M.); (E.L.); (A.B.D.); (R.Z.)
| | - Shahaf Katalan
- Department of Pharmacology, Israel Institute for Biological Research, Ness-Ziona 76100, Israel;
| | - Amir Rosner
- Veterinary Center for Preclinical Research, Israel Institute for Biological Research, Ness-Ziona 76100, Israel;
| | - Tamar Sabo
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness-Ziona 76100, Israel; (R.F.); (A.S.); (Y.E.); (M.A.); (T.S.)
| | - Chanoch Kronman
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness-Ziona 76100, Israel; (R.F.); (A.S.); (Y.E.); (M.A.); (T.S.)
- Correspondence: (C.K.); (Y.G.); Tel.: +972–8–9381522 (C.K.); +972–8–9381479 (Y.G.)
| | - Yoav Gal
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness-Ziona 76100, Israel; (R.F.); (A.S.); (Y.E.); (M.A.); (T.S.)
- Correspondence: (C.K.); (Y.G.); Tel.: +972–8–9381522 (C.K.); +972–8–9381479 (Y.G.)
| |
Collapse
|
4
|
Equal Neutralization Potency of Antibodies Raised against Abrin Subunits. Antibodies (Basel) 2020; 9:antib9010004. [PMID: 32041179 PMCID: PMC7148520 DOI: 10.3390/antib9010004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 01/22/2020] [Accepted: 01/25/2020] [Indexed: 11/17/2022] Open
Abstract
Abrin and ricin are potent AB toxins, which are considered biological threats. To date, there are no approved treatments against abrin or ricin intoxications. Previously, we showed that the administration of polyclonal anti-abrin antibodies to mice that were intranasally exposed to abrin, even very late post-exposure, conferred an exceedingly high-level of protection, while following ricin intoxication, similar treatment with anti-ricin antibodies resulted in negligible survival rates. To probe this unexpected difference in protection ability, we first examined whether the efficient anti-abrin-induced protection was due to neutralization of the A-subunit responsible for the catalytic effect, or of the B-subunit, which enables binding/internalization, by evaluating the protection conferred by antibodies directed against one of the two subunits. To this end, we generated and immunized rabbits with chimeric toxins containing a single abrin subunit, AabrinBricin in which abrin A-subunit was linked to ricin B-subunit, and AricinBabrin in which ricin A-subunit is linked to abrin B-subunit. Here, we show that antibodies raised against either AabrinBricin or AricinBabrin conferred exceptionally high protection levels to mice following intranasal exposure to a a lethal dose of abrin, suggesting that the high level of protection conferred by anti-abrin antibodies is not related to the neutralization of a particular subunit.
Collapse
|
5
|
Sapoznikov A, Rosner A, Falach R, Gal Y, Aftalion M, Evgy Y, Israeli O, Sabo T, Kronman C. Intramuscular Ricin Poisoning of Mice Leads to Widespread Damage in the Heart, Spleen, and Bone Marrow. Toxins (Basel) 2019; 11:E344. [PMID: 31208156 PMCID: PMC6628730 DOI: 10.3390/toxins11060344] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 06/11/2019] [Accepted: 06/13/2019] [Indexed: 12/21/2022] Open
Abstract
Ricin, a lethal toxin derived from castor oil beans, is a potential bio-threat due to its high availability and simplicity of preparation. Ricin is prepared according to simple recipes available on the internet, and was recently considered in terrorist, suicide, or homicide attempts involving the parenteral route of exposure. In-depth study of the morbidity developing from parenteral ricin poisoning is mandatory for tailoring appropriate therapeutic measures to mitigate ricin toxicity in such instances. The present study applies various biochemical, hematological, histopathological, molecular, and functional approaches to broadly investigate the systemic effects of parenteral intoxication by a lethal dose of ricin in a murine model. Along with prompt coagulopathy, multi-organ hemorrhages, and thrombocytopenia, ricin induced profound morpho-pathological and functional damage in the spleen, bone marrow, and cardiovascular system. In the heart, diffuse hemorrhages, myocyte necrosis, collagen deposition, and induction in fibrinogen were observed. Severe functional impairment was manifested by marked thickening of the left ventricular wall, decreased ventricular volume, and a significant reduction in stroke volume and cardiac output. Unexpectedly, the differential severity of the ricin-induced damage did not correlate with the respective ricin-dependent catalytic activity measured in the various organs. These findings emphasize the complexity of ricin toxicity and stress the importance of developing novel therapeutic strategies that will combine not only anti-ricin specific therapy, but also will target ricin-induced indirect disturbances.
Collapse
Affiliation(s)
- Anita Sapoznikov
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness-Ziona 76100, Israel.
| | - Amir Rosner
- Veterinary Center for Preclinical Research, Israel Institute for Biological Research, Ness-Ziona 76100, Israel.
| | - Reut Falach
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness-Ziona 76100, Israel.
| | - Yoav Gal
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness-Ziona 76100, Israel.
| | - Moshe Aftalion
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness-Ziona 76100, Israel.
| | - Yentl Evgy
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness-Ziona 76100, Israel.
| | - Ofir Israeli
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness-Ziona 76100, Israel.
| | - Tamar Sabo
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness-Ziona 76100, Israel.
| | - Chanoch Kronman
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness-Ziona 76100, Israel.
| |
Collapse
|
6
|
Sapoznikov A, Gal Y, Falach R, Sagi I, Ehrlich S, Lerer E, Makovitzki A, Aloshin A, Kronman C, Sabo T. Early disruption of the alveolar-capillary barrier in a ricin-induced ARDS mouse model: neutrophil-dependent and -independent impairment of junction proteins. Am J Physiol Lung Cell Mol Physiol 2019; 316:L255-L268. [DOI: 10.1152/ajplung.00300.2018] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Irrespective of its diverse etiologies, acute lung injury (ALI)/acute respiratory distress syndrome (ARDS) leads to increased permeability of the alveolar-capillary barrier, which in turn promotes edema formation and respiratory failure. We investigated the mechanism of ALI/ARDS lung hyperpermeability triggered by pulmonary exposure of mice to the highly toxic plant-derived toxin ricin. One prominent hallmark of ricin-mediated pulmonary intoxication is the rapid and massive influx of neutrophils to the lungs, where they contribute to the developing inflammation yet may also cause tissue damage, thereby promoting ricin-mediated morbidity. Here we show that pulmonary exposure of mice to ricin results in the rapid diminution of the junction proteins VE-cadherin, claudin 5, and connexin 43, belonging, respectively, to the adherens, tight, and gap junction protein families. Depletion of neutrophils in ricin-intoxicated mice attenuated the damage caused to these junction proteins, alleviated pulmonary edema, and significantly postponed the time to death of the intoxicated mice. Inhibition of matrix metalloproteinase (MMP) activity recapitulated the response to neutrophil depletion observed in ricin-intoxicated mice and was associated with decreased insult to the junction proteins and alveolar-capillary barrier. However, neutrophil-mediated MMP activity was not the sole mechanism responsible for pulmonary hyperpermeability, as exemplified by the ricin-mediated disruption of claudin 18, via a neutrophil-independent mechanism involving tyrosine phosphorylation. This in-depth study of the early stage mechanisms governing pulmonary tissue integrity during ALI/ARDS is expected to facilitate the tailoring of novel therapeutic approaches for the treatment of these diseases.
Collapse
Affiliation(s)
- Anita Sapoznikov
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness-Ziona, Israel
| | - Yoav Gal
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness-Ziona, Israel
| | - Reut Falach
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness-Ziona, Israel
| | - Irit Sagi
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Sharon Ehrlich
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness-Ziona, Israel
| | - Elad Lerer
- Department of Biotechnology, Israel Institute for Biological Research, Ness-Ziona, Israel
| | - Arik Makovitzki
- Department of Biotechnology, Israel Institute for Biological Research, Ness-Ziona, Israel
| | - Anna Aloshin
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Chanoch Kronman
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness-Ziona, Israel
| | - Tamar Sabo
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness-Ziona, Israel
| |
Collapse
|
7
|
Generation of Highly Efficient Equine-Derived Antibodies for Post-Exposure Treatment of Ricin Intoxications by Vaccination with Monomerized Ricin. Toxins (Basel) 2018; 10:toxins10110466. [PMID: 30424519 PMCID: PMC6267474 DOI: 10.3390/toxins10110466] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 11/04/2018] [Accepted: 11/08/2018] [Indexed: 12/13/2022] Open
Abstract
Ricin, a highly lethal toxin derived from the seeds of Ricinus communis (castor beans) is considered a potential biological threat agent due to its high availability, ease of production, and to the lack of any approved medical countermeasure against ricin exposures. To date, the use of neutralizing antibodies is the most promising post-exposure treatment for ricin intoxication. The aim of this work was to generate anti-ricin antitoxin that confers high level post-exposure protection against ricin challenge. Due to safety issues regarding the usage of ricin holotoxin as an antigen, we generated an inactivated toxin that would reduce health risks for both the immunizer and the immunized animal. To this end, a monomerized ricin antigen was constructed by reducing highly purified ricin to its monomeric constituents. Preliminary immunizing experiments in rabbits indicated that this monomerized antigen is as effective as the native toxin in terms of neutralizing antibody elicitation and protection of mice against lethal ricin challenges. Characterization of the monomerized antigen demonstrated that the irreversibly detached A and B subunits retain catalytic and lectin activity, respectively, implying that the monomerization process did not significantly affect their overall structure. Toxicity studies revealed that the monomerized ricin displayed a 250-fold decreased activity in a cell culture-based functionality test, while clinical signs were undetectable in mice injected with this antigen. Immunization of a horse with the monomerized toxin was highly effective in elicitation of high titers of neutralizing antibodies. Due to the increased potential of IgG-derived adverse events, anti-ricin F(ab')₂ antitoxin was produced. The F(ab')₂-based antitoxin conferred high protection to intranasally ricin-intoxicated mice; ~60% and ~34% survival, when administered 24 and 48 h post exposure to a lethal dose, respectively. In line with the enhanced protection, anti-inflammatory and anti-edematous effects were measured in the antitoxin treated mice, in comparison to mice that were intoxicated but not treated. Accordingly, this anti-ricin preparation is an excellent candidate for post exposure treatment of ricin intoxications.
Collapse
|
8
|
Barbier J, Gillet D. Ribosome Inactivating Proteins: From Plant Defense to Treatments against Human Misuse or Diseases. Toxins (Basel) 2018; 10:toxins10040160. [PMID: 29669991 PMCID: PMC5923326 DOI: 10.3390/toxins10040160] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 04/11/2018] [Accepted: 04/13/2018] [Indexed: 12/14/2022] Open
Abstract
Ribosome inactivating proteins (RIPs) form a vast family of hundreds of toxins from plants, fungi, algae, and bacteria. RIP activities have also been detected in animal tissues. They exert an N-glycosydase catalytic activity that is targeted to a single adenine of a ribosomal RNA, thereby blocking protein synthesis and leading intoxicated cells to apoptosis. In many cases, they have additional depurinating activities that act against other nucleic acids, such as viral RNA and DNA, or genomic DNA. Although their role remains only partially understood, their functions may be related to plant defense against predators and viruses, plant senescence, or bacterial pathogenesis.
Collapse
Affiliation(s)
- Julien Barbier
- Service d'Ingénierie Moléculaire des Protéines (SIMOPRO), CEA, Université Paris-Saclay, LabEx LERMIT, 91191 Gif-sur-Yvette, France.
| | - Daniel Gillet
- Service d'Ingénierie Moléculaire des Protéines (SIMOPRO), CEA, Université Paris-Saclay, LabEx LERMIT, 91191 Gif-sur-Yvette, France.
| |
Collapse
|