1
|
Howe CL, Icka-Araki D, Viray AEG, Garza S, Frank JA. Optical Control of TRPV1 Channels In Vitro with Tethered Photopharmacology. ACS Chem Biol 2024; 19:1466-1473. [PMID: 38904446 DOI: 10.1021/acschembio.4c00052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
Transient receptor potential vanilloid 1 (TRPV1) is a nonselective cation channel that is important for nociception and inflammatory pain and is activated by a variety of nociceptive stimuli─including lipids such as capsaicin (CAP) and endocannabinoids. TRPV1's role in physiological systems is often studied by activating it with externally perfused ligands; however, this approach is plagued by poor spatiotemporal resolution. Lipid agonists are insoluble in physiological buffers and can permeate membranes to accumulate nonselectively inside cells, where they can have off-target effects. To increase the spatiotemporal precision with which we can activate lipids on cells and tissues, we previously developed optically cleavable targeted (OCT) ligands, which use protein tags (SNAP-tags) to localize a photocaged ligand on a target cellular membrane. After enrichment, the active ligand is released on a flash of light to activate nearby receptors. In our previous work, we developed an OCT-ligand to control a cannabinoid-sensitive GPCR. Here, we expand the scope of OCT-ligand technology to target TRPV1 ion channels. We synthesize a probe, OCT-CAP, that tethers to membrane-bound SNAP-tags and releases a TRPV1 agonist when triggered by UV-A irradiation. Using Ca2+ imaging and electrophysiology in HEK293T cells expressing TRPV1, we demonstrate that OCT-CAP uncaging activates TRPV1 with superior spatiotemporal precision when compared to standard diffusible ligands or photocages. This study is the first example of an OCT-ligand designed to manipulate an ion-channel target. We anticipate that these tools will find many applications in controlling lipid signaling pathways in various cells and tissues.
Collapse
Affiliation(s)
- Carmel L Howe
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, Oregon 97239, United States
| | - David Icka-Araki
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, Oregon 97239, United States
| | - Alexander E G Viray
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, Oregon 97239, United States
| | - Sarahi Garza
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, Oregon 97239, United States
- Neuroscience Graduate Program, Oregon Health & Science University, Portland, Oregon 97239, United States
| | - James A Frank
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, Oregon 97239, United States
- Vollum Institute, Oregon Health & Science University, Portland, Oregon 97239, United States
| |
Collapse
|
2
|
Xia Z, He D, Wu Y, Kwok HF, Cao Z. Scorpion venom peptides: Molecular diversity, structural characteristics, and therapeutic use from channelopathies to viral infections and cancers. Pharmacol Res 2023; 197:106978. [PMID: 37923027 DOI: 10.1016/j.phrs.2023.106978] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 10/23/2023] [Accepted: 10/27/2023] [Indexed: 11/07/2023]
Abstract
Animal venom is an important evolutionary innovation in nature. As one of the most representative animal venoms, scorpion venom contains an extremely diverse set of bioactive peptides. Scorpion venom peptides not only are 'poisons' that immobilize, paralyze, kill, or dissolve preys but also become important candidates for drug development and design. Here, the review focuses on the molecular diversity of scorpion venom peptides, their typical structural characteristics, and their multiple therapeutic or pharmaceutical applications in channelopathies, viral infections and cancers. Especially, the group of scorpion toxin TRPTx targeting transient receptor potential (TRP) channels is systematically summarized and worthy of attention because TRP channels play a crucial role in the regulation of homeostasis and the occurrence of diseases in human. We also further establish the potential relationship between the molecular characteristics and functional applications of scorpion venom peptides to provide a research basis for modern drug development and clinical utilization of scorpion venom resources.
Collapse
Affiliation(s)
- Zhiqiang Xia
- School of Biological and Food Processing Engineering, Huanghuai University, Zhumadian, China
| | - Dangui He
- State Key Laboratory of Virology, College of Life Sciences, Shenzhen Research Institute, Wuhan University, Wuhan, China; Department of Biomedical Sciences, Faculty of Health Sciences, University of Macau, Avenida de Universidade, Taipa, Macao; Cancer Centre, Faculty of Health Sciences, University of Macau, Avenida de Universidade, Taipa, Macao
| | - Yingliang Wu
- State Key Laboratory of Virology, College of Life Sciences, Shenzhen Research Institute, Wuhan University, Wuhan, China
| | - Hang Fai Kwok
- Department of Biomedical Sciences, Faculty of Health Sciences, University of Macau, Avenida de Universidade, Taipa, Macao; Cancer Centre, Faculty of Health Sciences, University of Macau, Avenida de Universidade, Taipa, Macao; MoE Frontiers Science Center for Precision Oncology, University of Macau, Avenida de Universidade, Taipa, Macao.
| | - Zhijian Cao
- State Key Laboratory of Virology, College of Life Sciences, Shenzhen Research Institute, Wuhan University, Wuhan, China; Bio-drug Research Center, Wuhan University, Wuhan, China.
| |
Collapse
|
3
|
Mendes LC, Viana GMM, Nencioni ALA, Pimenta DC, Beraldo-Neto E. Scorpion Peptides and Ion Channels: An Insightful Review of Mechanisms and Drug Development. Toxins (Basel) 2023; 15:238. [PMID: 37104176 PMCID: PMC10145618 DOI: 10.3390/toxins15040238] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/21/2023] [Accepted: 03/22/2023] [Indexed: 04/28/2023] Open
Abstract
The Buthidae family of scorpions consists of arthropods with significant medical relevance, as their venom contains a diverse range of biomolecules, including neurotoxins that selectively target ion channels in cell membranes. These ion channels play a crucial role in regulating physiological processes, and any disturbance in their activity can result in channelopathies, which can lead to various diseases such as autoimmune, cardiovascular, immunological, neurological, and neoplastic conditions. Given the importance of ion channels, scorpion peptides represent a valuable resource for developing drugs with targeted specificity for these channels. This review provides a comprehensive overview of the structure and classification of ion channels, the action of scorpion toxins on these channels, and potential avenues for future research. Overall, this review highlights the significance of scorpion venom as a promising source for discovering novel drugs with therapeutic potential for treating channelopathies.
Collapse
Affiliation(s)
- Lais Campelo Mendes
- Programa de Pós-Graduação em Ciências—Toxinologia do Instituto Butantan, São Paulo 05503-900, Brazil
- Laboratório de Bioquímica do Instituto Butantan, São Paulo 05503-900, Brazil
| | | | | | | | - Emidio Beraldo-Neto
- Laboratório de Bioquímica do Instituto Butantan, São Paulo 05503-900, Brazil
| |
Collapse
|
4
|
Gao N, Li M, Wang W, Liu Z, Guo Y. A bibliometrics analysis and visualization study of TRPV1 channel. Front Pharmacol 2023; 14:1076921. [PMID: 37025492 PMCID: PMC10070874 DOI: 10.3389/fphar.2023.1076921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 02/28/2023] [Indexed: 04/08/2023] Open
Abstract
Background: At the end of the 1990s, transient receptor potential vanilloid 1 (TRPV1) was first identified and cloned, serving as a key pain and heat sensor in humans. A large body of evidence have revealed its polymodal structure, complex function and wide-spread distribution, the specific mechanism of the ion channel remains unclear. Our goal here is to perform a bibliometric analysis and visualization study to present hotspots and trends in TRPV1 channel. Materials and Methods: TRPV1-related publications from inception to 2022 were retrieved from the Web of Science database. Excel, VOSviewer, and CiteSpace software were utilized for co-authorship, co-citation and co-occurrence analysis. Results: There were 9,113 publications included in the study, the number of publications increased rapidly after 1989, from 7 in 1990 to 373 in 2007, during which the number of citations per publication (CPP) also reached a peak in 2000 (CPP = 106.52). A total of 1,486 journals published TRPV1 articles, mainly belong to Q1 or Q2 divisions; The United States published the most articles (TP = 3,080), followed by Japan (TP = 1,221), China (TP = 1,217), and England (TP = 734); In recent years, the TRPV1-related research direction has been broaden to multiple fields related to inflammation, oxidative stress, and apoptosis; Keyword clustering refined the topic distributions and could be generalized as neuralgia, endogenous cannabinoid system, TRPV1 mediated airway hyperresponsiveness, involvement of apoptosis, TRPV1 antagonists as therapy targets. Conclusion: By conducting an exhaustive bibliographic search, this review refined the topic distributions and generalized as neuralgia, endogenous cannabinoid system, TRPV1 mediated airway hyperresponsiveness, involvement of apoptosis, TRPV1 antagonists as therapy targets. It is currently being clarified how exactly TRPV1 works as an ion channel, and much more in-depth basic research is needed in the future.
Collapse
Affiliation(s)
- Ning Gao
- Department of Acupuncture and Moxibustion, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Meng Li
- Department of Gastroenterology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Weiming Wang
- Department of Acupuncture and Moxibustion, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zhen Liu
- Department of Gastroenterology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- *Correspondence: Zhen Liu, ; Yufeng Guo,
| | - Yufeng Guo
- Department of Acupuncture and Moxibustion, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- *Correspondence: Zhen Liu, ; Yufeng Guo,
| |
Collapse
|
5
|
Lai WD, Li DM, Yu J, Huang L, Zheng MZ, Jiang YP, Wang S, Wen JJ, Chen SJ, Wen CP, Jin Y. An Apriori Algorithm-Based Association Analysis of Analgesic Drugs in Chinese Medicine Prescriptions Recorded From Patients With Rheumatoid Arthritis Pain. FRONTIERS IN PAIN RESEARCH 2022; 3:937259. [PMID: 35959238 PMCID: PMC9358686 DOI: 10.3389/fpain.2022.937259] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 06/21/2022] [Indexed: 11/13/2022] Open
Abstract
Chronic pain, a common symptom of people with rheumatoid arthritis, usually behaves as persistent polyarthralgia pain and causes serious damage to patients' physical and mental health. Opioid analgesics can lead to a series of side effects like drug tolerance and addiction. Thus, seeking an alternative therapy and screening out the corresponding analgesic drugs is the key to solving the current dilemma. Traditional Chinese Medicine (TCM) therapy has been recognized internationally for its unique guiding theory and definite curative effect. In this study, we used the Apriori Algorithm to screen out potential analgesics from 311 cases that were treated with compounded medication prescription and collected from “Second Affiliated Hospital of Zhejiang Chinese Medical University” in Hangzhou, China. Data on 18 kinds of clinical symptoms and 16 kinds of Chinese herbs were extracted based on this data mining. We also found 17 association rules and screened out four potential analgesic drugs—“Jinyinhua,” “Wugong,” “Yiyiren,” and “Qingfengteng,” which were promised to help in the clinical treatment. Besides, combined with System Cluster Analysis, we provided several different herbal combinations for clinical references.
Collapse
Affiliation(s)
- Wei-dong Lai
- The Second Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, China
- College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Dian-ming Li
- College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jie Yu
- College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Lin Huang
- College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Ming-zhi Zheng
- Hangzhou AI Center, China Academy of Information and Communications Technology, Hangzhou, China
| | - Yue-peng Jiang
- The Second Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, China
- College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Song Wang
- The Second Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, China
- College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jun-jun Wen
- The Second Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, China
- College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Si-jia Chen
- The Second Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, China
- College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Cheng-ping Wen
- The Second Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, China
- College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, China
- *Correspondence: Cheng-ping Wen
| | - Yan Jin
- The Second Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, China
- College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, China
- Yan Jin
| |
Collapse
|
6
|
Centipede Venom: A Potential Source of Ion Channel Modulators. Int J Mol Sci 2022; 23:ijms23137105. [PMID: 35806107 PMCID: PMC9266919 DOI: 10.3390/ijms23137105] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/22/2022] [Accepted: 06/24/2022] [Indexed: 02/06/2023] Open
Abstract
Centipedes are one of the most ancient and successful living venomous animals. They have evolved spooky venoms to deter predators or hunt prey, and are widely distributed throughout the world besides Antarctica. Neurotoxins are the most important virulence factor affecting the function of the nervous system. Ion channels and receptors expressed in the nervous system, including NaV, KV, CaV, and TRP families, are the major targets of peptide neurotoxins. Insight into the mechanism of neurotoxins acting on ion channels contributes to our understanding of the function of both channels and centipede venoms. Meanwhile, the novel structure and selective activities give them the enormous potential to be modified and exploited as research tools and biological drugs. Here, we review the centipede venom peptides that act on ion channels.
Collapse
|
7
|
Abstract
Transient receptor potential (TRP) ion channels are sophisticated signaling machines that detect a wide variety of environmental and physiological signals. Every cell in the body expresses one or more members of the extended TRP channel family, which consists of over 30 subtypes, each likely possessing distinct pharmacological, biophysical, and/or structural attributes. While the function of some TRP subtypes remains enigmatic, those involved in sensory signaling are perhaps best characterized and have served as models for understanding how these excitatory ion channels serve as polymodal signal integrators. With the recent resolution revolution in cryo-electron microscopy, these and other TRP channel subtypes are now yielding their secrets to detailed atomic analysis, which is beginning to reveal structural underpinnings of stimulus detection and gating, ion permeation, and allosteric mechanisms governing signal integration. These insights are providing a framework for designing and evaluating modality-specific pharmacological agents for treating sensory and other TRP channel-associated disorders.
Collapse
Affiliation(s)
- Melinda M Diver
- Department of Physiology, University of California, San Francisco, California, USA;
- Current affiliation: Structural Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - John V Lin King
- Department of Physiology, University of California, San Francisco, California, USA;
- Current affiliation: Department of Biology, Stanford University, Palo Alto, California, USA
| | - David Julius
- Department of Physiology, University of California, San Francisco, California, USA;
| | - Yifan Cheng
- Department of Biochemistry and Biophysics, University of California, San Francisco, California, USA;
- Howard Hughes Medical Institute, University of California, San Francisco, California, USA
| |
Collapse
|
8
|
Hwang SM, Jo YY, Cohen CF, Kim YH, Berta T, Park CK. Venom Peptide Toxins Targeting the Outer Pore Region of Transient Receptor Potential Vanilloid 1 in Pain: Implications for Analgesic Drug Development. Int J Mol Sci 2022; 23:ijms23105772. [PMID: 35628583 PMCID: PMC9147560 DOI: 10.3390/ijms23105772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 05/02/2022] [Accepted: 05/19/2022] [Indexed: 02/04/2023] Open
Abstract
The transient receptor potential vanilloid 1 (TRPV1) ion channel plays an important role in the peripheral nociceptive pathway. TRPV1 is a polymodal receptor that can be activated by multiple types of ligands and painful stimuli, such as noxious heat and protons, and contributes to various acute and chronic pain conditions. Therefore, TRPV1 is emerging as a novel therapeutic target for the treatment of various pain conditions. Notably, various peptides isolated from venomous animals potently and selectively control the activation and inhibition of TRPV1 by binding to its outer pore region. This review will focus on the mechanisms by which venom-derived peptides interact with this portion of TRPV1 to control receptor functions and how these mechanisms can drive the development of new types of analgesics.
Collapse
Affiliation(s)
- Sung-Min Hwang
- Gachon Pain Center and Department of Physiology, Gachon University College of Medicine, Incheon 21999, Korea; (S.-M.H.); (Y.-H.K.)
| | - Youn-Yi Jo
- Gil Medical Center, Department of Anesthesiology and Pain Medicine, Gachon University, Incheon 21565, Korea;
| | - Cinder Faith Cohen
- Pain Research Center, Department of Anesthesiology, University of Cincinnati Medical Center, Cincinnati, OH 45242, USA;
| | - Yong-Ho Kim
- Gachon Pain Center and Department of Physiology, Gachon University College of Medicine, Incheon 21999, Korea; (S.-M.H.); (Y.-H.K.)
| | - Temugin Berta
- Pain Research Center, Department of Anesthesiology, University of Cincinnati Medical Center, Cincinnati, OH 45242, USA;
- Correspondence: (T.B.); (C.-K.P.)
| | - Chul-Kyu Park
- Gachon Pain Center and Department of Physiology, Gachon University College of Medicine, Incheon 21999, Korea; (S.-M.H.); (Y.-H.K.)
- Correspondence: (T.B.); (C.-K.P.)
| |
Collapse
|
9
|
von Reumont BM, Anderluh G, Antunes A, Ayvazyan N, Beis D, Caliskan F, Crnković A, Damm M, Dutertre S, Ellgaard L, Gajski G, German H, Halassy B, Hempel BF, Hucho T, Igci N, Ikonomopoulou MP, Karbat I, Klapa MI, Koludarov I, Kool J, Lüddecke T, Ben Mansour R, Vittoria Modica M, Moran Y, Nalbantsoy A, Ibáñez MEP, Panagiotopoulos A, Reuveny E, Céspedes JS, Sombke A, Surm JM, Undheim EAB, Verdes A, Zancolli G. Modern venomics-Current insights, novel methods, and future perspectives in biological and applied animal venom research. Gigascience 2022; 11:giac048. [PMID: 35640874 PMCID: PMC9155608 DOI: 10.1093/gigascience/giac048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 04/10/2022] [Accepted: 04/12/2022] [Indexed: 12/11/2022] Open
Abstract
Venoms have evolved >100 times in all major animal groups, and their components, known as toxins, have been fine-tuned over millions of years into highly effective biochemical weapons. There are many outstanding questions on the evolution of toxin arsenals, such as how venom genes originate, how venom contributes to the fitness of venomous species, and which modifications at the genomic, transcriptomic, and protein level drive their evolution. These questions have received particularly little attention outside of snakes, cone snails, spiders, and scorpions. Venom compounds have further become a source of inspiration for translational research using their diverse bioactivities for various applications. We highlight here recent advances and new strategies in modern venomics and discuss how recent technological innovations and multi-omic methods dramatically improve research on venomous animals. The study of genomes and their modifications through CRISPR and knockdown technologies will increase our understanding of how toxins evolve and which functions they have in the different ontogenetic stages during the development of venomous animals. Mass spectrometry imaging combined with spatial transcriptomics, in situ hybridization techniques, and modern computer tomography gives us further insights into the spatial distribution of toxins in the venom system and the function of the venom apparatus. All these evolutionary and biological insights contribute to more efficiently identify venom compounds, which can then be synthesized or produced in adapted expression systems to test their bioactivity. Finally, we critically discuss recent agrochemical, pharmaceutical, therapeutic, and diagnostic (so-called translational) aspects of venoms from which humans benefit.
Collapse
Affiliation(s)
- Bjoern M von Reumont
- Goethe University Frankfurt, Institute for Cell Biology and Neuroscience, Department for Applied Bioinformatics, 60438 Frankfurt am Main, Germany
- LOEWE Centre for Translational Biodiversity Genomics, Senckenberg Frankfurt, Senckenberganlage 25, 60235 Frankfurt, Germany
- Justus Liebig University Giessen, Institute for Insectbiotechnology, Heinrich Buff Ring 26-32, 35396 Giessen, Germany
| | - Gregor Anderluh
- Department of Molecular Biology and Nanobiotechnology, National Institute of Chemistry, 1000 Ljubljana, Slovenia
| | - Agostinho Antunes
- CIIMAR/CIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, s/n, 4450–208 Porto, Portugal
- Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal
| | - Naira Ayvazyan
- Orbeli Institute of Physiology of NAS RA, Orbeli ave. 22, 0028 Yerevan, Armenia
| | - Dimitris Beis
- Developmental Biology, Centre for Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation Academy of Athens, Athens 11527, Greece
| | - Figen Caliskan
- Department of Biology, Faculty of Science and Letters, Eskisehir Osmangazi University, TR-26040 Eskisehir, Turkey
| | - Ana Crnković
- Department of Molecular Biology and Nanobiotechnology, National Institute of Chemistry, 1000 Ljubljana, Slovenia
| | - Maik Damm
- Technische Universität Berlin, Department of Chemistry, Straße des 17. Juni 135, 10623 Berlin, Germany
| | | | - Lars Ellgaard
- Department of Biology, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Goran Gajski
- Institute for Medical Research and Occupational Health, Mutagenesis Unit, Ksaverska cesta 2, 10000 Zagreb, Croatia
| | - Hannah German
- Amsterdam Institute of Molecular and Life Sciences, Division of BioAnalytical Chemistry, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081HV Amsterdam, The Netherlands
| | - Beata Halassy
- University of Zagreb, Centre for Research and Knowledge Transfer in Biotechnology, Trg Republike Hrvatske 14, 10000 Zagreb, Croatia
| | - Benjamin-Florian Hempel
- BIH Center for Regenerative Therapies BCRT, Charité - Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Tim Hucho
- Translational Pain Research, Department of Anesthesiology and Intensive Care Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
| | - Nasit Igci
- Nevsehir Haci Bektas Veli University, Faculty of Arts and Sciences, Department of Molecular Biology and Genetics, 50300 Nevsehir, Turkey
| | - Maria P Ikonomopoulou
- Madrid Institute for Advanced Studies in Food, Madrid,E28049, Spain
- The University of Queensland, St Lucia, QLD 4072, Australia
| | - Izhar Karbat
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Maria I Klapa
- Metabolic Engineering and Systems Biology Laboratory, Institute of Chemical Engineering Sciences, Foundation for Research & Technology Hellas (FORTH/ICE-HT), Patras GR-26504, Greece
| | - Ivan Koludarov
- Justus Liebig University Giessen, Institute for Insectbiotechnology, Heinrich Buff Ring 26-32, 35396 Giessen, Germany
| | - Jeroen Kool
- Amsterdam Institute of Molecular and Life Sciences, Division of BioAnalytical Chemistry, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081HV Amsterdam, The Netherlands
| | - Tim Lüddecke
- LOEWE Centre for Translational Biodiversity Genomics, Senckenberg Frankfurt, Senckenberganlage 25, 60235 Frankfurt, Germany
- Department of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology, 35392 Gießen, Germany
| | - Riadh Ben Mansour
- Department of Life Sciences, Faculty of Sciences, Gafsa University, Campus Universitaire Siidi Ahmed Zarrouk, 2112 Gafsa, Tunisia
| | - Maria Vittoria Modica
- Dept. of Biology and Evolution of Marine Organisms (BEOM), Stazione Zoologica Anton Dohrn, Via Po 25c, I-00198 Roma, Italy
| | - Yehu Moran
- Department of Ecology, Evolution and Behavior, Alexander Silberman Institute of Life Sciences, Faculty of Science, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Ayse Nalbantsoy
- Department of Bioengineering, Faculty of Engineering, Ege University, 35100 Bornova, Izmir, Turkey
| | - María Eugenia Pachón Ibáñez
- Unit of Infectious Diseases, Microbiology, and Preventive Medicine, Virgen del Rocío University Hospital, Institute of Biomedicine of Seville, 41013 Sevilla, Spain
- CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain
| | - Alexios Panagiotopoulos
- Metabolic Engineering and Systems Biology Laboratory, Institute of Chemical Engineering Sciences, Foundation for Research & Technology Hellas (FORTH/ICE-HT), Patras GR-26504, Greece
- Animal Biology Division, Department of Biology, University of Patras, Patras, GR-26500, Greece
| | - Eitan Reuveny
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Javier Sánchez Céspedes
- Unit of Infectious Diseases, Microbiology, and Preventive Medicine, Virgen del Rocío University Hospital, Institute of Biomedicine of Seville, 41013 Sevilla, Spain
- CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain
| | - Andy Sombke
- Department of Evolutionary Biology, University of Vienna, Djerassiplatz 1, 1030 Vienna, Austria
| | - Joachim M Surm
- Department of Ecology, Evolution and Behavior, Alexander Silberman Institute of Life Sciences, Faculty of Science, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Eivind A B Undheim
- University of Oslo, Centre for Ecological and Evolutionary Synthesis, Postboks 1066 Blindern 0316 Oslo, Norway
| | - Aida Verdes
- Department of Biodiversity and Evolutionary Biology, Museo Nacional de Ciencias Naturales, José Gutiérrez Abascal 2, 28006 Madrid, Spain
| | - Giulia Zancolli
- Department of Ecology and Evolution, University of Lausanne, 1015 Lausanne, Switzerland
- Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
| |
Collapse
|
10
|
Diochot S. Pain-related toxins in scorpion and spider venoms: a face to face with ion channels. J Venom Anim Toxins Incl Trop Dis 2021; 27:e20210026. [PMID: 34925480 PMCID: PMC8667759 DOI: 10.1590/1678-9199-jvatitd-2021-0026] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 05/10/2021] [Indexed: 12/12/2022] Open
Abstract
Pain is a common symptom induced during envenomation by spiders and scorpions.
Toxins isolated from their venom have become essential tools for studying the
functioning and physiopathological role of ion channels, as they modulate their
activity. In particular, toxins that induce pain relief effects can serve as a
molecular basis for the development of future analgesics in humans. This review
provides a summary of the different scorpion and spider toxins that directly
interact with pain-related ion channels, with inhibitory or stimulatory effects.
Some of these toxins were shown to affect pain modalities in different animal
models providing information on the role played by these channels in the pain
process. The close interaction of certain gating-modifier toxins with membrane
phospholipids close to ion channels is examined along with molecular approaches
to improve selectivity, affinity or bioavailability in vivo for
therapeutic purposes.
Collapse
Affiliation(s)
- Sylvie Diochot
- Institut de Pharmacologie Moléculaire et Cellulaire (IPMC), Centre National de la Recherche Scientifique (CNRS) UMR 7275 et Université Côte d'Azur (UCA), 06560 Valbonne, France. Institut de Pharmacologie Moléculaire et Cellulaire Centre National de la Recherche Scientifique Université Côte d'Azur Valbonne France
| |
Collapse
|
11
|
Aierken A, Xie Y, Dong W, Apaer A, Lin J, Zhao Z, Yang S, Xu Z, Yang F. Rational Design of a Modality-Specific Inhibitor of TRPM8 Channel against Oxaliplatin-Induced Cold Allodynia. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2101717. [PMID: 34658162 PMCID: PMC8596132 DOI: 10.1002/advs.202101717] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 08/10/2021] [Indexed: 06/13/2023]
Abstract
Platinum-based compounds in chemotherapy such as oxaliplatin often induce peripheral neuropathy and neuropathic pain such as cold allodynia in patients. Transient Receptor Potential Melastatin 8 (TRPM8) ion channel is a nociceptor critically involved in such pathological processes. Direct blockade of TRPM8 exhibits significant analgesic effects but also incurs severe side effects such as hypothermia. To selectively target TRPM8 channels against cold allodynia, a cyclic peptide DeC-1.2 is de novo designed with the optimized hot-spot centric approach. DeC-1.2 modality specifically inhibited the ligand activation of TRPM8 but not the cold activation as measured in single-channel patch clamp recordings. It is further demonstrated that DeC-1.2 abolishes cold allodynia in oxaliplatin treated mice without altering body temperature, indicating DeC-1.2 has the potential for further development as a novel analgesic against oxaliplatin-induced neuropathic pain.
Collapse
Affiliation(s)
- Aerziguli Aierken
- Department of BiophysicsKidney Disease Center of the First Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiang Province310058China
- NHC and CAMS Key Laboratory of Medical NeurobiologyMOE Frontier Science Center for Brain Research and Brain–Machine IntegrationSchool of Brain Science and Brain MedicineZhejiang UniversityHangzhouZhejiang310058China
| | - Ya‐Kai Xie
- NHC and CAMS Key Laboratory of Medical NeurobiologyMOE Frontier Science Center for Brain Research and Brain–Machine IntegrationSchool of Brain Science and Brain MedicineZhejiang UniversityHangzhouZhejiang310058China
- Department of Neurobiology and Department of Anesthesiology of First Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiang310058China
| | - Wenqi Dong
- College of Wildlife and Protected AreaNortheast Forestry UniversityHarbin150040China
| | - Abuliken Apaer
- Department of BiophysicsKidney Disease Center of the First Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiang Province310058China
| | - Jia‐Jia Lin
- NHC and CAMS Key Laboratory of Medical NeurobiologyMOE Frontier Science Center for Brain Research and Brain–Machine IntegrationSchool of Brain Science and Brain MedicineZhejiang UniversityHangzhouZhejiang310058China
- Department of Neurobiology and Department of Anesthesiology of First Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiang310058China
| | - Zihan Zhao
- College of Wildlife and Protected AreaNortheast Forestry UniversityHarbin150040China
| | - Shilong Yang
- College of Wildlife and Protected AreaNortheast Forestry UniversityHarbin150040China
| | - Zhen‐Zhong Xu
- NHC and CAMS Key Laboratory of Medical NeurobiologyMOE Frontier Science Center for Brain Research and Brain–Machine IntegrationSchool of Brain Science and Brain MedicineZhejiang UniversityHangzhouZhejiang310058China
- Department of Neurobiology and Department of Anesthesiology of First Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiang310058China
| | - Fan Yang
- Department of BiophysicsKidney Disease Center of the First Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiang Province310058China
- NHC and CAMS Key Laboratory of Medical NeurobiologyMOE Frontier Science Center for Brain Research and Brain–Machine IntegrationSchool of Brain Science and Brain MedicineZhejiang UniversityHangzhouZhejiang310058China
| |
Collapse
|
12
|
Ramal-Sanchez M, Bernabò N, Valbonetti L, Cimini C, Taraschi A, Capacchietti G, Machado-Simoes J, Barboni B. Role and Modulation of TRPV1 in Mammalian Spermatozoa: An Updated Review. Int J Mol Sci 2021; 22:4306. [PMID: 33919147 PMCID: PMC8122410 DOI: 10.3390/ijms22094306] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 04/19/2021] [Accepted: 04/19/2021] [Indexed: 12/26/2022] Open
Abstract
Based on the abundance of scientific publications, the polymodal sensor TRPV1 is known as one of the most studied proteins within the TRP channel family. This receptor has been found in numerous cell types from different species as well as in spermatozoa. The present review is focused on analyzing the role played by this important channel in the post-ejaculatory life of spermatozoa, where it has been described to be involved in events such as capacitation, acrosome reaction, calcium trafficking, sperm migration, and fertilization. By performing an exhaustive bibliographic search, this review gathers, for the first time, all the modulators of the TRPV1 function that, to our knowledge, were described to date in different species and cell types. Moreover, all those modulators with a relationship with the reproductive process, either found in the female tract, seminal plasma, or spermatozoa, are presented here. Since the sperm migration through the female reproductive tract is one of the most intriguing and less understood events of the fertilization process, in the present work, chemotaxis, thermotaxis, and rheotaxis guiding mechanisms and their relationship with TRPV1 receptor are deeply analyzed, hypothesizing its (in)direct participation during the sperm migration. Last, TRPV1 is presented as a pharmacological target, with a special focus on humans and some pathologies in mammals strictly related to the male reproductive system.
Collapse
Affiliation(s)
- Marina Ramal-Sanchez
- Faculty of Biosciences and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy; (N.B.); (L.V.); (C.C.); (A.T.); (G.C.); (J.M.-S.); (B.B.)
| | - Nicola Bernabò
- Faculty of Biosciences and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy; (N.B.); (L.V.); (C.C.); (A.T.); (G.C.); (J.M.-S.); (B.B.)
- Institute of Biochemistry and Cell Biology (CNR-IBBC/EMMA/Infrafrontier/IMPC), National Research Council, Monterotondo Scalo, 00015 Rome, Italy
| | - Luca Valbonetti
- Faculty of Biosciences and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy; (N.B.); (L.V.); (C.C.); (A.T.); (G.C.); (J.M.-S.); (B.B.)
- Institute of Biochemistry and Cell Biology (CNR-IBBC/EMMA/Infrafrontier/IMPC), National Research Council, Monterotondo Scalo, 00015 Rome, Italy
| | - Costanza Cimini
- Faculty of Biosciences and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy; (N.B.); (L.V.); (C.C.); (A.T.); (G.C.); (J.M.-S.); (B.B.)
| | - Angela Taraschi
- Faculty of Biosciences and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy; (N.B.); (L.V.); (C.C.); (A.T.); (G.C.); (J.M.-S.); (B.B.)
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise “G. Caporale”, Via Campo Boario 1, 64100 Teramo, Italy
| | - Giulia Capacchietti
- Faculty of Biosciences and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy; (N.B.); (L.V.); (C.C.); (A.T.); (G.C.); (J.M.-S.); (B.B.)
| | - Juliana Machado-Simoes
- Faculty of Biosciences and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy; (N.B.); (L.V.); (C.C.); (A.T.); (G.C.); (J.M.-S.); (B.B.)
| | - Barbara Barboni
- Faculty of Biosciences and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy; (N.B.); (L.V.); (C.C.); (A.T.); (G.C.); (J.M.-S.); (B.B.)
| |
Collapse
|
13
|
Melkes B, Markova V, Hejnova L, Marek A, Novotny J. Naloxone Is a Potential Binding Ligand and Activator of the Capsaicin Receptor TRPV1. Biol Pharm Bull 2021; 43:908-912. [PMID: 32378567 DOI: 10.1248/bpb.b19-00806] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The receptor channel transient receptor potential vanilloid 1 (TRPV1) functions as a sensor of noxious heat and various chemicals. There is increasing evidence for a crosstalk between TRPV1 and opioid receptors. Here we investigated the effect of the prototypical TRPV1 agonist capsaicin and selected opioid ligands on TRPV1 movement in the plasma membrane and intracellular calcium levels in HEK293 cells expressing TRPV1 tagged with cyan fluorescent protein (CFP). We observed that lateral mobility of TRPV1 increased after treatment of cells with capsaicin or naloxone (a nonselective opioid receptor antagonist) but not with DAMGO (a μ-opioid receptor agonist). Interestingly, both capsaicin and naloxone, unlike DAMGO, elicited intracellular calcium responses. The increased TRPV1 movement and calcium influx induced by capsaicin and naloxone were blocked by the TRPV1 antagonist capsazepine. The ability of naloxone to directly interact with TRPV1 was further corroborated by [3H]-naloxone binding. In conclusion, our data suggest that besides acting as an opioid receptor antagonist, naloxone may function as a potential TRPV1 agonist.
Collapse
Affiliation(s)
- Barbora Melkes
- Department of Physiology, Faculty of Science, Charles University
| | - Vendula Markova
- Department of Physiology, Faculty of Science, Charles University
| | - Lucie Hejnova
- Department of Physiology, Faculty of Science, Charles University
| | - Ales Marek
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences
| | - Jiri Novotny
- Department of Physiology, Faculty of Science, Charles University
| |
Collapse
|
14
|
New Insectotoxin from Tibellus Oblongus Spider Venom Presents Novel Adaptation of ICK Fold. Toxins (Basel) 2021; 13:toxins13010029. [PMID: 33406803 PMCID: PMC7824768 DOI: 10.3390/toxins13010029] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 12/21/2020] [Accepted: 12/30/2020] [Indexed: 11/17/2022] Open
Abstract
The Tibellus oblongus spider is an active predator that does not spin webs and remains poorly investigated in terms of venom composition. Here, we present a new toxin, named Tbo-IT2, predicted by cDNA analysis of venom glands transcriptome. The presence of Tbo-IT2 in the venom was confirmed by proteomic analyses using the LC-MS and MS/MS techniques. The distinctive features of Tbo-IT2 are the low similarity of primary structure with known animal toxins and the unusual motif of 10 cysteine residues distribution. Recombinant Tbo-IT2 (rTbo-IT2), produced in E. coli using the thioredoxin fusion protein strategy, was structurally and functionally studied. rTbo-IT2 showed insecticidal activity on larvae of the housefly Musca domestica (LD100 200 μg/g) and no activity on the panel of expressed neuronal receptors and ion channels. The spatial structure of the peptide was determined in a water solution by NMR spectroscopy. The Tbo-IT2 structure is a new example of evolutionary adaptation of a well-known inhibitor cystine knot (ICK) fold to 5 disulfide bonds configuration, which determines additional conformational stability and gives opportunities for insectotoxicity and probably some other interesting features.
Collapse
|
15
|
Fischer MJM, Ciotu CI, Szallasi A. The Mysteries of Capsaicin-Sensitive Afferents. Front Physiol 2020; 11:554195. [PMID: 33391007 PMCID: PMC7772409 DOI: 10.3389/fphys.2020.554195] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 11/13/2020] [Indexed: 12/11/2022] Open
Abstract
A fundamental subdivision of nociceptive sensory neurons is named after their unique sensitivity to capsaicin, the pungent ingredient in hot chili peppers: these are the capsaicin-sensitive afferents. The initial excitation by capsaicin of these neurons manifested as burning pain sensation is followed by a lasting refractory state, traditionally referred to as "capsaicin desensitization," during which the previously excited neurons are unresponsive not only to capsaicin but a variety of unrelated stimuli including noxious heat. The long sought-after capsaicin receptor, now known as TRPV1 (transient receptor potential cation channel, subfamily V member 1), was cloned more than two decades ago. The substantial reduction of the inflammatory phenotype of Trpv1 knockout mice has spurred extensive efforts in the pharmaceutical industry to develop small molecule TRPV1 antagonists. However, adverse effects, most importantly hyperthermia and burn injuries, have so far prevented any compounds from progressing beyond Phase 2. There is increasing evidence that these limitations can be at least partially overcome by approaches outside of the mainstream pharmaceutical development, providing novel therapeutic options through TRPV1. Although ablation of the whole TRPV1-expressing nerve population by high dose capsaicin, or more selectively by intersectional genetics, has allowed researchers to investigate the functions of capsaicin-sensitive afferents in health and disease, several "mysteries" remain unsolved to date, including the molecular underpinnings of "capsaicin desensitization," and the exact role these nerves play in thermoregulation and heat sensation. This review tries to shed some light on these capsaicin mechanisms.
Collapse
Affiliation(s)
- Michael J. M. Fischer
- Center of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Cosmin I. Ciotu
- Center of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Arpad Szallasi
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| |
Collapse
|
16
|
Zubcevic L. Temperature‐sensitive transient receptor potential vanilloid channels: structural insights into ligand‐dependent activation. Br J Pharmacol 2020; 179:3542-3559. [DOI: 10.1111/bph.15310] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 10/19/2020] [Accepted: 10/27/2020] [Indexed: 12/15/2022] Open
Affiliation(s)
- Lejla Zubcevic
- Department of Biochemistry and Molecular Biology The University of Kansas School of Medicine Kansas City KS USA
| |
Collapse
|
17
|
Siudem P, Paradowska K. Structure, function, and mechanism of action of the
vanilloid TRPV1 receptor. POSTEP HIG MED DOSW 2020. [DOI: 10.5604/01.3001.0014.5104] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The TRPV1 receptor (transient receptor potential cation channel subfamily V member 1)
is a non-selective cationic channel activated by vanilloids like capsaicin. Therefore, TRPV1 is
also called a capsaicin’s receptor, which is a spicy substance found in chili peppers. The receptor
is located in sensory nerve fibers and non-neuronal cells, for example in vascular endothelial
and smooth muscle cells. It is thought to act as an integrator of various physical and
chemical stimuli that provide heat and pain. The activation of the TRPV1 may affect at various
physiological functions like release inflammatory mediators, gastrointestinal motility and
temperature regulation. Numerous studies in recent years show TRPV1 plays an important
role in physiology and development of pathological conditions of gastrointestinal, cardiovascular
and respiratory system. These receptors are widely studied as a gripping point for
new painkillers, but there are also data indicating their potential involvement in the pathomechanism
of various diseases, e.g. epilepsy. TRPV1 targeting may be useful not only in paintreatment
but also urinary incontinence, chronic cough or irritable bowel syndrome. The need
for further investigation of the therapeutic potential of TRPV1 antagonists indicates the lack
of effective drugs to treat many of these conditions. The purpose of this article is to collect
and summarize knowledge about the TRPV1 receptor, its structure and mechanism of action.
Collapse
Affiliation(s)
- Paweł Siudem
- Zakład Chemii Fizycznej, Katedra Farmacji Fizycznej i Bioanalizy, Wydział Farmaceutyczny, Warszawski Uniwersytet Medyczny, Warszawa
| | - Katarzyna Paradowska
- Zakład Chemii Fizycznej, Katedra Farmacji Fizycznej i Bioanalizy, Wydział Farmaceutyczny, Warszawski Uniwersytet Medyczny, Warszawa
| |
Collapse
|
18
|
Schiffers C, Hristova M, Habibovic A, Dustin CM, Danyal K, Reynaert NL, Wouters EFM, van der Vliet A. The Transient Receptor Potential Channel Vanilloid 1 Is Critical in Innate Airway Epithelial Responses to Protease Allergens. Am J Respir Cell Mol Biol 2020; 63:198-208. [PMID: 32182090 DOI: 10.1165/rcmb.2019-0170oc] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The airway epithelium plays a critical role in innate responses to airborne allergens by secreting IL-1 family cytokines such as IL-1α and IL-33 as alarmins that subsequently orchestrate appropriate immune responses. Previous studies revealed that epithelial IL-33 secretion by allergens such as Alternaria alternata or house dust mite involves Ca2+-dependent signaling, via initial activation of ATP-stimulated P2YR2 (type 2 purinoceptor) and subsequent activation of the nicotinamide adenine dinucleotide phosphate (NADPH) oxidase DUOX1. We sought to identify proximal mechanisms by which epithelial cells sense these allergens and here highlight the importance of PAR2 (protease-activated receptor 2) and TRP (transient receptor potential) Ca2+ channels such as TRPV1 (TRP vanilloid 1) in these responses. Combined studies of primary human nasal and mouse tracheal epithelial cells, as well as immortalized human bronchial epithelial cells, indicated the importance of both PAR2 and TRPV1 in IL-33 secretion by both Alternaria alternata and house dust mite, based on both pharmacological and genetic approaches. TRPV1 was also critically involved in allergen-induced ATP release, activation of DUOX1, and redox-dependent activation of EGFR (epidermal growth factor receptor). Moreover, genetic deletion of TRPV1 dramatically attenuated allergen-induced IL-33 secretion and subsequent type 2 responses in mice in vivo. TRPV1 not only contributed to ATP release and P2YR2 signaling but also was critical in downstream innate responses to ATP, indicating potentiating effects of P2YR2 on TRPV1 activation. In aggregate, our studies illustrate a complex relationship between various receptor types, including PAR2 and P2YR2, in epithelial responses to asthma-relevant airborne allergens and highlight the central importance of TRPV1 in such responses.
Collapse
Affiliation(s)
- Caspar Schiffers
- Department of Pathology and Laboratory Medicine, Robert Larner, M.D. College of Medicine, University of Vermont, Burlington, Vermont; and.,Department of Respiratory Medicine, NUTRIM School for Nutrition, Toxicology, and Metabolism, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Milena Hristova
- Department of Pathology and Laboratory Medicine, Robert Larner, M.D. College of Medicine, University of Vermont, Burlington, Vermont; and
| | - Aida Habibovic
- Department of Pathology and Laboratory Medicine, Robert Larner, M.D. College of Medicine, University of Vermont, Burlington, Vermont; and
| | - Christopher M Dustin
- Department of Pathology and Laboratory Medicine, Robert Larner, M.D. College of Medicine, University of Vermont, Burlington, Vermont; and
| | - Karamatullah Danyal
- Department of Pathology and Laboratory Medicine, Robert Larner, M.D. College of Medicine, University of Vermont, Burlington, Vermont; and
| | - Niki L Reynaert
- Department of Respiratory Medicine, NUTRIM School for Nutrition, Toxicology, and Metabolism, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Emiel F M Wouters
- Department of Respiratory Medicine, NUTRIM School for Nutrition, Toxicology, and Metabolism, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Albert van der Vliet
- Department of Pathology and Laboratory Medicine, Robert Larner, M.D. College of Medicine, University of Vermont, Burlington, Vermont; and
| |
Collapse
|
19
|
Negri S, Faris P, Rosti V, Antognazza MR, Lodola F, Moccia F. Endothelial TRPV1 as an Emerging Molecular Target to Promote Therapeutic Angiogenesis. Cells 2020; 9:cells9061341. [PMID: 32471282 PMCID: PMC7349285 DOI: 10.3390/cells9061341] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/26/2020] [Accepted: 05/26/2020] [Indexed: 02/06/2023] Open
Abstract
Therapeutic angiogenesis represents an emerging strategy to treat ischemic diseases by stimulating blood vessel growth to rescue local blood perfusion. Therefore, injured microvasculature may be repaired by stimulating resident endothelial cells or circulating endothelial colony forming cells (ECFCs) or by autologous cell-based therapy. Endothelial Ca2+ signals represent a crucial player in angiogenesis and vasculogenesis; indeed, several angiogenic stimuli induce neovessel formation through an increase in intracellular Ca2+ concentration. Several members of the Transient Receptor Potential (TRP) channel superfamily are expressed and mediate Ca2+-dependent functions in vascular endothelial cells and in ECFCs, the only known truly endothelial precursor. TRP Vanilloid 1 (TRPV1), a polymodal cation channel, is emerging as an important player in endothelial cell migration, proliferation, and tubulogenesis, through the integration of several chemical stimuli. Herein, we first summarize TRPV1 structure and gating mechanisms. Next, we illustrate the physiological roles of TRPV1 in vascular endothelium, focusing our attention on how endothelial TRPV1 promotes angiogenesis. In particular, we describe a recent strategy to stimulate TRPV1-mediated pro-angiogenic activity in ECFCs, in the presence of a photosensitive conjugated polymer. Taken together, these observations suggest that TRPV1 represents a useful target in the treatment of ischemic diseases.
Collapse
Affiliation(s)
- Sharon Negri
- Laboratory of General Physiology, Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, 27100 Pavia, Italy; (S.N.); (P.F.)
| | - Pawan Faris
- Laboratory of General Physiology, Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, 27100 Pavia, Italy; (S.N.); (P.F.)
| | - Vittorio Rosti
- Center for the Study of Myelofibrosis, Laboratory of Biochemistry, Biotechnology and Advanced Diagnosis, IRCCS Policlinico San Matteo Foundation, 27100 Pavia, Italy;
| | - Maria Rosa Antognazza
- Center for Nano Science and Technology @PoliMi, Istituto Italiano di Tecnologia, via Pascoli 70/3, 20133 Milano, Italy; (M.R.A.); (F.L.)
| | - Francesco Lodola
- Center for Nano Science and Technology @PoliMi, Istituto Italiano di Tecnologia, via Pascoli 70/3, 20133 Milano, Italy; (M.R.A.); (F.L.)
| | - Francesco Moccia
- Laboratory of General Physiology, Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, 27100 Pavia, Italy; (S.N.); (P.F.)
- Correspondence:
| |
Collapse
|
20
|
Chu Y, Qiu P, Yu R. Centipede Venom Peptides Acting on Ion Channels. Toxins (Basel) 2020; 12:toxins12040230. [PMID: 32260499 PMCID: PMC7232367 DOI: 10.3390/toxins12040230] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 03/30/2020] [Accepted: 04/01/2020] [Indexed: 12/19/2022] Open
Abstract
Centipedes are among the oldest venomous arthropods that use their venom to subdue the prey. The major components of centipede venom are a variety of low-molecular-weight peptide toxins that have evolved to target voltage-gated ion channels to interfere with the central system of prey and produce pain or paralysis for efficient hunting. Peptide toxins usually contain several intramolecular disulfide bonds, which confer chemical, thermal and biological stability. In addition, centipede peptides generally have novel structures and high potency and specificity and therefore hold great promise both as diagnostic tools and in the treatment of human disease. Here, we review the centipede peptide toxins with reported effects on ion channels, including Nav, Kv, Cav and the nonselective cation channel polymodal transient receptor potential vanilloid 1 (TRPV1).
Collapse
Affiliation(s)
- YanYan Chu
- School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China;
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266003, China
- Innovation Center for Marine Drug Screening & Evaluation, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266003, China
- Marine Biomedical Research Institute of Qingdao, Qingdao 266071, China
- Correspondence: (Y.C.); (R.Y.)
| | - PeiJu Qiu
- School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China;
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266003, China
- Innovation Center for Marine Drug Screening & Evaluation, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266003, China
- Marine Biomedical Research Institute of Qingdao, Qingdao 266071, China
| | - RiLei Yu
- School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China;
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266003, China
- Innovation Center for Marine Drug Screening & Evaluation, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266003, China
- Correspondence: (Y.C.); (R.Y.)
| |
Collapse
|
21
|
Yu R, Liu H, Wang B, Harvey PJ, Wei N, Chu Y. Synthesis and biological activity study of the retro-isomer of RhTx against TRPV1. RSC Adv 2020; 10:2141-2145. [PMID: 35494567 PMCID: PMC9048425 DOI: 10.1039/c9ra08829f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 01/05/2020] [Indexed: 01/09/2023] Open
Abstract
TRPV1 is a ligand-gated ion channel and plays an important role in detecting noxious heat and pain with an unknown mechanism. RhTx from Chinese red-headed centipede activates the TRPV1 channel through the heat activation pathway by binding to the outer pore region, and causes extreme pain. Here, we synthesized RhTx and its retro-isomer RL-RhTx. Their structures were investigated by their circular dichroic spectra and NMR spectra. The effect of RhTx and RL-RhTx on the currents of wild-type and mutants of TRPV1 indicated that RL-RhTx have comparable TRPV1 activation responses to RhTx. A mutagenesis study showed that four TRPV1 residues, including Leu461, Asp602, Tyr632 and Thr634, significantly contributed to the activation effects of RL-RhTx and RhTx, and both peptides probably bind with TRPV1 in similar binding modes. As a novel TRPV1 activator, RL-RhTx provides an essential powerful tool for the investigation of activation mechanisms of TRPV1.
Collapse
Affiliation(s)
- Rilei Yu
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China Qingdao 266003 China
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology Qingdao 266003 China
| | - Huijie Liu
- Department of Pharmacology, School of Pharmacy, Qingdao University Qingdao 266021 China
| | - Baishi Wang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China Qingdao 266003 China
| | - Peta J Harvey
- Institute for Molecular Bioscience, The University of Queensland Brisbane QLD 4072 Australia
| | - Ningning Wei
- Department of Pharmacology, School of Pharmacy, Qingdao University Qingdao 266021 China
| | - Yanyan Chu
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China Qingdao 266003 China
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology Qingdao 266003 China
| |
Collapse
|
22
|
Vásquez V. Using C. elegans to Study the Effects of Toxins in Sensory Ion Channels In Vivo. Methods Mol Biol 2020; 2068:225-238. [PMID: 31576531 DOI: 10.1007/978-1-4939-9845-6_12] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Caenorhabditis elegans is a powerful animal model in which transgenesis, behavior, and physiology can be merged to study in vivo the effect of natural and synthetic agonists in sensory ion channels. Worms have polymodal sensory neurons (like the ASH pair) that couple ion channel activation with a robust and easily scorable aversive-like behavior. We expressed the transient receptor potential vanilloid 1 (TRPV1) channel from rat (r) in worms' ASH neurons and determined its sensitivity to the tarantula double-knot toxin (DkTx) and the active component of chili peppers (capsaicin). This chapter describes protocols for generating and maintaining transgenic rTRPV1 worms to determine dose-dependent behavior. The goal is to provide an efficient tool to characterize the function of sensory channels (wild type and mutants) in vivo.
Collapse
Affiliation(s)
- Valeria Vásquez
- Department of Physiology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, USA.
| |
Collapse
|
23
|
Yao Z, Kamau PM, Han Y, Hu J, Luo A, Luo L, Zheng J, Tian Y, Lai R. The Latoia consocia Caterpillar Induces Pain by Targeting Nociceptive Ion Channel TRPV1. Toxins (Basel) 2019; 11:toxins11120695. [PMID: 31783580 PMCID: PMC6950366 DOI: 10.3390/toxins11120695] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Revised: 11/16/2019] [Accepted: 11/25/2019] [Indexed: 12/17/2022] Open
Abstract
Accidental contact with caterpillar bristles causes local symptoms such as severe pain, intense heat, edema, erythema, and pruritus. However, there is little functional evidence to indicate a potential mechanism. In this study, we analyzed the biological characteristics of the crude venom from the larval stage of Latoia consocia living in South-West China. Intraplantar injection of the venom into the hind paws of mice induced severe acute pain behaviors in wild type (WT) mice; the responses were much reduced in TRPV1-deficit (TRPV1 KO) mice. The TRPV1-specific inhibitor, capsazepine, significantly attenuated the pain behaviors. Furthermore, the crude venom evoked strong calcium signals in the dorsal root ganglion (DRG) neurons of WT mice but not those of TRPV1 KO mice. Among the pain-related ion channels we tested, the crude venom only activated the TRPV1 channel. To better understand the venom components, we analyzed the transcriptome of the L. consocia sebaceous gland region. Our study suggests that TRPV1 serves as a primary nociceptor in caterpillar-induced pain and forms the foundation for elucidating the pain-producing mechanism.
Collapse
Affiliation(s)
- Zhihao Yao
- Department of Pharmacology, Qingdao University School of Pharmacy, Qingdao 266000, China
| | - Peter Muiruri Kamau
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences/Key Laboratory of bioactive peptides of Yunnan Province, Kunming Institute of Zoology, Kunming 650223, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Sino-African Joint Research Center, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Yalan Han
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences/Key Laboratory of bioactive peptides of Yunnan Province, Kunming Institute of Zoology, Kunming 650223, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jingmei Hu
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Anna Luo
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences/Key Laboratory of bioactive peptides of Yunnan Province, Kunming Institute of Zoology, Kunming 650223, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lei Luo
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences/Key Laboratory of bioactive peptides of Yunnan Province, Kunming Institute of Zoology, Kunming 650223, China
- Correspondence: (L.L.); (J.Z.); (Y.T.); (R.L.)
| | - Jie Zheng
- Department of Physiology and Membrane Biology, University of California, Davis, CA 95616, USA
- Correspondence: (L.L.); (J.Z.); (Y.T.); (R.L.)
| | - Yuhua Tian
- Department of Pharmacology, Qingdao University School of Pharmacy, Qingdao 266000, China
- Correspondence: (L.L.); (J.Z.); (Y.T.); (R.L.)
| | - Ren Lai
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences/Key Laboratory of bioactive peptides of Yunnan Province, Kunming Institute of Zoology, Kunming 650223, China
- Sino-African Joint Research Center, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
- KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
- Institute for Drug Discovery and Development, Chinese Academy of Sciences, Shanghai 201203, China
- Center for Biosafety Mega-Science, Chinese Academy of Sciences, No.44, Xiaohongshan, Wuchang District/Huangjin Industrial Park, Zhengdian Street, Jiangxia District, Wuhan 430207, China
- Correspondence: (L.L.); (J.Z.); (Y.T.); (R.L.)
| |
Collapse
|
24
|
Voets T, Vriens J, Vennekens R. Targeting TRP Channels - Valuable Alternatives to Combat Pain, Lower Urinary Tract Disorders, and Type 2 Diabetes? Trends Pharmacol Sci 2019; 40:669-683. [PMID: 31395287 DOI: 10.1016/j.tips.2019.07.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 05/12/2019] [Accepted: 07/10/2019] [Indexed: 12/18/2022]
Abstract
Transient receptor potential (TRP) channels are a family of functionally diverse and widely expressed cation channels involved in a variety of cell signaling and sensory pathways. Research in the last two decades has not only shed light on the physiological roles of the 28 mammalian TRP channels, but also revealed the involvement of specific TRP channels in a plethora of inherited and acquired human diseases. Considering the historical successes of other types of ion channels as therapeutic drug targets, small molecules that target specific TRP channels hold promise as treatments for a variety of human conditions. In recent research, important new findings have highlighted the central role of TRP channels in chronic pain, lower urinary tract disorders, and type 2 diabetes, conditions with an unmet medical need. Here, we discuss how these advances support the development of TRP-channel-based pharmacotherapies as valuable alternatives to the current mainstays of treatment.
Collapse
Affiliation(s)
- Thomas Voets
- Laboratory of Ion Channel Research, VIB Center for Brain and Disease Research, Leuven, Belgium; Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium.
| | - Joris Vriens
- Laboratory of Endometrium, Endometriosis and Reproductive Medicine, Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - Rudi Vennekens
- Laboratory of Ion Channel Research, VIB Center for Brain and Disease Research, Leuven, Belgium; Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| |
Collapse
|
25
|
Hung CY, Tan CH. TRP Channels in Nociception and Pathological Pain. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1099:13-27. [PMID: 30306511 DOI: 10.1007/978-981-13-1756-9_2] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Thermal and noxious stimuli are detected by specialized nerve endings, which transform the stimuli into electrical signals and transmit the signals into central nervous system to facilitate the perception of temperature and pain. Several members within the transient receptor potential (TRP) channel family serve as the sensors for temperature and noxious stimuli and are involved in the development of pathological pain, especially inflammatory pain. Various inflammatory mediators can sensitize and modulate the activation threshold of TRP channels and result in the development of inflammatory pain behaviors. A brief review of the role of TRP channels in nociception and the modulatory mechanisms of TRP channels by inflammatory mediators, focusing on TRPV1, TRPA1, and TRPM2, will be presented. Recent advances in the development of therapeutic strategies targeting against TRP channels will also be reviewed.
Collapse
Affiliation(s)
- Chen-Yu Hung
- Department of General Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chun-Hsiang Tan
- Department of Neurology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.
| |
Collapse
|
26
|
Redox TRPs in diabetes and diabetic complications: Mechanisms and pharmacological modulation. Pharmacol Res 2019; 146:104271. [PMID: 31096011 DOI: 10.1016/j.phrs.2019.104271] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 04/04/2019] [Accepted: 05/08/2019] [Indexed: 12/12/2022]
Abstract
Transient receptor potential (TRP) channels have shown to be involved in a wide variety of physiological functions and pathophysiological conditions. Modulation of TRP channels reported to play a major role in number of disorders starting from central nervous system related disorders to cardiovascular, inflammatory, cancer, gastrointestinal and metabolic diseases. Recently, a subset of TRP ion channels called redox TRPs gained importance on account of their ability to sense the cellular redox environment and respond accordingly to such redox stimuli. Diabetes, the silent epidemic of the world is increasing at an alarming rate in spite of novel therapeutic interventions. Moreover, diabetes and its associated complications are reported to arise due to a change in oxidative status of cell induced by hyperglycemia. Such a change in cellular oxidative status can modulate the activities of various redox TRP channels (TRPA1, TRPC5, TRPMs and TRPV1). Targeting redox TRPs have potential in diabetes and diabetic complications like neuropathy, cardiomyopathy, retinopathy, cystopathy, and encephalopathy. Thus in this review, we have discussed the activities of different redox sensing TRPs in diabetes and diabetic complications and how they can be modulated pharmacologically, so as to consider them a potential novel therapeutic target in treating diabetes and its comorbidity.
Collapse
|
27
|
Developmental Axon Degeneration Requires TRPV1-Dependent Ca 2+ Influx. eNeuro 2019; 6:eN-NWR-0019-19. [PMID: 30838324 PMCID: PMC6399429 DOI: 10.1523/eneuro.0019-19.2019] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 01/23/2019] [Accepted: 01/24/2019] [Indexed: 12/16/2022] Open
Abstract
Development of the nervous system relies on a balance between axon and dendrite growth and subsequent pruning and degeneration. The developmental degeneration of dorsal root ganglion (DRG) sensory axons has been well studied in part because it can be readily modeled by removing the trophic support by nerve growth factor (NGF) in vitro. We have recently reported that axonal fragmentation induced by NGF withdrawal is dependent on Ca2+, and here, we address the mechanism of Ca2+ entry required for developmental axon degeneration of mouse embryonic DRG neurons. Our results show that the transient receptor potential vanilloid family member 1 (TRPV1) cation channel plays a critical role mediating Ca2+ influx in DRG axons withdrawn from NGF. We further demonstrate that TRPV1 activation is dependent on reactive oxygen species (ROS) generation that is driven through protein kinase C (PKC) and NADPH oxidase (NOX)-dependent pathways that become active upon NGF withdrawal. These findings demonstrate novel mechanistic links between NGF deprivation, PKC activation, ROS generation, and TRPV1-dependent Ca2+ influx in sensory axon degeneration.
Collapse
|
28
|
Maatuf Y, Geron M, Priel A. The Role of Toxins in the Pursuit for Novel Analgesics. Toxins (Basel) 2019; 11:toxins11020131. [PMID: 30813430 PMCID: PMC6409898 DOI: 10.3390/toxins11020131] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 02/17/2019] [Accepted: 02/20/2019] [Indexed: 12/19/2022] Open
Abstract
Chronic pain is a major medical issue which reduces the quality of life of millions and inflicts a significant burden on health authorities worldwide. Currently, management of chronic pain includes first-line pharmacological therapies that are inadequately effective, as in just a portion of patients pain relief is obtained. Furthermore, most analgesics in use produce severe or intolerable adverse effects that impose dose restrictions and reduce compliance. As the majority of analgesic agents act on the central nervous system (CNS), it is possible that blocking pain at its source by targeting nociceptors would prove more efficient with minimal CNS-related side effects. The development of such analgesics requires the identification of appropriate molecular targets and thorough understanding of their structural and functional features. To this end, plant and animal toxins can be employed as they affect ion channels with high potency and selectivity. Moreover, elucidation of the toxin-bound ion channel structure could generate pharmacophores for rational drug design while favorable safety and analgesic profiles could highlight toxins as leads or even as valuable therapeutic compounds themselves. Here, we discuss the use of plant and animal toxins in the characterization of peripherally expressed ion channels which are implicated in pain.
Collapse
Affiliation(s)
- Yossi Maatuf
- The Institute for Drug Research (IDR), School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112001, Israel.
| | - Matan Geron
- The Institute for Drug Research (IDR), School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112001, Israel.
| | - Avi Priel
- The Institute for Drug Research (IDR), School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112001, Israel.
| |
Collapse
|
29
|
Abstract
The transient receptor potential ankyrin 1 (TRPA1) ion channel is expressed in pain-sensing neurons and other tissues and has become a major target in the development of novel pharmaceuticals. A remarkable feature of the channel is its long list of activators, many of which we are exposed to in daily life. Many of these agonists induce pain and inflammation, making TRPA1 a major target for anti-inflammatory and analgesic therapies. Studies in human patients and in experimental animals have confirmed an important role for TRPA1 in a number of pain conditions. Over the recent years, much progress has been made in elucidating the molecular structure of TRPA1 and in discovering binding sites and modulatory sites of the channel. Because the list of published mutations and important molecular sites is steadily growing and because it has become difficult to see the forest for the trees, this review aims at summarizing the current knowledge about TRPA1, with a special focus on the molecular structure and the known binding or gating sites of the channel.
Collapse
Affiliation(s)
- Jannis E Meents
- Institute of Physiology, University Hospital RWTH Aachen , Aachen , Germany
| | - Cosmin I Ciotu
- Center for Physiology and Pharmacology, Medical University of Vienna , Vienna , Austria
| | - Michael J M Fischer
- Center for Physiology and Pharmacology, Medical University of Vienna , Vienna , Austria
| |
Collapse
|
30
|
Abstract
Many neurotoxins inflict pain by targeting receptors expressed on nociceptors, such as the polymodal cationic channel TRPV1. The tarantula double-knot toxin (DkTx) is a peptide with an atypical bivalent structure, providing it with the unique capability to lock TRPV1 in its open state and evoke an irreversible channel activation. Here, we describe a distinct gating mechanism of DkTx-evoked TRPV1 activation. Interestingly, DkTx evokes significantly smaller TRPV1 macroscopic currents than capsaicin, with a significantly lower unitary conductance. Accordingly, while capsaicin evokes aversive behaviors in TRPV1-transgenic Caenorhabditis elegans, DkTx fails to evoke such response at physiological concentrations. To determine the structural feature(s) responsible for this phenomenon, we engineered and evaluated a series of mutated toxins and TRPV1 channels. We found that elongating the DkTx linker, which connects its two knots, increases channel conductance compared with currents elicited by the native toxin. Importantly, deletion of the TRPV1 pore turret, a stretch of amino acids protruding out of the channel's outer pore region, is sufficient to produce both full conductance and aversive behaviors in response to DkTx. Interestingly, this deletion decreases the capsaicin-evoked channel activation. Taken together with structure modeling analysis, our results demonstrate that the TRPV1 pore turret restricts DkTx-mediated pore opening, probably through steric hindrance, limiting the current size and mitigating the evoked downstream physiological response. Overall, our findings reveal that DkTx and capsaicin elicit distinct TRPV1 gating mechanisms and subsequent pain responses. Our results also indicate that the TRPV1 pore turret regulates the mechanisms of channel gating and permeation.
Collapse
|
31
|
Engineering varied serine protease inhibitors by converting P1 site of BF9, a weakly active Kunitz-type animal toxin. Int J Biol Macromol 2018; 120:1190-1197. [PMID: 30172807 DOI: 10.1016/j.ijbiomac.2018.08.178] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 07/14/2018] [Accepted: 08/29/2018] [Indexed: 12/30/2022]
Abstract
Although there were a lot of weakly active animal toxins in the venoms, their values and applications are still mysterious, such as BF9, which is a Kunitz-type toxin isolated from the venom of the elapid snake Bungarus fasciatus. Here, we used BF9 to be a molecular scaffold, and engineered eight BF9-derived peptides by changing P1 site Asn17 of BF9, such as BF9-N17Y and BF9-N17T designed from the polar subfamily, BF9-N17L and BF9-N17G designed from the Non-polar subfamily, BF9-N17D designed from acidic subfamily, and BF9-N17H, BF9-N17K and BF9-N17R designed from basic subfamily. Through enzyme inhibitor experiment assays, we found a potent and selective chymotrypsin inhibitor BF9-N17Y, a potent and selective coagulation factor XIa inhibitor BF9-N17H, and two highly potent coagulation factor XIa inhibitors BF9-N17K and BF9-N17. APTT and PT assays further showed that BF9-N17H, BF9-N17K and BF9-N17R were three novel anticoagulants with selectively intrinsic coagulation pathway inhibitory activity. Considering that natural weakly active animal toxins are also a huge peptide resource, our present work might open a new window about pharmacological applications of weakly active animal toxins, which might be good templates for potent and selective molecular probe and lead drug designs.
Collapse
|
32
|
Cnidarian peptide neurotoxins: a new source of various ion channel modulators or blockers against central nervous systems disease. Drug Discov Today 2018; 24:189-197. [PMID: 30165198 DOI: 10.1016/j.drudis.2018.08.011] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Revised: 07/13/2018] [Accepted: 08/10/2018] [Indexed: 01/17/2023]
Abstract
Cnidaria provide the largest source of bioactive peptides for new drug development. The venoms contain enzymes, potent pore-forming toxins and neurotoxins. The neurotoxins can immobilize predators rapidly when discharged via modifying sodium-channel-gating or blocking the potassium channel during the repolarization stage. Most cnidarian neurotoxins remain conserved under the strong influence of negative selection. Neuroactive peptides targeting the central nervous system through affinity with ion channels could provide insight leading to drug treatment of neurological diseases, which arise from ion channel dysfunctions. Although marine resources offer thousands of possible peptides, only one peptide derived from Cnidaria: ShK-186, also named dalazatide, has reached the pharmaceutical market. This review focuses on neuroprotective agents derived from cnidarian neurotoxic peptides.
Collapse
|
33
|
Peigneur S, Tytgat J. Toxins in Drug Discovery and Pharmacology. Toxins (Basel) 2018; 10:toxins10030126. [PMID: 29547537 PMCID: PMC5869414 DOI: 10.3390/toxins10030126] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 03/13/2018] [Accepted: 03/14/2018] [Indexed: 12/18/2022] Open
Abstract
Venoms from marine and terrestrial animals (cone snails, scorpions, spiders, snakes, centipedes, cnidarian, etc.) can be seen as an untapped cocktail of biologically active compounds, being increasingly recognized as a new emerging source of peptide-based therapeutics.
Collapse
Affiliation(s)
- Steve Peigneur
- Toxicology and Pharmacology, University of Leuven (KU Leuven), Campus Gasthuisberg, P.O. Box 922, Herestraat 49, 3000 Leuven, Belgium.
| | - Jan Tytgat
- Toxicology and Pharmacology, University of Leuven (KU Leuven), Campus Gasthuisberg, P.O. Box 922, Herestraat 49, 3000 Leuven, Belgium.
| |
Collapse
|