1
|
Mosavari N, Bashashati M, Dehghanpour M, Abdolvand M, Heshmatinia F, Sabouri F, Dashtipour S, Hosseini SM, Najafpour R, Baradaran‐Seyed Z. Tracking melioidosis in Iran: Utilizing abattoir-based surveillance as a One Health approach. Vet Med Sci 2024; 10:e1503. [PMID: 38923363 PMCID: PMC11198021 DOI: 10.1002/vms3.1503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 05/19/2024] [Accepted: 05/24/2024] [Indexed: 06/28/2024] Open
Abstract
BACKGROUND Burkholderia pseudomallei, an environmental saprophyte bacterium, causes melioidosis in humans and animals. It was first discovered in Iran between 1967 and 1976 in small ruminants, equines, environments and humans. No subsequent studies have been conducted to determine the existence and prevalence of this pathogen in the country. OBJECTIVES The present study aims to monitor the presence of B. pseudomallei in the ruminant population of the Golestan province of Iran, which largely depends on pastures. The ruminants can serve as sentinels to indicate the presence of the bacteria in the environment and its potential impact on human health in the One Health triad. METHODS Liver and lung abscesses from domestic sheep, cattle and goats in three industrial and three conventional slaughterhouses were sampled and analysed using 23S ribosomal DNA polymerase chain reaction (rDNA PCR) with primers CVMP 23-1 and CVP-23-2 for B. pseudomallei, Burkholderia cepacia and Burkholderia vietnamiensis, as well as B. pseudomallei-specific TTS1 real-time PCR, along with microbiological and biochemical assays. RESULTS Out of the 97 animals sampled, only 14 (15%) tested positive for 23S rDNA PCR. However, the follow-up evaluation using TTS1 real-time PCR and microbiological and biochemical assays did not confirm the presence of B. pseudomallei in the samples. CONCLUSIONS Although B. pseudomallei was not detected in the current survey, conducting abattoir-based surveillance of ruminants is a cost-effective One Health approach to monitor pathogenic Burkholderia. Developing standards of clinical and laboratory good practices for Burkholderia infections is crucial for One Health surveillance.
Collapse
Affiliation(s)
- Nader Mosavari
- Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO)KarajIran
| | - Mohsen Bashashati
- Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO)KarajIran
| | - Mahdi Dehghanpour
- Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO)KarajIran
| | | | - Faezeh Heshmatinia
- Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO)KarajIran
| | - Fereshteh Sabouri
- Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO)KarajIran
| | - Shojaat Dashtipour
- Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO)KarajIran
| | - Saeid Mohammad Hosseini
- Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO)KarajIran
| | - Reza Najafpour
- Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO)KarajIran
| | - Zahra Baradaran‐Seyed
- Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO)KarajIran
| |
Collapse
|
2
|
Jilani MSA, Farook S, Bhattacharjee A, Barai L, Ahsan CR, Haq JA, Tuanyok A. Phylogeographic characterization of Burkholderia pseudomallei isolated from Bangladesh. PLoS Negl Trop Dis 2023; 17:e0011823. [PMID: 38060593 PMCID: PMC10729972 DOI: 10.1371/journal.pntd.0011823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 12/19/2023] [Accepted: 11/27/2023] [Indexed: 12/20/2023] Open
Abstract
BACKGROUND Burkholderia pseudomallei possesses a diverse set of genes which encode a vast array of biological functions reflecting its clinical, ecological and phenotypic diversity. Strain variation is linked to geographic location as well as pattern of land uses. This soil-dwelling Gram-negative pathogen causes melioidosis, a tropical disease endemic in northern Australia and Southeast Asian regions including Bangladesh. Phylogeographic analyses of B. pseudomallei isolates by molecular typing techniques could be used to examine the diversity of this organism as well as to track melioidosis epidemics. METHODS In this study, 22 B. pseudomallei isolates, of which 20 clinical and two soil isolates were analyzed, utilizing Real-time PCR assay and multilocus sequence typing (MLST). The sequences were then submitted to PubMLST database for analysis and construction of phylogenetic tree. FINDINGS A total of 12 different sequence types (STs) that includes four novel STs were identified for the first time. Strains having STs 1005, 1007 and 56 were the most widespread STs frequently isolated in Bangladesh. ST 1005, ST 56, ST 1007 and ST 211 have been detected not only in Bangladesh but are also present in many Southeast Asian countries. SIGNIFICANCE ST 1005 was detected in both soil and clinical samples of Gazipur. Most prevalent, ST 56 has been previously reported from Myanmar, Thailand, Cambodia and Vietnam, confirming the persistence of the genotype over the entire continent. Further large-scale study is necessary to find out the magnitude of the infection and its different reservoirs in the environment along with phylogeographic association.
Collapse
Affiliation(s)
| | - Saika Farook
- Department of Microbiology, Ibrahim Medical College, Dhaka, Bangladesh
| | - Arittra Bhattacharjee
- Bioinformatics Division, National Institute of Biotechnology, Savar, Dhaka, Bangladesh
| | - Lovely Barai
- Department of Microbiology, BIRDEM General Hospital, Dhaka, Bangladesh
| | | | | | - Apichai Tuanyok
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, Florida, United States of America
| |
Collapse
|
3
|
Hussin A, Nor Rahim MY, Dalusim F, Shahidan MA, Nathan S, Ibrahim N. Improving the clinical recognition, prognosis, and treatment of melioidosis through epidemiology and clinical findings: The Sabah perspective. PLoS Negl Trop Dis 2023; 17:e0011696. [PMID: 37844130 PMCID: PMC10602235 DOI: 10.1371/journal.pntd.0011696] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 10/26/2023] [Accepted: 10/03/2023] [Indexed: 10/18/2023] Open
Abstract
INTRODUCTION Melioidosis is a deadly endemic disease in northern Australia and Southeast Asia, including Sabah, Malaysia, which is caused by the bacterium Burkholderia pseudomallei. It contributes to high fatality rates, mainly due to misdiagnosis leading to the wrong treatment being administered to the patients. Local epidemiology and data on clinical features could assist clinicians during diagnosis and treatment. However, these details are still scarce, particularly in Sabah. METHODS A retrospective study of 246 culture-confirmed melioidosis cases in Queen Elizabeth Hospital, Sabah, Malaysia was performed between 2016 and 2018. The epidemiological data and clinical and laboratory findings were extracted and analysed. RESULTS The annual incidence of culture-confirmed melioidosis cases was estimated to be 4.97 per 100,000 people. The mean age of the patients was 50±15 years. Males and members of the Kadazan-Dusun ethnic group accounted for the majority of the melioidosis cases. The odds ratio analysis indicated that bacteraemic melioidosis in this region was significantly associated with fever (76%), and patients having at least one underlying illness (43%), including diabetes mellitus (32%). Sixty-eight patients (28%) succumbed to melioidosis. Contrary to what is known regarding factors that promote bacteraemic melioidosis, neither patients with fever nor patients with at least one comorbid disease, including diabetes mellitus, were significantly associated with death from melioidosis. There was no statistically significant difference between patients without comorbidities (24, 27%) and those with at least one comorbid disease (26, 25%), including diabetes mellitus (18, 23%). The odds ratios indicate that melioidosis mortality in this region is related to patients showing respiratory organ-associated symptoms (29%), bacteraemia (30%), and septic shock (47%). Burkholderia pseudomallei isolates in this study were highly susceptible to ceftazidime (100%), imipenem (100%), and trimethoprim-sulfamethoxazole (98%). CONCLUSIONS Information obtained from this study can be used by clinicians to recognise individuals with the highest risk of acquiring melioidosis, estimate an accurate prognosis, and provide effective treatment for melioidosis patients to reduce death from melioidosis.
Collapse
Affiliation(s)
- Ainulkhir Hussin
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
- Department of Pathology, Queen Elizabeth Hospital, Ministry of Health Malaysia, Kota Kinabalu, Sabah, Malaysia
| | - Mohd Yusof Nor Rahim
- Department of Pathology, Queen Elizabeth Hospital, Ministry of Health Malaysia, Kota Kinabalu, Sabah, Malaysia
| | - Frederick Dalusim
- Department of Pathology, Queen Elizabeth Hospital, Ministry of Health Malaysia, Kota Kinabalu, Sabah, Malaysia
| | - Muhammad Ashraf Shahidan
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
| | - Sheila Nathan
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
| | - Nazlina Ibrahim
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
| |
Collapse
|
4
|
Selvam K, Ganapathy T, Najib MA, Khalid MF, Abdullah NA, Harun A, Wan Mohammad WMZ, Aziah I. Burden and Risk Factors of Melioidosis in Southeast Asia: A Scoping Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:15475. [PMID: 36497549 PMCID: PMC9741171 DOI: 10.3390/ijerph192315475] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 11/13/2022] [Accepted: 11/15/2022] [Indexed: 06/17/2023]
Abstract
This scoping review aims to provide a comprehensive overview of human melioidosis in Southeast Asia as well as to highlight knowledge gaps in the prevalence and risk factors of this life-threatening disease using available evidence-based data for better diagnosis and treatment. Preferred Reporting Items for Systematic Review and Meta-Analyses Extension for Scoping Reviews (PRISMA-ScR) was used as the guideline for this review. The literature search was conducted on 23 March 2022 through two electronic databases (PubMed and Scopus) using lists of keywords referring to the Medical Subject Headings (MeSH) thesaurus. A total of 38 articles related to human melioidosis were included from 645 screened articles. These studies were carried out between 1986 and 2019 in six Southeast Asian countries: Thailand, Cambodia, Malaysia, Myanmar, Singapore, and Vietnam. Melioidosis has been reported with a high disease prevalence among high-risk populations. Studies in Thailand (48.0%) and Cambodia (74.4%) revealed disease prevalence in patients with septic arthritis and children with suppurative parotitis, respectively. Other studies in Thailand (63.5%) and Malaysia (54.4% and 65.7%) showed a high seroprevalence of melioidosis among Tsunami survivors and military personnel, respectively. Additionally, this review documented soil and water exposure, diabetes mellitus, chronic renal failure, thalassemia, and children under the age of 15 as the main risk factors for melioidosis. Human melioidosis is currently under-reported in Southeast Asia and its true prevalence is unknown.
Collapse
Affiliation(s)
- Kasturi Selvam
- Institute for Research in Molecular Medicine (INFORMM), Health Campus, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
| | - Thanasree Ganapathy
- School of Health Sciences, Health Campus, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
| | - Mohamad Ahmad Najib
- Institute for Research in Molecular Medicine (INFORMM), Health Campus, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
| | - Muhammad Fazli Khalid
- Institute for Research in Molecular Medicine (INFORMM), Health Campus, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
| | - Nor Azlina Abdullah
- Department of Community Medicine, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
| | - Azian Harun
- Department of Medical Microbiology and Parasitology, School of Medical Sciences, Health Campus, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
- Hospital Universiti Sains Malaysia, Jalan Raja Perempuan Zainab 2, Kubang Kerian 16150, Kelantan, Malaysia
| | - Wan Mohd Zahiruddin Wan Mohammad
- Department of Community Medicine, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
| | - Ismail Aziah
- Institute for Research in Molecular Medicine (INFORMM), Health Campus, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
| |
Collapse
|
5
|
Chong SM, Douay G, Heng Y, Chng YR, Tay YH, Wong WK. Fatal Chryseobacterium indologenes infection in a captive red-shanked Douc langur (Pygathrix nemaeus). J Med Primatol 2022; 51:256-258. [PMID: 35318690 DOI: 10.1111/jmp.12582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 03/14/2022] [Accepted: 03/15/2022] [Indexed: 11/28/2022]
Abstract
We report a case of fatal Chryseobacterium indologenes infection in a captive juvenile red-shanked Douc langur in Singapore Zoo. The animal was treated for suspected melioidosis but died within 48 h. Chryseobacterium indolegenes was isolated from the liver and should be included as a differential for bacterial infections in the tropics.
Collapse
Affiliation(s)
- Shin Min Chong
- Singapore Zoo, Department of Conservation, Research and Veterinary, Mandai Wildlife Group, Singapore, Singapore
| | - Guillaume Douay
- Singapore Zoo, Department of Conservation, Research and Veterinary, Mandai Wildlife Group, Singapore, Singapore
| | - Yirui Heng
- Singapore Zoo, Department of Conservation, Research and Veterinary, Mandai Wildlife Group, Singapore, Singapore
| | - You Rong Chng
- National Parks Board, Animal & Veterinary Service, Centre for Animal & Veterinary Sciences, Singapore, Singapore
| | - Yih Hong Tay
- National Parks Board, Animal & Veterinary Service, Centre for Animal & Veterinary Sciences, Singapore, Singapore
| | - Wai Kwan Wong
- National Parks Board, Animal & Veterinary Service, Centre for Animal & Veterinary Sciences, Singapore, Singapore
| |
Collapse
|
6
|
Chua MWJ. The Great Mimicker or the Great Masquerader? Am J Med 2022; 135:e27-e30. [PMID: 34655534 DOI: 10.1016/j.amjmed.2021.08.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 08/19/2021] [Indexed: 11/25/2022]
Affiliation(s)
- Marvin Wei Jie Chua
- Consultant, Endocrinology Service, Department of General Medicine, Sengkang General Hospital, Singapore.
| |
Collapse
|
7
|
Chieng R. Melioidosis. WIKIJOURNAL OF MEDICINE 2022. [DOI: 10.15347/wjm/2022.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
8
|
Douay G, Hsu CD, Xie S. Melioidosis in a pet rabbit. J Exot Pet Med 2021. [DOI: 10.1053/j.jepm.2021.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
9
|
Testamenti VA, Noviana R, Iskandriati D, Norris MH, Jiranantasak T, Tuanyok A, Wahyudi AT, Sajuthi D, Pamungkas J. Humoral Immune Responses to Burkholderia pseudomallei Antigens in Captive and Wild Macaques in the Western Part of Java, Indonesia. Vet Sci 2020; 7:E153. [PMID: 33050516 PMCID: PMC7712568 DOI: 10.3390/vetsci7040153] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 10/05/2020] [Accepted: 10/06/2020] [Indexed: 02/07/2023] Open
Abstract
Burkholderia pseudomallei, the Gram-negative bacterium which causes melioidosis, is a threat to human and a wide range of animal species. There is an increased concern of melioidosis in Indonesian primate facilities, especially following case reports of fatal melioidosis in captive macaques and orangutans. Our preliminary serosurveillance of immunoglobulin G (IgG) to B. pseudomallei lipopolysaccharide showed that a significant number of captive and wild macaques in the western part of Java, Indonesia, have been exposed to B. pseudomallei. To better characterize the humoral immune response in those animals, a panel of assays were conducted on the same blood plasma specimens that were taken from 182 cynomolgus macaques (M. fascicularis) and 88 pig-tailed macaques (M. nemestrina) reared in captive enclosures and wild habitats in the western part of Java, Indonesia. The enzyme-linked immunosorbent assays (ELISAs) in this study were conducted to detect IgG against B. pseudomallei proteins; alkyl hydroperoxide reductase subunit C (AhpC), hemolysin-coregulated protein (Hcp1), and putative outer membrane porin protein (OmpH). The performances of those immunoassays were compared to ELISA against B. pseudomallei LPS, which has been conducted previously. Seropositivity to at least one assay was 76.4% (139/182) and 13.6% (12/88) in cynomolgus macaques and pig-tailed macaques, respectively. Analysis of demographic factors showed that species and primate facility were significant factors. Cynomolgus macaques had higher probability of exposure to B. pseudomallei. Moreover, macaques in Jonggol facility also had higher probability, compared to macaques in other facilities. There were no statistical associations between seropositivity with other demographic factors such as sex, age group, and habitat type. There were strong positive correlations between the absorbance results of AhpC, HcpI, and OmpH assays, but not with LPS assay. Our analysis suggested that Hcp1 assay would complement LPS assay in melioidosis serosurveillance in macaques.
Collapse
Affiliation(s)
- Vincentius Arca Testamenti
- Primatology Study Program, Graduate School of IPB University, Bogor, Jawa Barat 16128, Indonesia; (D.I.); (D.S.)
| | | | - Diah Iskandriati
- Primatology Study Program, Graduate School of IPB University, Bogor, Jawa Barat 16128, Indonesia; (D.I.); (D.S.)
- Primate Research Center, IPB University, Bogor, Jawa Barat 16128, Indonesia;
| | - Michael H. Norris
- Spatial Epidemiology & Ecology Research Laboratory, Department of Geography, University of Florida, Gainesville, FL 32611, USA;
- Emerging Pathogens Institute, University of Florida, Gainesville, FL 32610, USA; (T.J.); (A.T.)
| | - Treenate Jiranantasak
- Emerging Pathogens Institute, University of Florida, Gainesville, FL 32610, USA; (T.J.); (A.T.)
- Department of Infectious Diseases and Immunology, University of Florida, Gainesville, FL 32610, USA
| | - Apichai Tuanyok
- Emerging Pathogens Institute, University of Florida, Gainesville, FL 32610, USA; (T.J.); (A.T.)
- Department of Infectious Diseases and Immunology, University of Florida, Gainesville, FL 32610, USA
| | - Aris Tri Wahyudi
- Department of Biology, Faculty of Mathematics and Natural Sciences, IPB University, Bogor, Jawa Barat 16680, Indonesia;
| | - Dondin Sajuthi
- Primatology Study Program, Graduate School of IPB University, Bogor, Jawa Barat 16128, Indonesia; (D.I.); (D.S.)
- Primate Research Center, IPB University, Bogor, Jawa Barat 16128, Indonesia;
- Department of Clinics, Reproduction, and Pathology, Faculty of Veterinary Medicine, IPB University, Bogor, Jawa Barat 16680, Indonesia
| | - Joko Pamungkas
- Primatology Study Program, Graduate School of IPB University, Bogor, Jawa Barat 16128, Indonesia; (D.I.); (D.S.)
- Primate Research Center, IPB University, Bogor, Jawa Barat 16128, Indonesia;
- Department of Animal Infectious Diseases and Veterinary Public Health, Faculty of Veterinary Medicine, IPB University, Bogor, Jawa Barat 16680, Indonesia
| |
Collapse
|
10
|
Alwis PA, Treerat P, Gong L, Deveson Lucas D, Allwood EM, Prescott M, Devenish RJ, Adler B, Boyce JD. Disruption of the Burkholderia pseudomallei two-component signal transduction system BbeR-BbeS leads to increased extracellular DNA secretion and altered biofilm formation. Vet Microbiol 2020; 242:108603. [PMID: 32122607 DOI: 10.1016/j.vetmic.2020.108603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Accepted: 02/03/2020] [Indexed: 10/25/2022]
Abstract
Two-component signal transduction systems (TCSTS) are abundant among prokaryotes and regulate important functions, including drug resistance and virulence. The Gram-negative bacterium Burkholderia pseudomallei, which causes the severe infectious disease melioidosis, encodes 136 putative TCSTS components. In silico analyses of these TCSTS indicated that the predicted BbeR-BbeS system (BPSL1036-BPSL1037) displayed significant amino acid sequence similarity to the Shigella flexneri virulence-associated OmpR-EnvZ osmoregulator. To assess the function of the B. pseudomallei BbeR-BbeS system, we constructed by allelic exchange a ΔbbeRS double mutant strain lacking both genes, and single ΔbbeR and ΔbbeS mutants. All three mutant strains caused disease in the BALB/c acute melioidosis model at the same rate as the wild-type strain, displayed unchanged swarming motility on semi-solid medium, and were unaffected for viability on high-osmolarity media. However, when cultured at 37 °C for at least 14 days, ΔbbeS and ΔbbeR colonies developed a distinct, hypermucoid morphology absent in similarly-cultured wild-type colonies. At both 30 °C and 37 °C, these hypermucoid strains produced wild-type levels of type I capsule but released increased quantities of extracellular DNA (eDNA). Upon static growth in liquid medium, all B. pseudomallei strains produced pellicle biofilms that contained DNA in close association with bacterial cells; however, the ΔbbeS and ΔbbeR strains produced increased biofilms with altered microscopic architecture compared to the wild-type. Unusually, while the ΔbbeS and ΔbbeR single-deletion mutants displayed clear phenotypes, the ΔbbeRS double-deletion mutant was indistinguishable from the wild-type strain. We propose that BbeR-BbeS indirectly affects eDNA secretion and biofilm formation through cross-talk with one or more other TCSTS.
Collapse
Affiliation(s)
- Priyangi A Alwis
- Infection and Immunity Program, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia; Department of Microbiology, Monash University, Melbourne, Victoria, Australia
| | - Puthayalai Treerat
- Infection and Immunity Program, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia; Department of Microbiology, Monash University, Melbourne, Victoria, Australia
| | - Lan Gong
- Infection and Immunity Program, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia; Department of Biochemistry and Molecular Biology, Monash University, Melbourne, Victoria, Australia
| | - Deanna Deveson Lucas
- Infection and Immunity Program, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia; Department of Microbiology, Monash University, Melbourne, Victoria, Australia
| | - Elizabeth M Allwood
- Infection and Immunity Program, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia; Department of Microbiology, Monash University, Melbourne, Victoria, Australia
| | - Mark Prescott
- Infection and Immunity Program, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia; Department of Biochemistry and Molecular Biology, Monash University, Melbourne, Victoria, Australia
| | - Rodney J Devenish
- Infection and Immunity Program, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia; Department of Biochemistry and Molecular Biology, Monash University, Melbourne, Victoria, Australia
| | - Ben Adler
- Infection and Immunity Program, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia; Department of Microbiology, Monash University, Melbourne, Victoria, Australia
| | - John D Boyce
- Infection and Immunity Program, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia; Department of Microbiology, Monash University, Melbourne, Victoria, Australia.
| |
Collapse
|
11
|
Tuberculosis and Melioidosis at Distinct Sites Occurring Simultaneously. Case Rep Infect Dis 2020; 2020:9818129. [PMID: 31984142 PMCID: PMC6964720 DOI: 10.1155/2020/9818129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Accepted: 12/19/2019] [Indexed: 12/03/2022] Open
Abstract
Rationale Both tuberculosis and melioidosis are commonly encountered infectious diseases in South East Asia. However, these conditions occur commonly in isolation, cases of coinfection of Mycobacterium tuberculosis and Burkholderia pseudomallei are rare. These cases report of the isolation of both organisms concomitantly in a single disease site. We report the first case of concomitant infection at distinct noncontiguous sites. Patient Concerns A 64-year-old man, with chronic alcohol consumption, presented with a month long history of left-sided abdominal pain, as well as significant weight loss and fever prior to the onset of abdominal pain. Diagnosis Disseminated tuberculosis with pulmonary and gastrointestinal involvement and a splenic abscess due to melioidosis. Interventions The patient was treated concomitantly for pulmonary and gastrointestinal tuberculosis, as well as a splenic abscess due to melioidosis. Outcomes The patient is reported to be well, with resolution of symptoms, as well as radiological resolution of the splenic abscess. Lessons Both melioidosis and tuberculosis can present with a similar clinical picture, and coinfections are rare. Hence, increased awareness among clinicians and microbiologists can help in diagnosing both diseases even when it is not clinically apparent.
Collapse
|
12
|
Rachlin A, Shilton C, Webb JR, Mayo M, Kaestli M, Kleinecke M, Rigas V, Benedict S, Gurry I, Currie BJ. Melioidosis fatalities in captive slender-tailed meerkats (Suricata suricatta): combining epidemiology, pathology and whole-genome sequencing supports variable mechanisms of transmission with one health implications. BMC Vet Res 2019; 15:458. [PMID: 31856823 PMCID: PMC6921467 DOI: 10.1186/s12917-019-2198-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 11/27/2019] [Indexed: 12/29/2022] Open
Abstract
Background Melioidosis is a tropical infectious disease which is being increasingly recognised throughout the globe. Infection occurs in humans and animals, typically through direct exposure to soil or water containing the environmental bacterium Burkholderia pseudomallei. Case clusters of melioidosis have been described in humans following severe weather events and in exotic animals imported into melioidosis endemic zones. Direct transmission of B. pseudomallei between animals and/or humans has been documented but is considered extremely rare. Between March 2015 and October 2016 eight fatal cases of melioidosis were reported in slender-tailed meerkats (Suricata suricatta) on display at a Wildlife Park in Northern Australia. To further investigate the melioidosis case cluster we sampled the meerkat enclosure and adjacent park areas and performed whole-genome sequencing (WGS) on all culture-positive B. pseudomallei environmental and clinical isolates. Results WGS confirmed that the fatalities were caused by two different B. pseudomallei sequence types (STs) but that seven of the meerkat isolates were highly similar on the whole-genome level. Used concurrently with detailed pathology data, our results demonstrate that the seven cases originated from a single original source, but routes of infection varied amongst meerkats belonging to the clonal outbreak cluster. Moreover, in some instances direct transmission may have transpired through wounds inflicted while fighting. Conclusions Collectively, this study supports the use of high-resolution WGS to enhance epidemiological investigations into transmission modalities and pathogenesis of melioidosis, especially in the instance of a possible clonal outbreak scenario in exotic zoological collections. Such findings from an animal outbreak have important One Health implications.
Collapse
Affiliation(s)
- Audrey Rachlin
- Menzies School of Health Research, Charles Darwin University, Darwin, Casuarina NT, 0811, Australia.
| | - Cathy Shilton
- Department of Primary Industry and Resources, Berrimah Veterinary Laboratory, Berrimah Farm, Makagon Road, Berrimah, Northern Territory, 0828, Australia
| | - Jessica R Webb
- Menzies School of Health Research, Charles Darwin University, Darwin, Casuarina NT, 0811, Australia
| | - Mark Mayo
- Menzies School of Health Research, Charles Darwin University, Darwin, Casuarina NT, 0811, Australia
| | - Mirjam Kaestli
- Menzies School of Health Research, Charles Darwin University, Darwin, Casuarina NT, 0811, Australia.,Research Institute for the Environment and Livelihoods, Charles Darwin University, Darwin, Northern Territory, 0811, Australia
| | - Mariana Kleinecke
- Menzies School of Health Research, Charles Darwin University, Darwin, Casuarina NT, 0811, Australia
| | - Vanessa Rigas
- Menzies School of Health Research, Charles Darwin University, Darwin, Casuarina NT, 0811, Australia
| | - Suresh Benedict
- Department of Primary Industry and Resources, Berrimah Veterinary Laboratory, Berrimah Farm, Makagon Road, Berrimah, Northern Territory, 0828, Australia
| | - Ian Gurry
- Parap Veterinary Hospital, Parap, Darwin, Northern Territory, 0820, Australia
| | - Bart J Currie
- Menzies School of Health Research, Charles Darwin University, Darwin, Casuarina NT, 0811, Australia.,Royal Darwin Hospital and Northern Territory Medical Program, Darwin, Northern Territory, 0811, Australia
| |
Collapse
|
13
|
Hantrakun V, Kongyu S, Klaytong P, Rongsumlee S, Day NPJ, Peacock SJ, Hinjoy S, Limmathurotsakul D. Clinical Epidemiology of 7126 Melioidosis Patients in Thailand and the Implications for a National Notifiable Diseases Surveillance System. Open Forum Infect Dis 2019; 6:ofz498. [PMID: 32083145 PMCID: PMC7020769 DOI: 10.1093/ofid/ofz498] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 11/17/2019] [Indexed: 12/14/2022] Open
Abstract
Background National notifiable diseases surveillance system (NNDSS) data in developing countries are usually incomplete, yet the total number of fatal cases reported is commonly used in national priority-setting. Melioidosis, an infectious disease caused by Burkholderia pseudomallei, is largely underrecognized by policy-makers due to the underreporting of fatal cases via the NNDSS. Methods Collaborating with the Epidemiology Division (ED), Ministry of Public Health (MoPH), we conducted a retrospective study to determine the incidence and mortality of melioidosis cases already identified by clinical microbiology laboratories nationwide. A case of melioidosis was defined as a patient with any clinical specimen culture positive for B. pseudomallei. Routinely available microbiology and hospital databases of secondary care and tertiary care hospitals, the national death registry, and NNDSS data were obtained for analysis. Results A total of 7126 culture-confirmed melioidosis patients were identified from 2012 to 2015 in 60 hospitals countrywide. The total number of cases diagnosed in Northeast, Central, South, East, North, and West Thailand were 5475, 536, 374, 364, 358, and 19 cases, respectively. The overall 30-day mortality was 39% (2805/7126). Only 126 (4%) deaths were reported to the NNDSS. Age, presentation with bacteremia and pneumonia, prevalence of diabetes, and 30-day mortality differed by geographical region (all P < .001). The ED at MoPH has agreed to include the findings of our study in the next annual report of the NNDSS. Conclusions Melioidosis is an important cause of death in Thailand nationwide, and its clinical epidemiology may be different by region. In developing countries, NNDSS data can be supplemented by integrating information from readily available routine data sets.
Collapse
Affiliation(s)
- Viriya Hantrakun
- Mahidol-Oxford Tropical Medicine Research Unit (MORU), Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Somkid Kongyu
- Epidemiology Division, Department of Disease Control, Ministry of Public Health, Nonthaburi, Thailand
| | - Preeyarach Klaytong
- Mahidol-Oxford Tropical Medicine Research Unit (MORU), Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Sittikorn Rongsumlee
- Mahidol-Oxford Tropical Medicine Research Unit (MORU), Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Nicholas P J Day
- Mahidol-Oxford Tropical Medicine Research Unit (MORU), Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.,Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, Old Road Campus, University of Oxford, Oxford, United Kingdom
| | - Sharon J Peacock
- Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Soawapak Hinjoy
- Epidemiology Division, Department of Disease Control, Ministry of Public Health, Nonthaburi, Thailand.,Office of International Cooperation, Department of Disease Control, Ministry of Public Health, Nonthaburi, Thailand
| | - Direk Limmathurotsakul
- Mahidol-Oxford Tropical Medicine Research Unit (MORU), Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.,Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, Old Road Campus, University of Oxford, Oxford, United Kingdom.,Department of Tropical Hygiene, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| |
Collapse
|
14
|
Rachlin A, Kleinecke M, Kaestli M, Mayo M, Webb JR, Rigas V, Shilton C, Benedict S, Dyrting K, Currie BJ. A cluster of melioidosis infections in hatchling saltwater crocodiles ( Crocodylus porosus) resolved using genome-wide comparison of a common north Australian strain of Burkholderia pseudomallei. Microb Genom 2019; 5. [PMID: 31433287 PMCID: PMC6755496 DOI: 10.1099/mgen.0.000288] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Burkholderia pseudomallei is a Gram-negative saprophytic bacillus and the aetiological agent of melioidosis, a disease of public-health importance throughout Southeast Asia and northern Australia. Infection can occur in humans and a wide array of animal species, though zoonotic transmission and case clusters are rare. Despite its highly plastic genome and extensive strain diversity, fine-scale investigations into the population structure of B. pseudomallei indicate there is limited geographical dispersal amongst sequence types (STs). In the ‘Top End’ of northern Australia, five STs comprise 90 % of the overall abundance, the most prevalent and widespread of which is ST-109. In May 2016, ST-109 was implicated in two fatal cases of melioidosis in juvenile saltwater crocodiles at a wildlife park near Darwin, Australia. To determine the probable source of infection, we sampled the crocodile enclosures and analysed the phylogenetic relatedness of crocodile and culture-positive ST-109 environmental park isolates against an additional 135 ST-109 B. pseudomallei isolates from the Top End. Collectively, our whole-genome sequencing (WGS) and pathology findings confirmed B. pseudomallei detected in the hatchling incubator as the likely source of infection, with zero SNPs identified between clinical and environmental isolates. Our results also demonstrate little variation across the ST-109 genome, with SNPs in recombinogenic regions and one suspected case of ST homoplasy accounting for nearly all observed diversity. Collectively, this study supports the use of WGS for outbreak source attribution in highly recombinogenic pathogens, and confirms the epidemiological and phylogenetic insights that can be gained from high-resolution sequencing platforms.
Collapse
Affiliation(s)
- Audrey Rachlin
- Menzies School of Health Research, Charles Darwin University, Darwin, Northern Territory 0811, Australia
- *Correspondence: Audrey Rachlin,
| | - Mariana Kleinecke
- Menzies School of Health Research, Charles Darwin University, Darwin, Northern Territory 0811, Australia
| | - Mirjam Kaestli
- Menzies School of Health Research, Charles Darwin University, Darwin, Northern Territory 0811, Australia
- Research Institute for the Environment and Livelihoods, Charles Darwin University, Darwin, Northern Territory 0811, Australia
| | - Mark Mayo
- Menzies School of Health Research, Charles Darwin University, Darwin, Northern Territory 0811, Australia
| | - Jessica R. Webb
- Menzies School of Health Research, Charles Darwin University, Darwin, Northern Territory 0811, Australia
| | - Vanessa Rigas
- Menzies School of Health Research, Charles Darwin University, Darwin, Northern Territory 0811, Australia
| | - Cathy Shilton
- Berrimah Veterinary Laboratory, Department of Primary Industry, Fisheries and Mines, Berrimah Farm, Makagon Road, Berrimah, Northern Territory 0828, Australia
| | - Suresh Benedict
- Berrimah Veterinary Laboratory, Department of Primary Industry, Fisheries and Mines, Berrimah Farm, Makagon Road, Berrimah, Northern Territory 0828, Australia
| | - Kitman Dyrting
- Berrimah Veterinary Laboratory, Department of Primary Industry, Fisheries and Mines, Berrimah Farm, Makagon Road, Berrimah, Northern Territory 0828, Australia
| | - Bart J. Currie
- Menzies School of Health Research, Charles Darwin University, Darwin, Northern Territory 0811, Australia
- Royal Darwin Hospital and Northern Territory Medical Program, Darwin, Northern Territory 0811, Australia
| |
Collapse
|