1
|
Limwado GD, Aron MB, Mpinga K, Phiri H, Chibvunde S, Banda C, Ndarama E, Walyaro C, Connolly E. Prevalence of antibiotic self-medication and knowledge of antimicrobial resistance among community members in Neno District rural Malawi: A cross-sectional study. IJID REGIONS 2024; 13:100444. [PMID: 39435378 PMCID: PMC11492075 DOI: 10.1016/j.ijregi.2024.100444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/02/2024] [Accepted: 09/03/2024] [Indexed: 10/23/2024]
Abstract
Objectives Despite global efforts to address antibiotic self-medication, it is still significantly prevalent. This study aimed to investigate the prevalence of antibiotic self-medication and assess knowledge of antibiotic resistance among community members in Neno District, rural Malawi. Methods A cross-sectional, community-based study was conducted from September to November 2023, using simple random sampling across 169 villages. Participants from two households per village were surveyed using a "drug bag" method, focusing on those who had taken antibiotics within the preceding 6 months. In addition, drug retailers were selected via snowball sampling for interviews. Results Of the 531 participants and 39 drug retailers, 71.1% reported antibiotic use, with 69.5% self-medicating in the past 6 months, with convenience (31.5%) and confidence (26.7%) being the reasons. Common symptoms prompting self-medication included cough (29.9%), sore throat (28.6%), and aches and pain (28.6%). Amoxicillin (61.1%) and cotrimoxazole (29.6%) were the most used antibiotics. More than half (53.1%) reused leftover antibiotics from health facilities, with employed participants significantly more likely to self-medicate. Awareness of antibiotic resistance was low (16.1%), mainly learned from hospitals. Unlawful antibiotic sales by drug retailers (46.2%) were noted. Conclusions The study highlights the urgent need for government-led efforts to regulate antibiotic use and increase public awareness to mitigate the impact on public health.
Collapse
Affiliation(s)
| | - Moses Banda Aron
- Partners in Health/Abwenzi PaZa Umoyo, Clinical Department, P.O. Box 56, Neno, Malawi
| | - Kondwani Mpinga
- Partners in Health/Abwenzi PaZa Umoyo, Clinical Department, P.O. Box 56, Neno, Malawi
| | - Henry Phiri
- Partners in Health/Abwenzi PaZa Umoyo, Clinical Department, P.O. Box 56, Neno, Malawi
| | - Stellar Chibvunde
- Partners in Health/Abwenzi PaZa Umoyo, Clinical Department, P.O. Box 56, Neno, Malawi
| | - Christopher Banda
- Partners in Health/Abwenzi PaZa Umoyo, Clinical Department, P.O. Box 56, Neno, Malawi
| | - Enoch Ndarama
- Ministry of Health, Neno District Health Office, P.O. Box 52, Neno, Malawi
| | - Connie Walyaro
- International Society for Infectious Diseases, 867 Boylston Street, 5th Floor #1985, Boston, MA 02116, United States of America
| | - Emilia Connolly
- Partners in Health/Abwenzi PaZa Umoyo, Clinical Department, P.O. Box 56, Neno, Malawi
| |
Collapse
|
2
|
Nyarkoh R, Odoom A, Donkor ES. Prevalence of Shigella species and antimicrobial resistance patterns in Africa: systematic review and meta-analysis. BMC Infect Dis 2024; 24:1217. [PMID: 39472797 PMCID: PMC11520789 DOI: 10.1186/s12879-024-09945-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 09/17/2024] [Indexed: 11/02/2024] Open
Abstract
BACKGROUND Shigellosis continues to pose a significant public health problem in Africa; however, there is a lack of comprehensive knowledge regarding its prevalence, serogroup distribution, and antimicrobial resistance profiles. Therefore, the objective of this systematic review and meta-analysis was to determine the overall prevalence of Shigella, the distribution of species, and the patterns of antimicrobial resistance across Africa. METHODS Following PRISMA guidelines, a systematic search strategy was conducted using the PubMed, Web of Science and Scopus databases from January 31, 2024 to February 10, 2024. The study quality was assessed using the Joanna Briggs Institute checklist, and data were analyzed using the R statistical language and the R package 'meta'. The random effects model was employed to estimate the pooled prevalence, while heterogeneity was assessed using the I2 statistic and prediction interval. RESULTS A total of 116 studies from 29 African countries were included in this meta-analysis, involving the examination of 99,510 samples. The overall pooled estimate of Shigella prevalence was determined to be 5.9% (95% CI: 4.9 - 7.0%). Regional prevalence showed prevalences of Southern Africa (6.9 [95% CI: 3.0 - 12.2%]), Northern Africa (6.7% [95% CI: 4.1 - 9.8%]), Eastern Africa (6.2% [95% CI: 4.9 - 7.6%]), Central Africa (4.5% [95% CI: 2.6 - 6.8%]) and Western Africa (4.0% [95% CI: 2.5 - 5.9%]). Shigella prevalence was found to be higher in children (6.6%, 95% CI: 3.2 - 11.1%) than in adults (3.6%, 95% CI: 1.6 - 6.3%). The most prevalent species was S. flexneri (53.6%, 95% CI: 46.1%-61.0%), followed by S. sonnei (11.5%, 95% CI: 7.7%-15.7%), S. dysenteriae (10.1%, 95% CI: 6.2 - 14.5%) and S. boydii (7.7%, 95% CI: 4.7 - 11.1%). Among the currently recommended first-line antibiotics, ciprofloxacin and ceftriaxone showed resistance prevalences of 10.0% (95% CI: 4.5%-16.9%) and 8.5% (95% CI: 2.4-16.9%) respectively. CONCLUSION This review highlights the burden of shigellosis in Africa. S. flexneri remains the most prevalent species associated with shigellosis cases with S. sonnei being the second most dominant. The antimicrobial resistance patterns observed in the study suggest local antimicrobial patterns in choosing antibiotics for the treatment of Shigellosis. RECOMMENDATION There is the need to explore alternative treatments for shigellosis with particular focus on vaccine development. There is also the need for more genomic epidemiology studies exploring the dissemination and risk of drug-resistant S. sonnei clones in Africa.
Collapse
Affiliation(s)
- Rabbi Nyarkoh
- Department of Medical Microbiology, University of Ghana Medical School, Korle Bu, P. O. Box KB 4236, Accra, Ghana
| | - Alex Odoom
- Department of Medical Microbiology, University of Ghana Medical School, Korle Bu, P. O. Box KB 4236, Accra, Ghana
| | - Eric S Donkor
- Department of Medical Microbiology, University of Ghana Medical School, Korle Bu, P. O. Box KB 4236, Accra, Ghana.
| |
Collapse
|
3
|
Caradonna V, Pinto M, Alfini R, Giannelli C, Iturriza M, Micoli F, Rossi O, Mancini F. High-Throughput Luminescence-Based Serum Bactericidal Assay Optimization and Characterization to Assess Human Sera Functionality Against Multiple Shigella flexneri Serotypes. Int J Mol Sci 2024; 25:11123. [PMID: 39456904 PMCID: PMC11508014 DOI: 10.3390/ijms252011123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/02/2024] [Accepted: 10/10/2024] [Indexed: 10/28/2024] Open
Abstract
Shigellosis represents a significant global health concern particularly affecting children under 5 years in low- and middle-income countries (LMICs) and is associated with stunting and antimicrobial resistance. There is a critical need for an effective vaccine offering broad protection against the different Shigella serotypes. A correlate of protection has not yet been established but there is a general consensus about the relevant role of anti-O-Antigen-specific IgG and its functionality evaluated by the Serum Bactericidal Assay (SBA). This study aims to characterize a high-throughput luminescence-based SBA (L-SBA) against seven widespread Shigella serotypes. The assay was previously developed and characterized for S. sonnei and S. flexneri 1b, 2a, and 3a and has now been refined and extended to an additional five serotypes (S. flexneri 4a, 5b, 6, X, and Y). The characterization of the assay with human sera confirmed the repeatability, intermediate precision, and linearity of the assays; both homologous and heterologous specificity were verified as well; finally, limit of detection and quantification were established for all assays. Moreover, different sources of baby rabbit complement showed to have no impact on L-SBA output. The results obtained confirm the possibility of extending the L-SBA to multiple Shigella serotypes, thus enabling analysis of the functional response induced by natural exposure to Shigella in epidemiological studies and the ability of candidate vaccines to elicit cross-functional antibodies able to kill a broad panel of prevalent Shigella serotypes in a complement-mediated fashion.
Collapse
Affiliation(s)
- Valentina Caradonna
- Laboratory of Molecular Microbiology and Biotechnology, Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy;
- GSK Vaccines Institute for Global Health (GVGH), 53100 Siena, Italy (R.A.); (C.G.)
| | - Marika Pinto
- GSK Vaccines Institute for Global Health (GVGH), 53100 Siena, Italy (R.A.); (C.G.)
| | - Renzo Alfini
- GSK Vaccines Institute for Global Health (GVGH), 53100 Siena, Italy (R.A.); (C.G.)
| | - Carlo Giannelli
- GSK Vaccines Institute for Global Health (GVGH), 53100 Siena, Italy (R.A.); (C.G.)
| | - Miren Iturriza
- GSK Vaccines Institute for Global Health (GVGH), 53100 Siena, Italy (R.A.); (C.G.)
| | - Francesca Micoli
- GSK Vaccines Institute for Global Health (GVGH), 53100 Siena, Italy (R.A.); (C.G.)
| | - Omar Rossi
- GSK Vaccines Institute for Global Health (GVGH), 53100 Siena, Italy (R.A.); (C.G.)
| | - Francesca Mancini
- GSK Vaccines Institute for Global Health (GVGH), 53100 Siena, Italy (R.A.); (C.G.)
| |
Collapse
|
4
|
Al-Khafaji NSK, Almjalawi BSA, Ewadh RMJ, Al-Dahmoshi HOM, Abed SY, Nasrolahi A, Nwobodo DC, Kanaan MHG, Abdullah SS, Saki M. Prevalence of plasmid-mediated quinolone resistance genes and biofilm formation in different species of quinolone-resistant clinical Shigella isolates: a cross-sectional study. Eur J Med Res 2024; 29:419. [PMID: 39143645 PMCID: PMC11323402 DOI: 10.1186/s40001-024-02007-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 07/31/2024] [Indexed: 08/16/2024] Open
Abstract
BACKGROUND The purpose of this study was to look into the presence of plasmid-mediated quinolone resistance (PMQR) genes and biofilm formation in several species of clinical Shigella isolates that were resistant to quinolones. METHODS The stool samples of 150 patients (younger than 10 years) with diarrhea were collected in this cross-sectional study (November 2020 to December 2021). After cultivation of samples on Hektoen Enteric agar and xylose lysine deoxycholate agar, standard microbiology tests, VITEK 2 system, and polymerase chain reaction (PCR) were utilized to identify Shigella isolates. The broth microdilution method was used to determine antibiotic susceptibility. PMQR genes including qnrA, qnrB, qnrC, qnrD, qnrE, qnrS, qnrVC, qepA, oqxAB, aac(6')-Ib-cr, and crpP and biofilm formation were investigated in quinolone-resistant isolates by PCR and microtiter plate method, respectively. An enterobacterial repetitive intergenic consensus polymerase chain reaction (ERIC-PCR) technique was used to determine the clonal relatedness of quinolone-resistant isolates. RESULTS A total of 95 Shigella isolates including S. sonnei (53, 55.8%), S. flexneri (39, 41.1%), and S. boydii (3, 3.2%) were identified. The highest resistance rates of the isolates were against ampicillin (92.6%, n = 88/95). Overall, 42 of 95 (44.2%) isolates were simultaneously resistant against two or more quinolones including 26 (61.9%) S. sonnei and 16 (38.1%) S. flexneri. All isolates were multidrug-resistant (resistance to more than 3 antibiotics). The occurrence of PMQR genes was as follows: qnrS (52.4%), qnrA and aac(6')-Ib-cr (33.3%), and qnrB (19.0%). The prevalence in species was as follows: 61.5% and 37.5% (qnrS), 19.2% and 56.3% (qnrA), 38.5% and 25.0 (aac(6')-Ib-cr), and 19.2% and 18.8% (qnrB) for S. sonnei and S. flexneri, respectively. The other PMQR genes were not detected. In total, 52.8% (28/53) of quinolone-susceptible and 64.3% (27/42) of quinolone-resistant isolates were biofilm producers. Biofilm formation was not significantly different between quinolone-resistant and quinolone-susceptible isolates (P-value = 0.299). Quinolone-resistant isolates showed a high genetic diversity according to the ERIC-PCR. CONCLUSION It seems that qnrS, qnrA, and aac(6')-Ib-cr play a significant role in the quinolone resistance among Shigella isolates in our region. Also the quinolone-resistant S. flexneri and S. sonnei isolates had a high genetic diversity. Hence, antibiotic therapy needs to be routinely revised based on the surveillance findings.
Collapse
Affiliation(s)
- Noor S K Al-Khafaji
- Department of Biology, College of Science, University of Babylon, Hilla, Iraq
| | | | | | | | - Suhad Y Abed
- Department of Biology, College of Science, Mustansiriyah University, Baghdad, Iraq
| | - Ava Nasrolahi
- Infectious Ophthalmologic Research Center, Imam Khomeini Hospital Clinical Research Development Unit, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - David Chinemerem Nwobodo
- Department of Microbiology, Renaissance University, Enugu, Nigeria
- Department of Pharmaceutical Science, University of Shizuoka, Shizuoka, Japan
| | | | | | - Morteza Saki
- Infectious Ophthalmologic Research Center, Imam Khomeini Hospital Clinical Research Development Unit, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
- Department of Microbiology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|
5
|
Mategula D, Ndalama M, Lefu C, Chinkhumba J, Ndeketa L, Munthali V, Chitala C, Malemia T, Million G, Mbutuka I, Mhone R, Makwenda E, James M, Bwanali C, Kazembe G, Manundo A, Chauluka E, Chitalo S, Alumando E, Longwe D, Matandika M, Jonasi P, Thindwa A, Phiri D, Wachepa R, Kawonga F, Maiden V, Charles M, Kapindula I, Witte D, Turner AM, Bronowski C, Baker K, Bar-Zeev N, Gordon MA, Dube Q, Cunliffe NA, Jere KC, Cornick J. The Enterics for Global Health (EFGH) Shigella Surveillance Study in Malawi. Open Forum Infect Dis 2024; 11:S101-S106. [PMID: 38532955 PMCID: PMC10962717 DOI: 10.1093/ofid/ofae050] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2024] Open
Abstract
Background Malawi is among 7 countries participating in the Enterics for Global Health (EFGH) Shigella surveillance study, which aims to determine the incidence of medically attended diarrhea attributed to Shigella, a leading bacterial cause of diarrhea in children in low-resource settings. Methods We describe the EFGH study site in the densely populated informal settlement of Ndirande Township, Blantyre, Malawi. We explore the site's geographical location, demographic characteristics, and the healthcare-seeking behavior of its population, particularly for childhood diarrhea. We also describe the management of childhood diarrhea at the health facility, and the associated challenges to attaining optimum adherence to local and national guidelines at the site. Conclusions Our overarching aim is to improve global health through understanding and mitigating the impact of diarrhea attributed to Shigella.
Collapse
Affiliation(s)
- Donnie Mategula
- Malawi Liverpool Wellcome Programme, Blantyre, Malawi
- Clinical Sciences Department, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
- Department of Environmental and Community Health, School of Global Public Health, Kamuzu University of Health Sciences, Blantyre, Malawi
| | | | - Clement Lefu
- Malawi Liverpool Wellcome Programme, Blantyre, Malawi
| | - Jobiba Chinkhumba
- Department of Environmental and Community Health, School of Global Public Health, Kamuzu University of Health Sciences, Blantyre, Malawi
| | - Latif Ndeketa
- Malawi Liverpool Wellcome Programme, Blantyre, Malawi
- Department of Environmental and Community Health, School of Global Public Health, Kamuzu University of Health Sciences, Blantyre, Malawi
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | | | | | | | | | | | - Ranken Mhone
- Malawi Liverpool Wellcome Programme, Blantyre, Malawi
| | | | - Mussa James
- Malawi Liverpool Wellcome Programme, Blantyre, Malawi
| | | | - Gift Kazembe
- Malawi Liverpool Wellcome Programme, Blantyre, Malawi
| | - Abell Manundo
- Malawi Liverpool Wellcome Programme, Blantyre, Malawi
| | | | | | | | | | | | - Paul Jonasi
- Malawi Liverpool Wellcome Programme, Blantyre, Malawi
| | - Agra Thindwa
- Malawi Liverpool Wellcome Programme, Blantyre, Malawi
| | - Deborah Phiri
- Malawi Liverpool Wellcome Programme, Blantyre, Malawi
| | | | | | - Victor Maiden
- Malawi Liverpool Wellcome Programme, Blantyre, Malawi
| | - Mary Charles
- Malawi Liverpool Wellcome Programme, Blantyre, Malawi
| | - Ida Kapindula
- Malawi Liverpool Wellcome Programme, Blantyre, Malawi
| | - Desiree Witte
- Malawi Liverpool Wellcome Programme, Blantyre, Malawi
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Ann M Turner
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Christina Bronowski
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Kate Baker
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| | | | - Melita A Gordon
- Malawi Liverpool Wellcome Programme, Blantyre, Malawi
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Queen Dube
- Department of Medical Laboratory Sciences, School of Life Sciences and Health Professions, Kamuzu University of Health Sciences, Blantyre, Malawi
- Ministry of Health, Government of Malawi, Lilongwe, Malawi
| | - Nigel A Cunliffe
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Khuzwayo C Jere
- Malawi Liverpool Wellcome Programme, Blantyre, Malawi
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
- Department of Medical Laboratory Sciences, School of Life Sciences and Health Professions, Kamuzu University of Health Sciences, Blantyre, Malawi
| | - Jennifer Cornick
- Malawi Liverpool Wellcome Programme, Blantyre, Malawi
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
6
|
Bose P, Chowdhury G, Halder G, Ghosh D, Deb AK, Kitahara K, Miyoshi SI, Morita M, Ramamurthy T, Dutta S, Mukhopadhyay AK. Prevalence and changing antimicrobial resistance profiles of Shigella spp. isolated from diarrheal patients in Kolkata during 2011-2019. PLoS Negl Trop Dis 2024; 18:e0011964. [PMID: 38377151 PMCID: PMC10906866 DOI: 10.1371/journal.pntd.0011964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 03/01/2024] [Accepted: 02/02/2024] [Indexed: 02/22/2024] Open
Abstract
BACKGROUND The primary aim of this study was to investigate the occurrence, characteristics, and antimicrobial resistance patterns of various Shigella serogroups isolated from patients with acute diarrhea of the Infectious Diseases Hospital in Kolkata from 2011-2019. PRINCIPAL FINDINGS During the study period, Shigella isolates were tested for their serogroups, antibiotic resistance pattern and virulence gene profiles. A total of 5.8% of Shigella spp. were isolated, among which S. flexneri (76.1%) was the highest, followed by S. sonnei (18.7%), S. boydii (3.4%), and S. dysenteriae (1.8%). Antimicrobial resistance against nalidixic acid was higher in almost all the Shigella isolates, while the resistance to β-lactamases, fluoroquinolones, tetracycline, and chloramphenicol diverged. The occurrence of multidrug resistance was found to be linked with various genes encoding drug-resistance, multiple mutations in the topoisomerase genes, and mobile genetic elements. All the isolates were positive for the invasion plasmid antigen H gene (ipaH). Dendrogram analysis of the plasmid and pulsed-field electrophoresis (PFGE) profiles revealed 70-80% clonal similarity among each Shigella serotype. CONCLUSION This comprehensive long-term surveillance report highlights the clonal diversity of clinical Shigella strains circulating in Kolkata, India, and shows alarming resistance trends towards recommended antibiotics. The elucidation of this study's outcome is helpful not only in identifying emerging antimicrobial resistance patterns of Shigella spp. but also in developing treatment guidelines appropriate for this region.
Collapse
Affiliation(s)
- Puja Bose
- Division of Bacteriology, ICMR-National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Goutam Chowdhury
- Division of Bacteriology, ICMR-National Institute of Cholera and Enteric Diseases, Kolkata, India
- Collaborative Research Centre of Okayama University for Infectious Diseases at ICMR-NICED, Kolkata, India
| | - Gourab Halder
- Division of Bacteriology, ICMR-National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Debjani Ghosh
- Division of Bacteriology, ICMR-National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Alok K. Deb
- Division of Epidemiology, ICMR-National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Kei Kitahara
- Collaborative Research Centre of Okayama University for Infectious Diseases at ICMR-NICED, Kolkata, India
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Shin-ichi Miyoshi
- Collaborative Research Centre of Okayama University for Infectious Diseases at ICMR-NICED, Kolkata, India
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Masatomo Morita
- Department of Bacteriology I, National Institute of Infectious Diseases, Tokyo, Japan
| | - Thandavarayan Ramamurthy
- Division of Bacteriology, ICMR-National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Shanta Dutta
- Division of Bacteriology, ICMR-National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Asish Kumar Mukhopadhyay
- Division of Bacteriology, ICMR-National Institute of Cholera and Enteric Diseases, Kolkata, India
| |
Collapse
|
7
|
Stenhouse GE, Keddy KH, Bengtsson RJ, Hall N, Smith AM, Thomas J, Iturriza-Gómara M, Baker KS. The genomic epidemiology of shigellosis in South Africa. Nat Commun 2023; 14:7715. [PMID: 38001075 PMCID: PMC10673971 DOI: 10.1038/s41467-023-43345-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023] Open
Abstract
Shigellosis, a leading cause of diarrhoeal mortality and morbidity globally, predominantly affects children under five years of age living in low- and middle-income countries. While whole genome sequence analysis (WGSA) has been effectively used to further our understanding of shigellosis epidemiology, antimicrobial resistance, and transmission, it has been under-utilised in sub-Saharan Africa. In this study, we applied WGSA to large sub-sample of surveillance isolates from South Africa, collected from 2011 to 2015, focussing on Shigella flexneri 2a and Shigella sonnei. We find each serotype is epidemiologically distinct. The four identified S. flexneri 2a clusters having distinct geographical distributions, and antimicrobial resistance (AMR) and virulence profiles, while the four sub-Clades of S. sonnei varied in virulence plasmid retention. Our results support serotype specific lifestyles as a driver for epidemiological differences, show AMR is not required for epidemiological success in S. flexneri, and that the HIV epidemic may have promoted Shigella population expansion.
Collapse
Affiliation(s)
- George E Stenhouse
- Clinical Infection, Microbiology, and Immunology, University of Liverpool, Liverpool, UK.
| | | | - Rebecca J Bengtsson
- Clinical Infection, Microbiology, and Immunology, University of Liverpool, Liverpool, UK
| | - Neil Hall
- Earlham Institute, Norwich Research Park, NR4 7UZ, Norwich, UK
| | - Anthony M Smith
- Centre for Enteric Diseases, National Institute for Communicable Diseases (NICD), Division of the National Health Laboratory Service (NHLS), Johannesburg, South Africa
- Department of Medical Microbiology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Juno Thomas
- Centre for Enteric Diseases, National Institute for Communicable Diseases (NICD), Division of the National Health Laboratory Service (NHLS), Johannesburg, South Africa
| | - Miren Iturriza-Gómara
- Clinical Infection, Microbiology, and Immunology, University of Liverpool, Liverpool, UK
| | - Kate S Baker
- Clinical Infection, Microbiology, and Immunology, University of Liverpool, Liverpool, UK.
- Department of Genetics, University of Cambridge, CB23EH, Cambridge, UK.
| |
Collapse
|
8
|
Wang B, Wang H, Lu X, Zheng X, Yang Z. Recent Advances in Electrochemical Biosensors for the Detection of Foodborne Pathogens: Current Perspective and Challenges. Foods 2023; 12:2795. [PMID: 37509887 PMCID: PMC10379338 DOI: 10.3390/foods12142795] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/21/2023] [Accepted: 07/22/2023] [Indexed: 07/30/2023] Open
Abstract
Foodborne pathogens cause many diseases and significantly impact human health and the economy. Foodborne pathogens mainly include Salmonella spp., Escherichia coli, Staphylococcus aureus, Shigella spp., Campylobacter spp. and Listeria monocytogenes, which are present in agricultural products, dairy products, animal-derived foods and the environment. Various pathogens in many different types of food and water can cause potentially life-threatening diseases and develop resistance to various types of antibiotics. The harm of foodborne pathogens is increasing, necessitating effective and efficient methods for early monitoring and detection. Traditional methods, such as real-time polymerase chain reaction (RT-PCR), enzyme-linked immunosorbent assay (ELISA) and culture plate, are time-consuming, labour-intensive and expensive and cannot satisfy the demands of rapid food testing. Therefore, new fast detection methods are urgently needed. Electrochemical biosensors provide consumer-friendly methods to quickly detect foodborne pathogens in food and the environment and achieve extensive accuracy and reproducible results. In this paper, by focusing on various mechanisms of electrochemical transducers, we present a comprehensive overview of electrochemical biosensors for the detection of foodborne pathogens. Furthermore, the review introduces the hazards of foodborne pathogens, risk analysis methods and measures of control. Finally, the review also emphasizes the recent research progress and solutions regarding the use of electrochemical biosensors to detect foodborne pathogens in food and the environment, evaluates limitations and challenges experienced during the development of biosensors to detect foodborne pathogens and discusses future possibilities.
Collapse
Affiliation(s)
- Bo Wang
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225009, China
| | - Hang Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
| | - Xubin Lu
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Xiangfeng Zheng
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225009, China
| | - Zhenquan Yang
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
9
|
Ramatla TA, Mphuthi N, Ramaili T, Taioe M, Thekisoe O, Syakalima M. Molecular detection of zoonotic pathogens causing gastroenteritis in humans:
Salmonella
spp.,
Shigella
spp. and
Escherichia coli
isolated from
Rattus
species inhabiting chicken farms in North West Province, South Africa. J S Afr Vet Assoc 2022; 93:63-69. [DOI: 10.36303/jsava.83] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023] Open
Affiliation(s)
- TA Ramatla
- Unit for Environmental Sciences and Management, North-West University,
South Africa
- Department of Animal Health, Faculty of Natural and Agricultural Sciences, North-West University,
South Africa
| | - N Mphuthi
- Department of Animal Health, Faculty of Natural and Agricultural Sciences, North-West University,
South Africa
| | - T Ramaili
- Department of Animal Health, Faculty of Natural and Agricultural Sciences, North-West University,
South Africa
| | - M Taioe
- Unit for Environmental Sciences and Management, North-West University,
South Africa
- Epidemiology, Parasites and Vectors, Agriculture Research Council, Onderstepoort Veterinary Research,
South Africa
| | - O Thekisoe
- Unit for Environmental Sciences and Management, North-West University,
South Africa
| | - M Syakalima
- Department of Animal Health, Faculty of Natural and Agricultural Sciences, North-West University,
South Africa
- University of Zambia, School of Veterinary Medicine, Department of Disease Control,
Zambia
| |
Collapse
|
10
|
Machongo RB, Mipando ALN. "I don't hesitate to use the left-over antibiotics for my child" practices and experiences with antibiotic use among caregivers of paediatric patients at Zomba central hospital in Malawi. BMC Pediatr 2022; 22:466. [PMID: 35918686 PMCID: PMC9347074 DOI: 10.1186/s12887-022-03528-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 07/29/2022] [Indexed: 11/25/2022] Open
Abstract
Background Inappropriate use of antibiotics is among the major causes of the global emergency of antibiotic resistance among children. The problem of inappropriate use of antibiotics among children is of special concern because they are still developing immunological systems, hence they are susceptible to many infectious diseases. As such, they receive a considerable disproportional amount of antibiotics which exposes them to antibiotic resistance. This study explored the lived experiences of caregivers of children under the age of five years on the use of antibiotics at Zomba central hospital. Objective The main aim of this study was to explore the lived experiences of caregivers of children under the age of five years on antibiotic usage at Zomba Central Hospital, Zomba-Malawi. Methodology This was a descriptive qualitative study with a phenomenological approach to explore the lived experience of caregivers of paediatric patients on antibiotic usage from May 2019 to July 2020. The study used interview guides to conduct in-depth interviews with 16 caregivers and purposive sampling was used to select the participants from the children’s ward. All interviews were audio-recorded and qualitative data was transcribed verbatim and thematically analysed manually to extract major themes and concepts on the subject matter. Results Caregivers had little knowledge about antibiotic use and its resistance. most caregivers use the antibiotics inappropriately through self-medication, use of left-over antibiotics, buying antibiotics without prescription, and sharing of antibiotics. Conclusion Based on the findings of this study, investment in public awareness and organising community-led interventions in antibiotic use related information is key to improve the quality use of antibiotics. The Government should focus on promoting interventions that lessen the indiscriminate use of antibiotics among the caregivers. Stringent laws need to be enforced by the government to restrict the access of antibiotics to parents without a prescription.
Collapse
Affiliation(s)
- Redson Biswick Machongo
- Department of Pathology, School of Medicine and Oral Health, Kamuzu University of Health Sciences, Private Bag 360, Blantyre, Malawi.
| | - Alinane Linda Nyondo Mipando
- Department of Health Systems and Policy, School of Global and Public Health, Kamuzu University of Health Sciences, Private Bag 360, Blantyre, Malawi.,Kamuzu University of Health Sciences, Private Bag 360, Blantyre, Malawi
| |
Collapse
|
11
|
Pakbin B, Didban A, Brück WM, Alizadeh M. Phylogenetic analysis and antibiotic resistance of Shigella sonnei isolates. FEMS Microbiol Lett 2022; 369:6575538. [PMID: 35482608 DOI: 10.1093/femsle/fnac042] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/28/2022] [Accepted: 04/26/2022] [Indexed: 11/13/2022] Open
Abstract
Shigellosis is one of the most important gastric infections caused by different species of Shigella and has been regarded as a serious threat to public health. Lineage/sublineage profile of S. sonnei is strongly associated with the antibiotic resistance and population structure of this pathogen. In this study, we determined the phylogeny and antibiotic resistance profiles of S. sonnei strains, isolated from 1246 stool and 580 food samples, using multiplex PCR-HRMA genotyping and Kirby-Bauer disk diffusion methods, respectively. A total of 64 S. sonnei strains were isolated (13 food and 51 clinical isolates). Multiplex PCR-HMR assay was able to differentiate the lineages II and III, and sublineages IIIb and IIIc strains successfully considering the definite melting curves and temperatures. Lineage I and sublineage IIIa strain were not isolated in this study. We also demonstrated that most of the S. sonnei strains isolated from both food and clinical samples clustered within the lineage III and sublineage IIIc. Resistance against trimethoprim-sulfamethoxazole, tetracycline, chloramphenicol and streptomycin antibiotics were the most prevalent phenotypes among the S. sonnei lineage III and sublineage IIIc strains.
Collapse
Affiliation(s)
- Babak Pakbin
- Institute for Life Technologies, University of Applied Sciences Western Switzerland Valais-Wallis, 1950 Sion 2, Switzerland.,Children Growth Research Center, Research Institute for Prevention of Non-Communicable Diseases, Qazvin University of Medical Sciences, Bahonar Blvd., PO Box: 34185-754, Qazvin, Iran.,Medical Medical Microbiology Research Center, Qazvin University of Medical Sciences, Qazvin 34197-59811, Iran
| | - Abdollah Didban
- Children Growth Research Center, Research Institute for Prevention of Non-Communicable Diseases, Qazvin University of Medical Sciences, Bahonar Blvd., PO Box: 34185-754, Qazvin, Iran
| | - Wolfram Manuel Brück
- Institute for Life Technologies, University of Applied Sciences Western Switzerland Valais-Wallis, 1950 Sion 2, Switzerland
| | - Mehdi Alizadeh
- Children Growth Research Center, Research Institute for Prevention of Non-Communicable Diseases, Qazvin University of Medical Sciences, Bahonar Blvd., PO Box: 34185-754, Qazvin, Iran
| |
Collapse
|
12
|
Pakbin B, Zolghadr L, Rafiei S, Brück WM, Brück TB. FTIR differentiation based on genomic DNA for species identification of Shigella isolates from stool samples. Sci Rep 2022; 12:2780. [PMID: 35177783 PMCID: PMC8854563 DOI: 10.1038/s41598-022-06746-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 02/01/2022] [Indexed: 12/13/2022] Open
Abstract
Shigellosis is one of the major public health concerns in developing and low-income countries caused by four species of Shigella. There is an apparent need to develop rapid, cost-effective, sensitive and specific methods for differentiation of Shigella species to be used in outbreaks and health surveillance systems. We developed a sensitive and specific Fourier-transform infrared spectroscopy (FTIR) based method followed by principal component analysis (PCA) and hierarchical clustering analysis (HCA) assays to differentiate four species of Shigella isolates from stool samples. The FTIR based method was evaluated by differentiation of 91 Shigella species from each other in clinical samples using both gold standards (culture-based and agglutination methods) and developed FTIR assay; eventually, the sensitivity and specificity of the developed method were calculated. In summary, four distinct FTIR spectra associated with four species of Shigella were obtained with wide variations in three definite regions, including 1800–1550 cm−1, 1550–1100 cm−1, and 1100–800 cm−1 distinguish these species from each other. In this study, we found the FTIR method followed by PCA analysis with specificity, sensitivity, differentiation error and correct differentiation rate values of 100, 100, 0 and 100%, respectively, for identification and differentiation of all species of the Shigella in stool samples.
Collapse
Affiliation(s)
- Babak Pakbin
- Medical Microbiology Research Center, Qazvin University of Medical Sciences, Qazvin, Iran.,Institute for Life Technologies, University of Applied Sciences Western Switzerland Valais-Wallis, 1950, Sion 2, Switzerland
| | - Leila Zolghadr
- Chemistry Department, Imam Khomeini International University, Qazvin, Iran
| | - Shahnaz Rafiei
- Chemistry Department, Imam Khomeini International University, Qazvin, Iran
| | - Wolfram Manuel Brück
- Institute for Life Technologies, University of Applied Sciences Western Switzerland Valais-Wallis, 1950, Sion 2, Switzerland.
| | - Thomas B Brück
- Werner Siemens Chair of Synthetic Biotechnology, Department of Chemistry, Technical University of Munich (TUM), Lichtenberg Str. 4, 85748, Garching bei München, Germany
| |
Collapse
|
13
|
Kember M, Grandy S, Raudonis R, Cheng Z. Non-Canonical Host Intracellular Niche Links to New Antimicrobial Resistance Mechanism. Pathogens 2022; 11:pathogens11020220. [PMID: 35215166 PMCID: PMC8876822 DOI: 10.3390/pathogens11020220] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 02/03/2022] [Accepted: 02/05/2022] [Indexed: 12/04/2022] Open
Abstract
Globally, infectious diseases are one of the leading causes of death among people of all ages. The development of antimicrobials to treat infectious diseases has been one of the most significant advances in medical history. Alarmingly, antimicrobial resistance is a widespread phenomenon that will, without intervention, make currently treatable infections once again deadly. In an era of widespread antimicrobial resistance, there is a constant and pressing need to develop new antibacterial drugs. Unraveling the underlying resistance mechanisms is critical to fight this crisis. In this review, we summarize some emerging evidence of the non-canonical intracellular life cycle of two priority antimicrobial-resistant bacterial pathogens: Pseudomonas aeruginosa and Staphylococcus aureus. The bacterial factors that modulate this unique intracellular niche and its implications in contributing to resistance are discussed. We then briefly discuss some recent research that focused on the promises of boosting host immunity as a combination therapy with antimicrobials to eradicate these two particular pathogens. Finally, we summarize the importance of various strategies, including surveillance and vaccines, in mitigating the impacts of antimicrobial resistance in general.
Collapse
|
14
|
Pakbin B, Basti AA, Khanjari A, Brück WM, Azimi L, Karimi A. Development of high-resolution melting (HRM) assay to differentiate the species of Shigella isolates from stool and food samples. Sci Rep 2022; 12:473. [PMID: 35013489 PMCID: PMC8748861 DOI: 10.1038/s41598-021-04484-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 12/23/2021] [Indexed: 11/09/2022] Open
Abstract
Shigella species, a group of intracellular foodborne pathogens, are the main causes of bacillary dysentery and shigellosis in humans worldwide. It is essential to determine the species of Shigella in outbreaks and food safety surveillance systems. The available immunological and molecular methods for identifying Shigella species are relatively complicated, expensive and time-consuming. High resolution melting (HRM) assay is a rapid, cost-effective, and easy to perform PCR-based method that has recently been used for the differentiation of bacterial species. In this study, we designed and developed a PCR-HRM assay targeting rrsA gene to distinguish four species of 49 Shigella isolates from clinical and food samples and evaluated the sensitivity and specificity of the assay. The assay demonstrated a good analytical sensitivity with 0.01–0.1 ng of input DNA template and an analytical specificity of 100% to differentiate the Shigella species. The PCR-HRM assay also was able to identify the species of all 49 Shigella isolates from clinical and food samples correctly. Consequently, this rapid and user-friendly method demonstrated good sensitivity and specificity to differentiate species of the Shigella isolates from naturally contaminated samples and has the potential to be implemented in public health and food safety surveillance systems.
Collapse
Affiliation(s)
- Babak Pakbin
- Institute for Life Technologies, University of Applied Sciences Western Switzerland Valais-Wallis, 1950 Sion 2, Sierre, Switzerland.,Department of Food Hygiene and Quality of Control, Faculty of Veterinary Medicine, University of Tehran, P.O. Box: 14155-6453, Tehran, Iran
| | - Afshin Akhondzadeh Basti
- Department of Food Hygiene and Quality of Control, Faculty of Veterinary Medicine, University of Tehran, P.O. Box: 14155-6453, Tehran, Iran.
| | - Ali Khanjari
- Department of Food Hygiene and Quality of Control, Faculty of Veterinary Medicine, University of Tehran, P.O. Box: 14155-6453, Tehran, Iran
| | - Wolfram Manuel Brück
- Institute for Life Technologies, University of Applied Sciences Western Switzerland Valais-Wallis, 1950 Sion 2, Sierre, Switzerland
| | - Leila Azimi
- Pediatric Infections Research Center, Research Institute of Children's Health, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abdollah Karimi
- Pediatric Infections Research Center, Research Institute of Children's Health, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|