1
|
Farias-Jofre M, Romero R, Xu Y, Levenson D, Tao L, Kanninen T, Galaz J, Arenas-Hernandez M, Liu Z, Miller D, Bhatti G, Seyerle M, Tarca AL, Gomez-Lopez N. Differential immunophenotype of circulating monocytes from pregnant women in response to viral ligands. BMC Pregnancy Childbirth 2023; 23:323. [PMID: 37149573 PMCID: PMC10163583 DOI: 10.1186/s12884-023-05562-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 03/30/2023] [Indexed: 05/08/2023] Open
Abstract
BACKGROUND Viral infections during pregnancy can have deleterious effects on mothers and their offspring. Monocytes participate in the maternal host defense against invading viruses; however, whether pregnancy alters monocyte responses is still under investigation. Herein, we undertook a comprehensive in vitro study of peripheral monocytes to characterize the differences in phenotype and interferon release driven by viral ligands between pregnant and non-pregnant women. METHODS Peripheral blood was collected from third-trimester pregnant (n = 20) or non-pregnant (n = 20, controls) women. Peripheral blood mononuclear cells were isolated and exposed to R848 (TLR7/TLR8 agonist), Gardiquimod (TLR7 agonist), Poly(I:C) (HMW) VacciGrade™ (TLR3 agonist), Poly(I:C) (HMW) LyoVec™ (RIG-I/MDA-5 agonist), or ODN2216 (TLR9 agonist) for 24 h. Cells and supernatants were collected for monocyte phenotyping and immunoassays to detect specific interferons, respectively. RESULTS The proportions of classical (CD14hiCD16-), intermediate (CD14hiCD16+), non-classical (CD14loCD16+), and CD14loCD16- monocytes were differentially affected between pregnant and non-pregnant women in response to TLR3 stimulation. The proportions of pregnancy-derived monocytes expressing adhesion molecules (Basigin and PSGL-1) or the chemokine receptors CCR5 and CCR2 were diminished in response to TLR7/TLR8 stimulation, while the proportions of CCR5- monocytes were increased. Such differences were found to be primarily driven by TLR8 signaling, rather than TLR7. Moreover, the proportions of monocytes expressing the chemokine receptor CXCR1 were increased during pregnancy in response to poly(I:C) stimulation through TLR3, but not RIG-I/MDA-5. By contrast, pregnancy-specific changes in the monocyte response to TLR9 stimulation were not observed. Notably, the soluble interferon response to viral stimulation by mononuclear cells was not diminished in pregnancy. CONCLUSIONS Our data provide insight into the differential responsiveness of pregnancy-derived monocytes to ssRNA and dsRNA, mainly driven by TLR8 and membrane-bound TLR3, which may help to explain the increased susceptibility of pregnant women to adverse outcomes resulting from viral infection as observed during recent and historic pandemics.
Collapse
Affiliation(s)
- Marcelo Farias-Jofre
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Detroit, MI, 48201, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, 48201, USA
- Division of Obstetrics and Gynecology, Faculty of Medicine, Pontificia Universidad Católica de Chile, 8330024, Santiago, Chile
| | - Roberto Romero
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Detroit, MI, 48201, USA
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI, 48824, USA
| | - Yi Xu
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Detroit, MI, 48201, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, 48201, USA
| | - Dustyn Levenson
- Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Li Tao
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Detroit, MI, 48201, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, 48201, USA
| | - Tomi Kanninen
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Detroit, MI, 48201, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, 48201, USA
| | - Jose Galaz
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Detroit, MI, 48201, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, 48201, USA
- Division of Obstetrics and Gynecology, Faculty of Medicine, Pontificia Universidad Católica de Chile, 8330024, Santiago, Chile
| | - Marcia Arenas-Hernandez
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Detroit, MI, 48201, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, 48201, USA
| | - Zhenjie Liu
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Detroit, MI, 48201, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, 48201, USA
| | - Derek Miller
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Detroit, MI, 48201, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, 48201, USA
| | - Gaurav Bhatti
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Detroit, MI, 48201, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, 48201, USA
| | - Megan Seyerle
- Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Adi L Tarca
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Detroit, MI, 48201, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, 48201, USA
- Department of Computer Science, Wayne State University College of Engineering, Detroit, MI, 48202, USA
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, 48201, USA
| | - Nardhy Gomez-Lopez
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Detroit, MI, 48201, USA.
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, 48201, USA.
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, 48201, USA.
- Department of Biochemistry, Microbiology, and Immunology, Wayne State University School of Medicine, Detroit, MI, 48201, USA.
| |
Collapse
|
2
|
Wanders RJA, Baes M, Ribeiro D, Ferdinandusse S, Waterham HR. The physiological functions of human peroxisomes. Physiol Rev 2023; 103:957-1024. [PMID: 35951481 DOI: 10.1152/physrev.00051.2021] [Citation(s) in RCA: 61] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Peroxisomes are subcellular organelles that play a central role in human physiology by catalyzing a range of unique metabolic functions. The importance of peroxisomes for human health is exemplified by the existence of a group of usually severe diseases caused by an impairment in one or more peroxisomal functions. Among others these include the Zellweger spectrum disorders, X-linked adrenoleukodystrophy, and Refsum disease. To fulfill their role in metabolism, peroxisomes require continued interaction with other subcellular organelles including lipid droplets, lysosomes, the endoplasmic reticulum, and mitochondria. In recent years it has become clear that the metabolic alliance between peroxisomes and other organelles requires the active participation of tethering proteins to bring the organelles physically closer together, thereby achieving efficient transfer of metabolites. This review intends to describe the current state of knowledge about the metabolic role of peroxisomes in humans, with particular emphasis on the metabolic partnership between peroxisomes and other organelles and the consequences of genetic defects in these processes. We also describe the biogenesis of peroxisomes and the consequences of the multiple genetic defects therein. In addition, we discuss the functional role of peroxisomes in different organs and tissues and include relevant information derived from model systems, notably peroxisomal mouse models. Finally, we pay particular attention to a hitherto underrated role of peroxisomes in viral infections.
Collapse
Affiliation(s)
- Ronald J A Wanders
- Laboratory Genetic Metabolic Diseases, Department of Clinical Chemistry, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands.,Department of Pediatrics, Emma Children's Hospital, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands.,United for Metabolic Diseases, Amsterdam, The Netherlands
| | - Myriam Baes
- Laboratory of Cell Metabolism, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
| | - Daniela Ribeiro
- Institute of Biomedicine (iBiMED) and Department of Medical Sciences, University of Aveiro, Aveiro, Portugal
| | - Sacha Ferdinandusse
- Laboratory Genetic Metabolic Diseases, Department of Clinical Chemistry, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands.,United for Metabolic Diseases, Amsterdam, The Netherlands
| | - Hans R Waterham
- Laboratory Genetic Metabolic Diseases, Department of Clinical Chemistry, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands.,Department of Pediatrics, Emma Children's Hospital, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands.,United for Metabolic Diseases, Amsterdam, The Netherlands
| |
Collapse
|
3
|
Penner I, Büscher N, Dejung M, Freiwald A, Butter F, Plachter B. Subviral Dense Bodies of Human Cytomegalovirus Induce an Antiviral Type I Interferon Response. Cells 2022; 11:cells11244028. [PMID: 36552792 PMCID: PMC9777239 DOI: 10.3390/cells11244028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/07/2022] [Accepted: 12/09/2022] [Indexed: 12/15/2022] Open
Abstract
(1) Background: Cells infected with the human cytomegalovirus (HCMV) produce subviral particles, termed dense bodies (DBs), both in-vitro and in-vivo. They are released from cells, comparable to infectious virions, and are enclosed by a membrane that resembles the viral envelope and mediates the entry into cells. To date, little is known about how the DB uptake influences the gene expression in target cells. The purpose of this study was to investigate the impact of DBs on cells, in the absence of a viral infection. (2) Methods: Mass spectrometry, immunoblot analyses, siRNA knockdown, and a CRISPR-CAS9 knockout, were used to investigate the changes in cellular gene expression following a DB exposure; (3) Results: A number of interferon-regulated genes (IRGs) were upregulated after the fibroblasts and endothelial cells were exposed to DBs. This upregulation was dependent on the DB entry and mediated by the type I interferon signaling through the JAK-STAT pathway. The induction of IRGs was mediated by the sensing of the DB-introduced DNA by the pattern recognition receptor cGAS. (4) Conclusions: The induction of a strong type I IFN response by DBs is a unique feature of the HCMV infection. The release of DBs may serve as a danger signal and concomitantly contribute to the induction of a strong, antiviral immune response.
Collapse
Affiliation(s)
- Inessa Penner
- Institute for Virology, University Medical Center of the Johannes Gutenberg-University, 55131 Mainz, Germany
| | - Nicole Büscher
- Institute for Virology, University Medical Center of the Johannes Gutenberg-University, 55131 Mainz, Germany
| | - Mario Dejung
- Institute for Molecular Biology, 55128 Mainz, Germany
| | - Anja Freiwald
- Institute for Molecular Biology, 55128 Mainz, Germany
| | - Falk Butter
- Institute for Molecular Biology, 55128 Mainz, Germany
| | - Bodo Plachter
- Institute for Virology, University Medical Center of the Johannes Gutenberg-University, 55131 Mainz, Germany
- Correspondence:
| |
Collapse
|
4
|
Ferreira AR, Gouveia A, Magalhães AC, Valença I, Marques M, Kagan JC, Ribeiro D. Human Cytomegalovirus vMIA Inhibits MAVS Oligomerization at Peroxisomes in an MFF-Dependent Manner. Front Cell Dev Biol 2022; 10:871977. [PMID: 35445031 PMCID: PMC9014249 DOI: 10.3389/fcell.2022.871977] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 03/04/2022] [Indexed: 11/21/2022] Open
Abstract
Upon intracellular recognition of viral RNA, RIG-I-like proteins interact with MAVS at peroxisomes and mitochondria, inducing its oligomerization and the downstream production of direct antiviral effectors. The human cytomegalovirus (HCMV) is able to specifically evade this antiviral response, via its antiapoptotic protein vMIA. Besides suppressing the programmed cell death of infected cells, vMIA inhibits the antiviral signalling at mitochondria by inducing the organelle’s fragmentation, consequently hindering the interaction between MAVS and the endoplasmic reticulum protein STING. Here we demonstrate that vMIA interferes with the peroxisomal antiviral signalling via a distinct mechanism that is independent of the organelle’s morphology and does not affect STING. vMIA interacts with MAVS at peroxisomes and inhibits its oligomerization, restraining downstream signalling, in an MFF-dependent manner. This study also demonstrates that vMIA is totally dependent on the organelle’s fission machinery to induce peroxisomal fragmentation, while this dependency is not observed at mitochondria. Furthermore, although we demonstrate that vMIA is also able to inhibit MAVS oligomerization at mitochondria, our results indicate that this process, such as the whole vMIA-mediated inhibition of the mitochondrial antiviral response, is independent of MFF. These observed differences in the mechanisms of action of vMIA towards both organelles, likely reflect their intrinsic differences and roles throughout the viral infection. This study uncovers specific molecular mechanisms that may be further explored as targets for antiviral therapy and highlights the relevance of peroxisomes as platforms for antiviral signalling against HCMV.
Collapse
Affiliation(s)
- Ana Rita Ferreira
- Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, Aveiro, Portugal.,Division of Gastroenterology, Hepatology and Nutrition, Boston Children's Hospital and Harvard Medical School, Boston, MA, United States
| | - Ana Gouveia
- Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, Aveiro, Portugal
| | - Ana Cristina Magalhães
- Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, Aveiro, Portugal
| | - Isabel Valença
- Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, Aveiro, Portugal
| | - Mariana Marques
- Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, Aveiro, Portugal
| | - Jonathan C Kagan
- Division of Gastroenterology, Hepatology and Nutrition, Boston Children's Hospital and Harvard Medical School, Boston, MA, United States
| | - Daniela Ribeiro
- Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, Aveiro, Portugal
| |
Collapse
|
5
|
Ferreira AR, Marques M, Ramos B, Kagan JC, Ribeiro D. Emerging roles of peroxisomes in viral infections. Trends Cell Biol 2021; 32:124-139. [PMID: 34696946 DOI: 10.1016/j.tcb.2021.09.010] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 09/23/2021] [Accepted: 09/27/2021] [Indexed: 01/01/2023]
Abstract
Peroxisomes, essential subcellular organelles that fulfill important functions in lipid and reactive oxygen species metabolism, have recently emerged as key players during viral infections. Their importance for the establishment of the cellular antiviral response has been highlighted by numerous reports of specific evasion of peroxisome-dependent signaling by different viruses. Recent data demonstrate that peroxisomes also assume important proviral functions. Here, we review and discuss the recent advances in the study of the diverse roles of peroxisomes during viral infections, from animal to plant viruses, and from basic to translational perspectives. We further discuss the future development of this emerging area and propose that peroxisome-related mechanisms represent a promising target for the development of novel antiviral strategies.
Collapse
Affiliation(s)
- Ana Rita Ferreira
- Institute of Biomedicine (iBiMED) and Department of Medical Sciences, University of Aveiro, Aveiro, Portugal
| | - Mariana Marques
- Institute of Biomedicine (iBiMED) and Department of Medical Sciences, University of Aveiro, Aveiro, Portugal
| | - Bruno Ramos
- Institute of Biomedicine (iBiMED) and Department of Medical Sciences, University of Aveiro, Aveiro, Portugal
| | - Jonathan C Kagan
- Division of Gastroenterology, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
| | - Daniela Ribeiro
- Institute of Biomedicine (iBiMED) and Department of Medical Sciences, University of Aveiro, Aveiro, Portugal.
| |
Collapse
|
6
|
Jedlińska-Pijanowska D, Kasztelewicz B, Dobrzańska A, Dzierżanowska-Fangrat K, Jaworski M, Czech-Kowalska J. Association between single nucleotide polymorphisms and viral load in congenital cytomegalovirus infection. JOURNAL OF MOTHER AND CHILD 2021; 24:9-17. [PMID: 33656306 PMCID: PMC8330360 DOI: 10.34763/jmotherandchild.20202404.d-20-00014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Background There are limited data on factors that determine viral load (VL) in congenital cytomegalovirus (cCMV) infection. Single nucleotide polymorphisms (SNPs) might influence individual host response to infection. This study aimed to investigate the association between SNPs in genes encoding cytokines or cytokine receptors and VL in newborns with cCMV. Material and methods Eight polymorphisms (IL1B rs16944, IL12B rs3212227, IL28B rs12979860, CCL2 rs1024611, DC-SIGN rs735240, TLR2 rs5743708, TLR4 rs4986791 and TLR9 rs352140) were analyzed in study population of 233 newborns, including 92 cCMV-infected newborns (73 symptomatic and 19 asymptomatic) by TaqMan SNP Predesigned Genotyping Assays. The association analysis was performed using SNPStats software and STATISTICA10. Results The association between IL12B polymorphism and viruria was observed (p = 0.029). In multiple comparison tests, heterozygous T/G genotype of IL12B was associated with higher viruria than T/T genotype (p = 0.041) in cCMV-infected newborns. In allele analysis, T allele of IL12B was associated with higher viremia (p = 0.037) in symptomatic newborns. We observed higher VL in symptomatic newborns in comparison to asymptomatic (median viremia: 1.7 × 104 copies/mL vs. 2.0 × 103 copies/mL (p = 0.002), median viruria: 1.0 × 107 copies/mL versus 6.9 × 105 copies/mL (p = 0.001), respectively). Conclusions IL12B rs3212227 was associated with VL in cCMV. Symptomatic newborns had significantly higher viremia and viruria. The role of SNPs in pathogenesis of cCMV warrants further investigations.
Collapse
Affiliation(s)
| | - Beata Kasztelewicz
- Department of Clinical Microbiology and Immunology, The Children's Memorial Health Institute, Warsaw, Poland
| | - Anna Dobrzańska
- Department of Neontology and Neonatal Intensive Care , The Children's Memorial Health Institute, Warsaw, Poland
| | | | - Maciej Jaworski
- Department of Biochemistry, Radioimmunology and Experimental Medicine, The Children's Memorial Health Institute, Warsaw, Poland
| | - Justyna Czech-Kowalska
- Department of Neontology and Neonatal Intensive Care , The Children's Memorial Health Institute, Warsaw, Poland
| |
Collapse
|
7
|
Begnel ER, Drake AL, Kinuthia J, Matemo D, Huang M, Ásbjörnsdóttir KH, Chohan V, Beima‐Sofie K, John‐Stewart G, Lehman D, Slyker J. Cervical cytomegalovirus reactivation, cytokines and spontaneous preterm birth in Kenyan women. Clin Exp Immunol 2021; 203:472-479. [PMID: 33270222 PMCID: PMC7874830 DOI: 10.1111/cei.13558] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 11/12/2020] [Accepted: 11/20/2020] [Indexed: 11/30/2022] Open
Abstract
Genital cytomegalovirus (CMV) reactivation is common during the third trimester of pregnancy. We hypothesized that cervical CMV shedding may increase risk of spontaneous preterm birth (sPTB) through the release of inflammatory cytokines in the cervix. We conducted a nested case-control analysis to determine the relationship between CMV shedding and sPTB using data and samples from a prospective cohort study in western Kenya. Women who delivered between 28 + 0 and 33 + 6 weeks gestation were matched by gestational age at sample collection to controls who delivered ≥ 37 + 0 weeks. Levels of CMV DNA and interleukin (IL)-1 beta (β), IL-6, IL-8 and tumor necrosis factor (TNF)-α were measured in cervical swabs. We used conditional logistic regression to assess relationships between CMV shedding, cervical cytokine levels and sPTB. Among 86 cases and 86 matched controls, cervical CMV levels were not significantly associated with sPTB [odds ratio (OR) = 1·23, 95% confidence interval (CI) = 0·59-2·56], but were significantly associated with higher levels of cervical IL-6 (β = 0·15, 95% CI = 0·02-0·29) and TNF-α (β = 0·14, 95% CI = 0·01-0·27). In univariate analysis, higher odds of sPTB was associated with higher cervical IL-6 levels (OR = 1·54, 95% CI = 1·00-2·38), but not with other cervical cytokines. In this cohort of Kenyan women, we did not find a significant association between cervical CMV shedding and sPTB before 34 weeks.
Collapse
Affiliation(s)
- E. R. Begnel
- Department of Global HealthUniversity of WashingtonSeattleWAUSA
| | - A. L. Drake
- Department of Global HealthUniversity of WashingtonSeattleWAUSA
- Department of EpidemiologyUniversity of WashingtonSeattleWAUSA
| | - J. Kinuthia
- Department of Global HealthUniversity of WashingtonSeattleWAUSA
- Department of Obstetrics/GynecologyKenyatta National HospitalNairobiKenya
| | - D. Matemo
- Department of Research and ProgramsKenyatta National HospitalNairobiKenya
| | - M.‐L. Huang
- Department of VirologyUniversity of WashingtonSeattleWAUSA
| | | | - V. Chohan
- Department of MedicineUniversity of WashingtonSeattleWAUSA
| | - K. Beima‐Sofie
- Department of Global HealthUniversity of WashingtonSeattleWAUSA
| | - G. John‐Stewart
- Department of Global HealthUniversity of WashingtonSeattleWAUSA
- Department of EpidemiologyUniversity of WashingtonSeattleWAUSA
- Department of MedicineUniversity of WashingtonSeattleWAUSA
- Department of PediatricsUniversity of WashingtonSeattleWAUSA
| | - D. Lehman
- Department of Global HealthUniversity of WashingtonSeattleWAUSA
- Division of Human BiologyFred Hutchinson Cancer Research CenterSeattleWAUSA
| | - J. Slyker
- Department of Global HealthUniversity of WashingtonSeattleWAUSA
- Department of EpidemiologyUniversity of WashingtonSeattleWAUSA
| |
Collapse
|
8
|
Dell'Oste V, Biolatti M, Galitska G, Griffante G, Gugliesi F, Pasquero S, Zingoni A, Cerboni C, De Andrea M. Tuning the Orchestra: HCMV vs. Innate Immunity. Front Microbiol 2020; 11:661. [PMID: 32351486 PMCID: PMC7174589 DOI: 10.3389/fmicb.2020.00661] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 03/23/2020] [Indexed: 12/20/2022] Open
Abstract
Understanding how the innate immune system keeps human cytomegalovirus (HCMV) in check has recently become a critical issue in light of the global clinical burden of HCMV infection in newborns and immunodeficient patients. Innate immunity constitutes the first line of host defense against HCMV as it involves a complex array of cooperating effectors – e.g., inflammatory cytokines, type I interferon (IFN-I), natural killer (NK) cells, professional antigen-presenting cells (APCs) and phagocytes – all capable of disrupting HCMV replication. These factors are known to trigger a highly efficient adaptive immune response, where cellular restriction factors (RFs) play a major gatekeeping role. Unlike other innate immunity components, RFs are constitutively expressed in many cell types, ready to act before pathogen exposure. Nonetheless, the existence of a positive regulatory feedback loop between RFs and IFNs is clear evidence of an intimate cooperation between intrinsic and innate immunity. In the course of virus-host coevolution, HCMV has, however, learned how to manipulate the functions of multiple cellular players of the host innate immune response to achieve latency and persistence. Thus, HCMV acts like an orchestra conductor able to piece together and rearrange parts of a musical score (i.e., innate immunity) to obtain the best live performance (i.e., viral fitness). It is therefore unquestionable that innovative therapeutic solutions able to prevent HCMV immune evasion in congenitally infected infants and immunocompromised individuals are urgently needed. Here, we provide an up-to-date review of the mechanisms regulating the interplay between HCMV and innate immunity, focusing on the various strategies of immune escape evolved by this virus to gain a fitness advantage.
Collapse
Affiliation(s)
- Valentina Dell'Oste
- Laboratory of Pathogenesis of Viral Infections, Department of Public Health and Pediatric Sciences, University of Turin, Turin, Italy
| | - Matteo Biolatti
- Laboratory of Pathogenesis of Viral Infections, Department of Public Health and Pediatric Sciences, University of Turin, Turin, Italy
| | - Ganna Galitska
- Laboratory of Pathogenesis of Viral Infections, Department of Public Health and Pediatric Sciences, University of Turin, Turin, Italy
| | - Gloria Griffante
- Laboratory of Pathogenesis of Viral Infections, Department of Public Health and Pediatric Sciences, University of Turin, Turin, Italy
| | - Francesca Gugliesi
- Laboratory of Pathogenesis of Viral Infections, Department of Public Health and Pediatric Sciences, University of Turin, Turin, Italy
| | - Selina Pasquero
- Laboratory of Pathogenesis of Viral Infections, Department of Public Health and Pediatric Sciences, University of Turin, Turin, Italy
| | - Alessandra Zingoni
- Department of Molecular Immunology and Immunopathology, "Sapienza" University of Rome, Rome, Italy
| | - Cristina Cerboni
- Department of Molecular Immunology and Immunopathology, "Sapienza" University of Rome, Rome, Italy
| | - Marco De Andrea
- Laboratory of Pathogenesis of Viral Infections, Department of Public Health and Pediatric Sciences, University of Turin, Turin, Italy.,Center for Translational Research on Autoimmune and Allergic Disease - CAAD, University of Piemonte Orientale, Novara, Italy
| |
Collapse
|
9
|
Le-Trilling VTK, Trilling M. Ub to no good: How cytomegaloviruses exploit the ubiquitin proteasome system. Virus Res 2020; 281:197938. [PMID: 32198076 DOI: 10.1016/j.virusres.2020.197938] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 03/13/2020] [Accepted: 03/13/2020] [Indexed: 12/17/2022]
Abstract
Human cytomegalovirus (HCMV) is a ubiquitous member of the Betaherpesvirinae subfamily, causing life-threatening diseases in individuals with impaired, immature, or senescent immunity. Accordingly, HIV-infected AIDS patients, transplant recipients, and congenitally infected neonates frequently suffer from symptomatic episodes of HCMV replication. Like all viruses, HCMV has a split relationship with the host proteome. Efficient virus replication can only be achieved if proteins involved in intrinsic, innate, and adaptive immune responses are sufficiently antagonized. Simultaneously, the abundance and function of proteins involved in the synthesis of chemical building blocks required for virus production, such as nucleotides, amino acids, and fatty acids, must be preserved or even enriched. The ubiquitin (Ub) proteasome system (UPS) constitutes one of the most relevant protein decay systems of eukaryotic cells. In addition to the regulation of the turn-over and abundance of thousands of proteins, the UPS also generates the majority of peptides presented by major histocompatibility complex (MHC) molecules to allow surveillance by T lymphocytes. Cytomegaloviruses exploit the UPS to regulate the abundance of viral proteins and to manipulate the host proteome in favour of viral replication and immune evasion. After summarizing the current knowledge of CMV-mediated misuse of the UPS, we discuss the evolution of viral proteins utilizing the UPS for the degradation of defined target proteins. We propose two alternative routes of adapter protein development and their mechanistic consequences.
Collapse
Affiliation(s)
| | - Mirko Trilling
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany.
| |
Collapse
|
10
|
Ferreira AR, Ramos B, Nunes A, Ribeiro D. Hepatitis C Virus: Evading the Intracellular Innate Immunity. J Clin Med 2020; 9:jcm9030790. [PMID: 32183176 PMCID: PMC7141330 DOI: 10.3390/jcm9030790] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 03/02/2020] [Accepted: 03/04/2020] [Indexed: 12/25/2022] Open
Abstract
Hepatitis C virus (HCV) infections constitute a major public health problem and are the main cause of chronic hepatitis and liver disease worldwide. The existing drugs, while effective, are expensive and associated with undesirable secondary effects. There is, hence, an urgent need to develop novel therapeutics, as well as an effective vaccine to prevent HCV infection. Understanding the interplay between HCV and the host cells will certainly contribute to better comprehend disease progression and may unravel possible new cellular targets for the development of novel antiviral therapeutics. Here, we review and discuss the interplay between HCV and the host cell innate immunity. We focus on the different cellular pathways that respond to, and counteract, HCV infection and highlight the evasion strategies developed by the virus to escape this intracellular response.
Collapse
Affiliation(s)
| | | | | | - Daniela Ribeiro
- Correspondence: ; Tel.: +351-234-247-014; Fax: +351-234-372-587
| |
Collapse
|
11
|
Ferreira AR, Ramalho AC, Marques M, Ribeiro D. The Interplay between Antiviral Signalling and Carcinogenesis in Human Papillomavirus Infections. Cancers (Basel) 2020; 12:cancers12030646. [PMID: 32164347 PMCID: PMC7139948 DOI: 10.3390/cancers12030646] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 03/05/2020] [Accepted: 03/06/2020] [Indexed: 12/20/2022] Open
Abstract
Human papillomaviruses (HPV) are the causative agents of the most common sexually transmitted infection worldwide. While infection is generally asymptomatic and can be cleared by the host immune system, when persistence occurs, HPV can become a risk factor for malignant transformation. Progression to cancer is actually an unintended consequence of the complex HPV life cycle. Different antiviral defence mechanisms recognize HPV early in infection, leading to the activation of the innate immune response. However, the virus has evolved several specific strategies to efficiently evade the antiviral immune signalling. Here, we review and discuss the interplay between HPV and the host cell innate immunity. We further highlight the evasion strategies developed by different HPV to escape this cellular response and focus on the correlation with HPV-induced persistence and tumorigenesis.
Collapse
Affiliation(s)
| | | | | | - Daniela Ribeiro
- Correspondence: ; Tel.: +351-234-247 014; Fax: +351-234-372-587
| |
Collapse
|
12
|
Adamson CS, Nevels MM. Bright and Early: Inhibiting Human Cytomegalovirus by Targeting Major Immediate-Early Gene Expression or Protein Function. Viruses 2020; 12:v12010110. [PMID: 31963209 PMCID: PMC7019229 DOI: 10.3390/v12010110] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 01/07/2020] [Accepted: 01/08/2020] [Indexed: 12/11/2022] Open
Abstract
The human cytomegalovirus (HCMV), one of eight human herpesviruses, establishes lifelong latent infections in most people worldwide. Primary or reactivated HCMV infections cause severe disease in immunosuppressed patients and congenital defects in children. There is no vaccine for HCMV, and the currently approved antivirals come with major limitations. Most approved HCMV antivirals target late molecular processes in the viral replication cycle including DNA replication and packaging. “Bright and early” events in HCMV infection have not been exploited for systemic prevention or treatment of disease. Initiation of HCMV replication depends on transcription from the viral major immediate-early (IE) gene. Alternative transcripts produced from this gene give rise to the IE1 and IE2 families of viral proteins, which localize to the host cell nucleus. The IE1 and IE2 proteins are believed to control all subsequent early and late events in HCMV replication, including reactivation from latency, in part by antagonizing intrinsic and innate immune responses. Here we provide an update on the regulation of major IE gene expression and the functions of IE1 and IE2 proteins. We will relate this insight to experimental approaches that target IE gene expression or protein function via molecular gene silencing and editing or small chemical inhibitors.
Collapse
|
13
|
Yan B, Ma H, Jiang S, Shi J, Yang Z, Zhu W, Kong C, Chen L, Yan H, Ma C. microRNA-221 restricts human cytomegalovirus replication via promoting type I IFN production by targeting SOCS1/NF-κB pathway. Cell Cycle 2019; 18:3072-3084. [PMID: 31550968 DOI: 10.1080/15384101.2019.1667706] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
HCMV is a common pathogen for human with relatively high prevalence, which could be life-threatened in immunodeficient patients and lead to significant birth defects in newborns. In this study, we firstly report that HCMV infection significantly enhances the expression of microRNA-221 (miR-221) in Neural Precursor Cells (NPCs). We found that miR-221 directly targets at the 3'-UTR of suppressor of cytokine signaling 1 (SOCS1) and suppresses SOCS1 expression at the both mRNA and protein levels. MiR-221 overexpression restrained HCMV replication by promoting type I interferon (IFN) and interferon stimulating genes (ISGs) production, whereas reintroduction of SOCS1 abrogated the miR-221-induced effects on HCMV replication. Importantly, miR-221 positively regulated the phosphorylation and activation of NF-κB by suppressing SOCS1. What's more, miR-221 agomir alleviated MCMV-induced tissue injury by promoting type I IFN antiviral activities in vivo. Thus, miR-221 modulates the infection and replication of HCMV as an intrinsic antiviral factor, and could be developed as a treatment target for anti-HCMV treatment.
Collapse
Affiliation(s)
- Beizhan Yan
- Blood Transfusion Department, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University , Zhengzhou , Henan , China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Production Strategies for Pentamer-Positive Subviral Dense Bodies as a Safe Human Cytomegalovirus Vaccine. Vaccines (Basel) 2019; 7:vaccines7030104. [PMID: 31480520 PMCID: PMC6789746 DOI: 10.3390/vaccines7030104] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 08/26/2019] [Accepted: 08/28/2019] [Indexed: 12/12/2022] Open
Abstract
Infections with the human cytomegalovirus (HCMV) are associated with severe clinical manifestations in children following prenatal transmission and after viral reactivation in immunosuppressed individuals. The development of an HCMV vaccine has long been requested but there is still no licensed product available. Subviral dense bodies (DB) are immunogenic in pre-clinical models and are thus a promising HCMV vaccine candidate. Recently, we established a virus based on the laboratory strain Towne that synthesizes large numbers of DB containing the pentameric protein complex gH/gL/UL128-131 (Towne-UL130repΔGFP). The work presented here focuses on providing strategies for the production of a safe vaccine based on that strain. A GMP-compliant protocol for DB production was established. Furthermore, the DB producer strain Towne-UL130rep was attenuated by deleting the UL25 open reading frame. Additional genetic modifications aim to abrogate its capacity to replicate in vivo by conditionally expressing pUL51 using the Shield-1/FKBP destabilization system. We further show that the terminase inhibitor letermovir can be used to reduce infectious virus contamination of a DB vaccine by more than two orders of magnitude. Taken together, strategies are provided here that allow for the production of a safe and immunogenic DB vaccine for clinical testing.
Collapse
|
15
|
Ferreira AR, Marques M, Ribeiro D. Peroxisomes and Innate Immunity: Antiviral Response and Beyond. Int J Mol Sci 2019; 20:E3795. [PMID: 31382586 PMCID: PMC6695817 DOI: 10.3390/ijms20153795] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 07/31/2019] [Accepted: 08/01/2019] [Indexed: 12/14/2022] Open
Abstract
Peroxisomes are ubiquitous organelles with well-defined functions in lipid and reactive oxygen species metabolism, having a significant impact on a large number of important diseases. Growing evidence points to them, in concert with mitochondria, as important players within the antiviral response. In this review we summarize and discuss the recent findings concerning the relevance of peroxisomes within innate immunity. We not only emphasize their importance as platforms for cellular antiviral signaling but also review the current information concerning their role in the control of bacterial infections. We furthermore review the recent data that pinpoints peroxisomes as regulators of inflammatory processes.
Collapse
Affiliation(s)
- Ana Rita Ferreira
- Institute of Biomedicine (iBiMED) & Department of Medical Sciences, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Mariana Marques
- Institute of Biomedicine (iBiMED) & Department of Medical Sciences, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Daniela Ribeiro
- Institute of Biomedicine (iBiMED) & Department of Medical Sciences, University of Aveiro, 3810-193 Aveiro, Portugal.
| |
Collapse
|