1
|
Tauzin A, Marchitto L, Bélanger É, Benlarbi M, Beaudoin-Bussières G, Prévost J, Yang D, Chiu TJ, Chen HC, Bourassa C, Medjahed H, Korzeniowski MK, Gottumukkala S, Tolbert WD, Richard J, Smith AB, Pazgier M, Finzi A. Three families of CD4-induced antibodies are associated with the capacity of plasma from people living with HIV to mediate ADCC in the presence of CD4-mimetics. J Virol 2024; 98:e0096024. [PMID: 39230306 PMCID: PMC11495032 DOI: 10.1128/jvi.00960-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 08/11/2024] [Indexed: 09/05/2024] Open
Abstract
CD4-mimetics (CD4mcs) are small molecule compounds that mimic the interaction of the CD4 receptor with HIV-1 envelope glycoproteins (Env). Env from primary viruses normally samples a "closed" conformation that occludes epitopes recognized by CD4-induced (CD4i) non-neutralizing antibodies (nnAbs). CD4mcs induce conformational changes on Env resulting in the exposure of these otherwise inaccessible epitopes. Here, we evaluated the capacity of plasma from a cohort of 50 people living with HIV to recognize HIV-1-infected cells and eliminate them by antibody-dependent cellular cytotoxicity (ADCC) in the presence of a potent indoline CD4mc. We observed a marked heterogeneity among plasma samples. By measuring the levels of different families of CD4i Abs, we found that the levels of anti-cluster A, anti-coreceptor binding site, and anti-gp41 cluster I antibodies are responsible for plasma-mediated ADCC in the presence of CD4mc. IMPORTANCE There are several reasons that make it difficult to target the HIV reservoir. One of them is the capacity of infected cells to prevent the recognition of HIV-1 envelope glycoproteins (Env) by commonly elicited antibodies in people living with HIV. Small CD4-mimetic compounds expose otherwise occluded Env epitopes, thus enabling their recognition by non-neutralizing antibodies (nnAbs). A better understanding of the contribution of these antibodies to eliminate infected cells in the presence of CD4mc could lead to the development of therapeutic cure strategies.
Collapse
Affiliation(s)
- Alexandra Tauzin
- Centre de Recherche du CHUM, Montreal, Quebec, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, Quebec, Canada
| | - Lorie Marchitto
- Centre de Recherche du CHUM, Montreal, Quebec, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, Quebec, Canada
| | - Étienne Bélanger
- Centre de Recherche du CHUM, Montreal, Quebec, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, Quebec, Canada
| | - Mehdi Benlarbi
- Centre de Recherche du CHUM, Montreal, Quebec, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, Quebec, Canada
| | - Guillaume Beaudoin-Bussières
- Centre de Recherche du CHUM, Montreal, Quebec, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, Quebec, Canada
| | - Jérémie Prévost
- Centre de Recherche du CHUM, Montreal, Quebec, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, Quebec, Canada
| | - Derek Yang
- Department of Chemistry, School of Arts and Sciences, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Ta-Jung Chiu
- Department of Chemistry, School of Arts and Sciences, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Hung-Ching Chen
- Department of Chemistry, School of Arts and Sciences, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | | | | - Marek K. Korzeniowski
- Infectious Diseases Division, Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Suneetha Gottumukkala
- Infectious Diseases Division, Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - William D. Tolbert
- Infectious Diseases Division, Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Jonathan Richard
- Centre de Recherche du CHUM, Montreal, Quebec, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, Quebec, Canada
| | - Amos B. Smith
- Department of Chemistry, School of Arts and Sciences, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Marzena Pazgier
- Infectious Diseases Division, Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Andrés Finzi
- Centre de Recherche du CHUM, Montreal, Quebec, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, Quebec, Canada
| |
Collapse
|
2
|
Marchitto L, Richard J, Prévost J, Tauzin A, Yang D, Chiu TJ, Chen HC, Díaz-Salinas MA, Nayrac M, Benlarbi M, Beaudoin-Bussières G, Anand SP, Dionne K, Bélanger É, Chatterjee D, Medjahed H, Bourassa C, Tolbert WD, Hahn BH, Munro JB, Pazgier M, Smith AB, Finzi A. The combination of three CD4-induced antibodies targeting highly conserved Env regions with a small CD4-mimetic achieves potent ADCC activity. J Virol 2024; 98:e0101624. [PMID: 39248460 PMCID: PMC11495009 DOI: 10.1128/jvi.01016-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 08/13/2024] [Indexed: 09/10/2024] Open
Abstract
The majority of naturally elicited antibodies against the HIV-1 envelope glycoproteins (Env) are non-neutralizing (nnAbs) because they are unable to recognize the Env trimer in its native "closed" conformation. Nevertheless, it has been shown that nnAbs have the potential to eliminate HIV-1-infected cells by antibody-dependent cellular cytotoxicity (ADCC) provided that Env is present on the cell surface in its "open" conformation. This is because most nnAbs recognize epitopes that become accessible only after Env interaction with CD4 and the exposure of epitopes that are normally occluded in the closed trimer. HIV-1 limits this vulnerability by downregulating CD4 from the surface of infected cells, thus preventing a premature encounter of Env with CD4. Small CD4-mimetics (CD4mc) sensitize HIV-1-infected cells to ADCC by opening the Env glycoprotein and exposing CD4-induced (CD4i) epitopes. There are two families of CD4i nnAbs, termed anti-cluster A and anti-CoRBS Abs, which are known to mediate ADCC in the presence of CD4mc. Here, we performed Fab competition experiments and found that anti-gp41 cluster I antibodies comprise a major fraction of the plasma ADCC activity in people living with HIV (PLWH). Moreover, addition of gp41 cluster I antibodies to cluster A and CoRBS antibodies greatly enhanced ADCC-mediated cell killing in the presence of a potent indoline CD4mc, CJF-III-288. This cocktail outperformed broadly neutralizing antibodies and even showed activity against HIV-1-infected monocyte-derived macrophages. Thus, combining CD4i antibodies with different specificities achieves maximal ADCC activity, which may be of utility in HIV cure strategies.IMPORTANCEThe elimination of HIV-1-infected cells remains an important medical goal. Although current antiretroviral therapy decreases viral loads below detection levels, it does not eliminate latently infected cells that form the viral reservoir. Here, we developed a cocktail of non-neutralizing antibodies targeting highly conserved Env regions and combined it with a potent indoline CD4mc. This combination exhibited potent ADCC activity against HIV-1-infected primary CD4 + T cells as well as monocyte-derived macrophages, suggesting its potential utility in decreasing the size of the viral reservoir.
Collapse
Affiliation(s)
- Lorie Marchitto
- Centre de Recherche du CHUM, Montréal, Québec, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, Québec, Canada
| | - Jonathan Richard
- Centre de Recherche du CHUM, Montréal, Québec, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, Québec, Canada
| | - Jérémie Prévost
- Centre de Recherche du CHUM, Montréal, Québec, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, Québec, Canada
| | - Alexandra Tauzin
- Centre de Recherche du CHUM, Montréal, Québec, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, Québec, Canada
| | - Derek Yang
- Department of Chemistry, School of Arts and Sciences, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Ta-Jung Chiu
- Department of Chemistry, School of Arts and Sciences, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Hung-Ching Chen
- Department of Chemistry, School of Arts and Sciences, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Marco A. Díaz-Salinas
- Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - Manon Nayrac
- Centre de Recherche du CHUM, Montréal, Québec, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, Québec, Canada
| | - Mehdi Benlarbi
- Centre de Recherche du CHUM, Montréal, Québec, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, Québec, Canada
| | - Guillaume Beaudoin-Bussières
- Centre de Recherche du CHUM, Montréal, Québec, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, Québec, Canada
| | - Sai Priya Anand
- Centre de Recherche du CHUM, Montréal, Québec, Canada
- Department of Microbiology and Immunology, McGill University, Montreal, Canada
| | - Katrina Dionne
- Centre de Recherche du CHUM, Montréal, Québec, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, Québec, Canada
| | - Étienne Bélanger
- Centre de Recherche du CHUM, Montréal, Québec, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, Québec, Canada
| | | | | | | | - William D. Tolbert
- Infectious Diseases Division, Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Beatrice H. Hahn
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - James B. Munro
- Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - Marzena Pazgier
- Infectious Diseases Division, Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Amos B. Smith
- Department of Chemistry, School of Arts and Sciences, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Andrés Finzi
- Centre de Recherche du CHUM, Montréal, Québec, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, Québec, Canada
- Department of Microbiology and Immunology, McGill University, Montreal, Canada
| |
Collapse
|
3
|
Marchitto L, Richard J, Prévost J, Tauzin A, Yang D, Chiu T, Chen HC, Díaz-Salinas MA, Nayrac M, Benlarbi M, Beaudoin-Bussières G, Anand SP, Dionne K, Bélanger É, Chatterjee D, Medjahed H, Bourassa C, Tolbert WD, Hahn BH, Munro JB, Pazgier M, Smith AB, Finzi A. The combination of three CD4-induced antibodies targeting highly conserved Env regions with a small CD4-mimetic achieves potent ADCC activity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.07.597978. [PMID: 38895270 PMCID: PMC11185797 DOI: 10.1101/2024.06.07.597978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
The majority of naturally-elicited antibodies against the HIV-1 envelope glycoproteins (Env) are non-neutralizing (nnAbs), because they are unable to recognize the Env timer in its native "closed" conformation. Nevertheless, it has been shown that nnAbs have the potential to eliminate HIV-1-infected cells by Antibody-Dependent Cellular Cytotoxicity (ADCC) provided that Env is present on the cell surface in its "open" conformation. This is because most nnAbs recognize epitopes that become accessible only after Env interaction with CD4 and the exposure of epitopes that are normally occluded in the closed trimer. HIV-1 limits this vulnerability by downregulating CD4 from the surface of infected cells, thus preventing a premature encounter of Env with CD4. Small CD4-mimetics (CD4mc) sensitize HIV-1-infected cells to ADCC by opening the Env glycoprotein and exposing CD4-induced (CD4i) epitopes. There are two families of CD4i nnAbs, termed anti-cluster A and anti-CoRBS Abs, which are known to mediate ADCC in the presence of CD4mc. Here, we performed Fab competition experiments and found that anti-gp41 cluster I antibodies comprise a major fraction of the plasma ADCC activity in people living with HIV (PLWH). Moreover, addition of gp41 cluster I antibodies to cluster A and CoRBS antibodies greatly enhanced ADCC mediated cell killing in the presence of a potent indoline CD4mc, CJF-III-288. This cocktail outperformed broadly-neutralizing antibodies and even showed activity against HIV-1 infected monocyte-derived macrophages. Thus, combining CD4i antibodies with different specificities achieves maximal ADCC activity, which may be of utility in HIV cure strategies.
Collapse
Affiliation(s)
- Lorie Marchitto
- Centre de Recherche du CHUM, Montréal, Québec, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, Québec, Canada
| | | | - Jérémie Prévost
- Centre de Recherche du CHUM, Montréal, Québec, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, Québec, Canada
| | - Alexandra Tauzin
- Centre de Recherche du CHUM, Montréal, Québec, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, Québec, Canada
| | - Derek Yang
- Department of Chemistry, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA 19104-6323, USA
| | - TaJung Chiu
- Department of Chemistry, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA 19104-6323, USA
| | - Hung-Ching Chen
- Department of Chemistry, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA 19104-6323, USA
| | - Marco A. Díaz-Salinas
- Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - Manon Nayrac
- Centre de Recherche du CHUM, Montréal, Québec, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, Québec, Canada
| | - Mehdi Benlarbi
- Centre de Recherche du CHUM, Montréal, Québec, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, Québec, Canada
| | - Guillaume Beaudoin-Bussières
- Centre de Recherche du CHUM, Montréal, Québec, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, Québec, Canada
| | - Sai Priya Anand
- Centre de Recherche du CHUM, Montréal, Québec, Canada
- Department of Microbiology and Immunology, McGill University, Montreal, QC H3A 2B4, Canada
| | - Katrina Dionne
- Centre de Recherche du CHUM, Montréal, Québec, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, Québec, Canada
| | - Étienne Bélanger
- Centre de Recherche du CHUM, Montréal, Québec, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, Québec, Canada
| | - Debashree Chatterjee
- Centre de Recherche du CHUM, Montréal, Québec, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, Québec, Canada
| | | | | | - William D. Tolbert
- Infectious Diseases Division, Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Beatrice H. Hahn
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - James B. Munro
- Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - Marzena Pazgier
- Infectious Diseases Division, Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Amos B. Smith
- Department of Chemistry, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA 19104-6323, USA
| | - Andrés Finzi
- Centre de Recherche du CHUM, Montréal, Québec, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, Québec, Canada
- Department of Microbiology and Immunology, McGill University, Montreal, QC H3A 2B4, Canada
| |
Collapse
|
4
|
Tauzin A, Marchitto L, Bélanger É, Benlarbi M, Beaudoin-Bussières G, Prévost J, Yang D, Chiu TJ, Chen HC, Bourassa C, Medjahed H, Korzeniowski MK, Gottumukkala S, Tolbert WD, Richard J, Smith AB, Pazgier M, Finzi A. Three families of CD4-induced antibodies are associated with the capacity of plasma from people living with HIV to mediate ADCC in presence of CD4-mimetics. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.06.02.24308281. [PMID: 38883797 PMCID: PMC11177920 DOI: 10.1101/2024.06.02.24308281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
CD4-mimetics (CD4mcs) are small molecule compounds that mimic the interaction of the CD4 receptor with HIV-1 envelope glycoproteins (Env). Env from primary viruses normally samples a "closed" conformation which occludes epitopes recognized by CD4-induced (CD4i) non-neutralizing antibodies (nnAbs). CD4mcs induce conformational changes on Env resulting in the exposure of these otherwise inaccessible epitopes. Here we evaluated the capacity of plasma from a cohort of 50 people living with HIV to recognize HIV-1-infected cells and eliminate them by antibody-dependent cellular cytotoxicity (ADCC) in the presence of a potent indoline CD4mc. We observed a marked heterogeneity among plasma samples. By measuring the levels of different families of CD4i Abs, we found that the levels of anti-cluster A, anti-coreceptor binding site and anti-gp41 cluster I antibodies are responsible for plasma-mediated ADCC in presence of CD4mc.
Collapse
Affiliation(s)
- Alexandra Tauzin
- Centre de Recherche du CHUM, Montreal, QC, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC, Canada
| | - Lorie Marchitto
- Centre de Recherche du CHUM, Montreal, QC, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC, Canada
| | - Étienne Bélanger
- Centre de Recherche du CHUM, Montreal, QC, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC, Canada
| | - Mehdi Benlarbi
- Centre de Recherche du CHUM, Montreal, QC, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC, Canada
| | - Guillaume Beaudoin-Bussières
- Centre de Recherche du CHUM, Montreal, QC, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC, Canada
| | - Jérémie Prévost
- Centre de Recherche du CHUM, Montreal, QC, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC, Canada
| | - Derek Yang
- Department of Chemistry, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA, USA
| | - Ta-Jung Chiu
- Department of Chemistry, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA, USA
| | - Hung-Ching Chen
- Department of Chemistry, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA, USA
| | | | | | - Marek K Korzeniowski
- Infectious Diseases Division, Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Suneetha Gottumukkala
- Infectious Diseases Division, Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - William D. Tolbert
- Infectious Diseases Division, Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Jonathan Richard
- Centre de Recherche du CHUM, Montreal, QC, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC, Canada
| | - Amos B Smith
- Department of Chemistry, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA, USA
| | - Marzena Pazgier
- Infectious Diseases Division, Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Andrés Finzi
- Centre de Recherche du CHUM, Montreal, QC, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC, Canada
| |
Collapse
|
5
|
Doyon-Laliberté K, Aranguren M, Chagnon-Choquet J, Batraville LA, Dagher O, Richard J, Paniconi M, Routy JP, Tremblay C, Quintal MC, Brassard N, Kaufmann DE, Finzi A, Poudrier J, Roger M. Excess BAFF May Impact HIV-1-Specific Antibodies and May Promote Polyclonal Responses Including Those from First-Line Marginal Zone B-Cell Populations. Curr Issues Mol Biol 2023; 46:25-43. [PMID: 38275663 PMCID: PMC10814910 DOI: 10.3390/cimb46010003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/07/2023] [Accepted: 12/13/2023] [Indexed: 01/27/2024] Open
Abstract
We have previously shown that blood levels of B-cell Activating Factor (BAFF) rise relatively to disease progression status in the context of HIV-1 infection. Excess BAFF was concomitant with hyperglobulinemia and the deregulation of blood B-cell populations, notably with increased frequencies of a population sharing characteristics of transitional immature and marginal zone (MZ) B-cells, which we defined as marginal zone precursor-like" (MZp). In HIV-uninfected individuals, MZp present a B-cell regulatory (Breg) profile and function, which are lost in classic-progressors. Moreover, RNASeq analyses of blood MZp from classic-progressors depict a hyperactive state and signs of exhaustion, as well as an interferon signature similar to that observed in autoimmune disorders such as Systemic Lupus Erythematosus (SLE) and Sjögren Syndrome (SS), in which excess BAFF and deregulated MZ populations have also been documented. Based on the above, we hypothesize that excess BAFF may preclude the generation of HIV-1-specific IgG responses and drive polyclonal responses, including those from MZ populations, endowed with polyreactivity/autoreactivity. As such, we show that the quantity of HIV-1-specific IgG varies with disease progression status. In vitro, excess BAFF promotes polyclonal IgM and IgG responses, including those from MZp. RNASeq analyses reveal that blood MZp from classic-progressors are prone to Ig production and preferentially make usage of IGHV genes associated with some HIV broadly neutralizing antibodies (bNAbs), but also with autoantibodies, and whose impact in the battle against HIV-1 has yet to be determined.
Collapse
Affiliation(s)
- Kim Doyon-Laliberté
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montréal, QC H2X 0A9, Canada; (K.D.-L.); (M.A.); (J.C.-C.); (L.-A.B.); (O.D.); (J.R.); (C.T.); (N.B.); (D.E.K.); (A.F.)
- Département de Microbiologie, Infectiologie et Immunologie de l‘Université de Montréal, Montréal, QC H3T 1J4, Canada;
| | - Matheus Aranguren
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montréal, QC H2X 0A9, Canada; (K.D.-L.); (M.A.); (J.C.-C.); (L.-A.B.); (O.D.); (J.R.); (C.T.); (N.B.); (D.E.K.); (A.F.)
- Département de Microbiologie, Infectiologie et Immunologie de l‘Université de Montréal, Montréal, QC H3T 1J4, Canada;
| | - Josiane Chagnon-Choquet
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montréal, QC H2X 0A9, Canada; (K.D.-L.); (M.A.); (J.C.-C.); (L.-A.B.); (O.D.); (J.R.); (C.T.); (N.B.); (D.E.K.); (A.F.)
- Département de Microbiologie, Infectiologie et Immunologie de l‘Université de Montréal, Montréal, QC H3T 1J4, Canada;
| | - Laurie-Anne Batraville
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montréal, QC H2X 0A9, Canada; (K.D.-L.); (M.A.); (J.C.-C.); (L.-A.B.); (O.D.); (J.R.); (C.T.); (N.B.); (D.E.K.); (A.F.)
- Département de Microbiologie, Infectiologie et Immunologie de l‘Université de Montréal, Montréal, QC H3T 1J4, Canada;
| | - Olina Dagher
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montréal, QC H2X 0A9, Canada; (K.D.-L.); (M.A.); (J.C.-C.); (L.-A.B.); (O.D.); (J.R.); (C.T.); (N.B.); (D.E.K.); (A.F.)
- Département de Microbiologie, Infectiologie et Immunologie de l‘Université de Montréal, Montréal, QC H3T 1J4, Canada;
| | - Jonathan Richard
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montréal, QC H2X 0A9, Canada; (K.D.-L.); (M.A.); (J.C.-C.); (L.-A.B.); (O.D.); (J.R.); (C.T.); (N.B.); (D.E.K.); (A.F.)
- Département de Microbiologie, Infectiologie et Immunologie de l‘Université de Montréal, Montréal, QC H3T 1J4, Canada;
| | - Matteo Paniconi
- Département de Microbiologie, Infectiologie et Immunologie de l‘Université de Montréal, Montréal, QC H3T 1J4, Canada;
| | - Jean-Pierre Routy
- Department of Medicine, McGill University Health Centre, McGill University, Montréal, QC H4A 3J1, Canada;
| | - Cécile Tremblay
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montréal, QC H2X 0A9, Canada; (K.D.-L.); (M.A.); (J.C.-C.); (L.-A.B.); (O.D.); (J.R.); (C.T.); (N.B.); (D.E.K.); (A.F.)
- Département de Microbiologie, Infectiologie et Immunologie de l‘Université de Montréal, Montréal, QC H3T 1J4, Canada;
| | - Marie-Claude Quintal
- Centre Hospitalier Ste-Justine de l’Université de Montréal, Montréal, QC H3T 1C5, Canada;
| | - Nathalie Brassard
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montréal, QC H2X 0A9, Canada; (K.D.-L.); (M.A.); (J.C.-C.); (L.-A.B.); (O.D.); (J.R.); (C.T.); (N.B.); (D.E.K.); (A.F.)
| | - Daniel E. Kaufmann
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montréal, QC H2X 0A9, Canada; (K.D.-L.); (M.A.); (J.C.-C.); (L.-A.B.); (O.D.); (J.R.); (C.T.); (N.B.); (D.E.K.); (A.F.)
- Département de Médecine de l‘Université de Montréal, Montréal, QC H3T 1J4, Canada
| | - Andrés Finzi
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montréal, QC H2X 0A9, Canada; (K.D.-L.); (M.A.); (J.C.-C.); (L.-A.B.); (O.D.); (J.R.); (C.T.); (N.B.); (D.E.K.); (A.F.)
- Département de Microbiologie, Infectiologie et Immunologie de l‘Université de Montréal, Montréal, QC H3T 1J4, Canada;
| | - Johanne Poudrier
- Département de Microbiologie, Infectiologie et Immunologie de l‘Université de Montréal, Montréal, QC H3T 1J4, Canada;
| | - Michel Roger
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montréal, QC H2X 0A9, Canada; (K.D.-L.); (M.A.); (J.C.-C.); (L.-A.B.); (O.D.); (J.R.); (C.T.); (N.B.); (D.E.K.); (A.F.)
- Département de Microbiologie, Infectiologie et Immunologie de l‘Université de Montréal, Montréal, QC H3T 1J4, Canada;
| |
Collapse
|
6
|
Lourenço AL, Chuo SW, Bohn MF, Hann B, Khan S, Yevalekar N, Patel N, Yang T, Xu L, Lv D, Drakas R, Lively S, Craik CS. High-throughput optofluidic screening of single B cells identifies novel cross-reactive antibodies as inhibitors of uPAR with antibody-dependent effector functions. MAbs 2023; 15:2184197. [PMID: 36859773 PMCID: PMC9988344 DOI: 10.1080/19420862.2023.2184197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023] Open
Abstract
The urokinase-type plasminogen activator receptor (uPAR) is an essential regulator for cell signaling in tumor cell proliferation, adhesion, and metastasis. The ubiquitous nature of uPAR in many aggressive cancer types makes uPAR an attractive target for immunotherapy. Here, we present a rapid and successful workflow for developing cross-reactive anti-uPAR recombinant antibodies (rAbs) using high-throughput optofluidic screening of single B-cells from human uPAR-immunized mice. A total of 80 human and cynomolgus uPAR cross-reactive plasma cells were identified, and selected mouse VH/VL domains were linked to the trastuzumab (Herceptin®) constant domains for the expression of mouse-human chimeric antibodies. The resulting rAbs were characterized by their tumor-cell recognition, binding activity, and cell adhesion inhibition on triple-negative breast cancer cells. In addition, the rAbs were shown to enact antibody-dependent cellular cytotoxicity (ADCC) in the presence of either human natural killer cells or peripheral blood mononuclear cells, and were evaluated for the potential use of uPAR-targeting antibody-drug conjugates (ADCs). Three lead antibodies (11857, 8163, and 3159) were evaluated for their therapeutic efficacy in vivo and were shown to suppress tumor growth. Finally, the binding epitopes of the lead antibodies were characterized, providing information on their unique binding modes to uPAR. Altogether, the strategy identified unique cross-reactive antibodies with ADCC, ADC, and functional inhibitory effects by targeting cell-surface uPAR, that can be tested in safety studies and serve as potential immunotherapeutics.
Collapse
Affiliation(s)
- André Luiz Lourenço
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California, USA
| | - Shih-Wei Chuo
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California, USA
| | - Markus F Bohn
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California, USA
| | - Byron Hann
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California, USA
| | - Shireen Khan
- ChemPartner, South San Francisco, California, USA
| | | | - Nitin Patel
- ChemPartner, South San Francisco, California, USA
| | - Teddy Yang
- Shanghai ChemPartner Co Ltd, Shanghai, China
| | - Lina Xu
- Shanghai ChemPartner Co Ltd, Shanghai, China
| | - Dandan Lv
- Shanghai ChemPartner Co Ltd, Shanghai, China
| | - Robert Drakas
- ShangPharma Innovation Inc, South San Francisco, California, USA
| | - Sarah Lively
- ChemPartner, South San Francisco, California, USA
| | - Charles S Craik
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California, USA.,Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California, USA
| |
Collapse
|
7
|
Beaudoin-Bussières G, Chen Y, Ullah I, Prévost J, Tolbert WD, Symmes K, Ding S, Benlarbi M, Gong SY, Tauzin A, Gasser R, Chatterjee D, Vézina D, Goyette G, Richard J, Zhou F, Stamatatos L, McGuire AT, Charest H, Roger M, Pozharski E, Kumar P, Mothes W, Uchil PD, Pazgier M, Finzi A. A Fc-enhanced NTD-binding non-neutralizing antibody delays virus spread and synergizes with a nAb to protect mice from lethal SARS-CoV-2 infection. Cell Rep 2022; 38:110368. [PMID: 35123652 PMCID: PMC8786652 DOI: 10.1016/j.celrep.2022.110368] [Citation(s) in RCA: 78] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 12/16/2021] [Accepted: 01/20/2022] [Indexed: 11/29/2022] Open
Abstract
Emerging evidence indicates that both neutralizing and Fc-mediated effector functions of antibodies contribute to protection against SARS-CoV-2. It is unclear whether Fc-effector functions alone can protect against SARS-CoV-2. Here, we isolated CV3-13, a non-neutralizing antibody, from a convalescent individual with potent Fc-mediated effector functions. The cryoelectron microscopy structure of CV3-13 in complex with the SARS-CoV-2 spike reveals that the antibody binds from a distinct angle of approach to an N-terminal domain (NTD) epitope that only partially overlaps with the NTD supersite recognized by neutralizing antibodies. CV3-13 does not alter the replication dynamics of SARS-CoV-2 in K18-hACE2 mice, but its Fc-enhanced version significantly delays virus spread, neuroinvasion, and death in prophylactic settings. Interestingly, the combination of Fc-enhanced non-neutralizing CV3-13 with Fc-compromised neutralizing CV3-25 completely protects mice from lethal SARS-CoV-2 infection. Altogether, our data demonstrate that efficient Fc-mediated effector functions can potently contribute to the in vivo efficacy of anti-SARS-CoV-2 antibodies.
Collapse
Affiliation(s)
- Guillaume Beaudoin-Bussières
- Centre de recherche du CHUM, Montreal, QC H2X 0A9, Canada; Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC H2X 0A9, Canada
| | - Yaozong Chen
- Infectious Disease Division, Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814-4712, USA
| | - Irfan Ullah
- Department of Internal Medicine, Section of Infectious Diseases, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Jérémie Prévost
- Centre de recherche du CHUM, Montreal, QC H2X 0A9, Canada; Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC H2X 0A9, Canada
| | - William D Tolbert
- Infectious Disease Division, Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814-4712, USA
| | - Kelly Symmes
- Department of Internal Medicine, Section of Infectious Diseases, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Shilei Ding
- Centre de recherche du CHUM, Montreal, QC H2X 0A9, Canada
| | - Mehdi Benlarbi
- Centre de recherche du CHUM, Montreal, QC H2X 0A9, Canada
| | - Shang Yu Gong
- Centre de recherche du CHUM, Montreal, QC H2X 0A9, Canada; Department of Microbiology and Immunology, McGill University, Montreal, QC H3A 2B4, Canada
| | - Alexandra Tauzin
- Centre de recherche du CHUM, Montreal, QC H2X 0A9, Canada; Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC H2X 0A9, Canada
| | - Romain Gasser
- Centre de recherche du CHUM, Montreal, QC H2X 0A9, Canada; Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC H2X 0A9, Canada
| | | | - Dani Vézina
- Centre de recherche du CHUM, Montreal, QC H2X 0A9, Canada
| | | | - Jonathan Richard
- Centre de recherche du CHUM, Montreal, QC H2X 0A9, Canada; Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC H2X 0A9, Canada
| | - Fei Zhou
- Division of Basic and Translational Biophysics, Unit on Structural Biology, NICHD, NIH, Bethesda, MD 20892, USA
| | - Leonidas Stamatatos
- Vaccine and Infectious Disease Division, Fred Hutchinson Center, Seattle, WA 98195, USA; Department of Global Health, University of Washington, Seattle, WA 98195, USA
| | - Andrew T McGuire
- Vaccine and Infectious Disease Division, Fred Hutchinson Center, Seattle, WA 98195, USA; Department of Global Health, University of Washington, Seattle, WA 98195, USA; Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA
| | - Hughes Charest
- Laboratoire de Santé Publique du Québec, Institut national de santé publique du Québec, Sainte-Anne-de-Bellevue, QC H9X 3R5, Canada
| | - Michel Roger
- Centre de recherche du CHUM, Montreal, QC H2X 0A9, Canada; Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC H2X 0A9, Canada; Laboratoire de Santé Publique du Québec, Institut national de santé publique du Québec, Sainte-Anne-de-Bellevue, QC H9X 3R5, Canada
| | - Edwin Pozharski
- University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, MD 20850, USA; Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Priti Kumar
- Department of Internal Medicine, Section of Infectious Diseases, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Walther Mothes
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Pradeep D Uchil
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT 06510, USA.
| | - Marzena Pazgier
- Infectious Disease Division, Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814-4712, USA.
| | - Andrés Finzi
- Centre de recherche du CHUM, Montreal, QC H2X 0A9, Canada; Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC H2X 0A9, Canada; Department of Microbiology and Immunology, McGill University, Montreal, QC H3A 2B4, Canada.
| |
Collapse
|
8
|
Immunotherapy with Cell-Based Biological Drugs to Cure HIV-1 Infection. Cells 2021; 11:cells11010077. [PMID: 35011639 PMCID: PMC8750418 DOI: 10.3390/cells11010077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 12/21/2021] [Accepted: 12/25/2021] [Indexed: 11/17/2022] Open
Abstract
Since its discovery 35 years ago, there have been no therapeutic interventions shown to enable full HIV-1 remission. Combined antiretroviral therapy (cART) has achieved the sustained control of HIV-1 replication, however, the life-long treatment does not eradicate long-lived latently infected reservoirs and can result in multiple side effects including the development of multidrug-resistant escape mutants. Antibody-based treatments have emerged as alternative approaches for a HIV-1 cure. Here, we will review clinical advances in coreceptor-targeting antibodies, with respect to anti-CCR5 antibodies in particular, which are currently being generated to target the early stages of infection. Among the Env-specific antibodies widely accepted as relevant in cure strategies, the potential role of those targeting CD4-induced (CD4i) epitopes of the CD4-binding site (CD4bs) in eliminating HIV-1 infected cells has gained increasing interest and will be presented. Together, with approaches targeting the HIV-1 replication cycle, we will discuss the strategies aimed at boosting and modulating specific HIV-1 immune responses, highlighting the harnessing of TLR agonists for their dual role as latency reverting agents (LRAs) and immune-modulatory compounds. The synergistic combinations of different approaches have shown promising results to ultimately enable a HIV-1 cure.
Collapse
|
9
|
Across Functional Boundaries: Making Nonneutralizing Antibodies To Neutralize HIV-1 and Mediate Fc-Mediated Effector Killing of Infected Cells. mBio 2021; 12:e0140521. [PMID: 34579568 PMCID: PMC8546553 DOI: 10.1128/mbio.01405-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
In HIV-1 infection, many antibodies (Abs) are elicited to Envelope (Env) epitopes that are conformationally masked in the native trimer and are only available for antibody recognition after the trimer binds host cell CD4. Among these are epitopes within the Co-Receptor Binding Site (CoRBS) and the constant region 1 and 2 (C1-C2 or cluster A region). In particular, C1-C2 epitopes map to the gp120 face interacting with gp41 in the native, "closed" Env trimer present on HIV-1 virions or expressed on HIV-1-infected cells. Antibodies targeting this region are therefore nonneutralizing and their potential as mediators of antibody-dependent cellular cytotoxicity (ADCC) of HIV-1-infected cells diminished by a lack of available binding targets. Here, we present the design of Ab-CD4 chimeric proteins that consist of the Ab-IgG1 of a CoRBS or cluster A specificity to the extracellular domains 1 and 2 of human CD4. Our Ab-CD4 hybrids induce potent ADCC against infected primary CD4+ T cells and neutralize tier 1 and 2 HIV-1 viruses. Furthermore, competition binding experiments reveal that the observed biological activities rely on both the antibody and CD4 moieties, confirming their cooperativity in triggering conformational rearrangements of Env. Our data indicate the utility of these Ab-CD4 hybrids as antibody therapeutics that are effective in eliminating HIV-1 through the combined mechanisms of neutralization and ADCC. This is also the first report of single-chain-Ab-based molecules capable of opening "closed" Env trimers on HIV-1 particles/infected cells to expose the cluster A region and activate ADCC and neutralization against these nonneutralizing targets. IMPORTANCE Highly conserved epitopes within the coreceptor binding site (CoRBS) and constant region 1 and 2 (C1-C2 or cluster A) are only available for antibody recognition after the HIV-1 Env trimer binds host cell CD4; therefore, they are not accessible on virions and infected cells, where the expression of CD4 is downregulated. Here, we have developed new antibody fusion molecules in which domains 1 and 2 of soluble human CD4 are linked with monoclonal antibodies of either the CoRBS or cluster A specificity. We optimized the conjugation sites and linker lengths to allow each of these novel bispecific fusion molecules to recognize native "closed" Env trimers and induce the structural rearrangements required for exposure of the epitopes for antibody binding. Our in vitro functional testing shows that our Ab-CD4 molecules can efficiently target and eliminate HIV-1-infected cells through antibody-dependent cellular cytotoxicity and inactivate HIV-1 virus through neutralization.
Collapse
|
10
|
Sherburn R, Tolbert WD, Gottumukkala S, Hederman AP, Beaudoin-Bussières G, Stanfield-Oakley S, Tuyishime M, Ferrari G, Finzi A, Ackerman ME, Pazgier M. Incorporating the Cluster A and V1V2 Targets into a Minimal Structural Unit of the HIV-1 Envelope to Elicit a Cross-Clade Response with Potent Fc-Effector Functions. Vaccines (Basel) 2021; 9:vaccines9090975. [PMID: 34579212 PMCID: PMC8472903 DOI: 10.3390/vaccines9090975] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/19/2021] [Accepted: 08/24/2021] [Indexed: 12/01/2022] Open
Abstract
The generation of a potent vaccine for the prevention and/or control of HIV-1 has been unsuccessful to date, despite decades of research. Existing evidence from both infected individuals and clinical trials support a role for non-neutralizing or weakly neutralizing antibodies with potent Fc-effector functions in the prevention and control of HIV-1 infection. Vaccination strategies that induce such antibodies have proven partially successful in preventing HIV-1 infection. This is largely thought to be due to the polyclonal response that is induced in a vaccine setting, as opposed to the infusion of a single therapeutic antibody, which is capable of diverse Fc-effector functions and targets multiple but highly conserved epitopes. Here, we build on the success of our inner domain antigen, ID2, which incorporates conformational CD4-inducible (CD4i) epitopes of constant region 1 and 2 (C1C2 or Cluster A), in the absence of neutralizing antibody epitopes, into a minimal structural unit of gp120. ID2 has been shown to induce Cluster A-specific antibodies in a BALB/c mouse model with Fc-effector functions against CD4i targets. In order to generate an immunogen that incorporates both epitope targets implicated in the protective Fc-effector functions of antibodies from the only partially successful human vaccine trial, RV144, we incorporated the V1V2 domain into our ID2 antigen generating ID2-V1V2, which we used to immunize in combination with ID2. Immunized BALB/c mice generated both Cluster A- and V1V2-specific antibodies, which synergized to significantly improve the Fc-mediated effector functions compared to mice immunized with ID2 alone. The sera were able to mediate both antibody-dependent cellular cytotoxicity (ADCC) and antibody-dependent cellular phagocytosis (ADCP). We therefore conclude that ID2-V1V2 + ID2 represents a promising vaccine immunogen candidate for the induction of antibodies with optimal Fc-mediated effector functions against HIV-1.
Collapse
Affiliation(s)
- Rebekah Sherburn
- Infectious Diseases Division, Department of Medicine of Uniformed Services, University of the Health Sciences, Bethesda, MD 20814, USA; (R.S.); (W.D.T.); (S.G.)
| | - William D. Tolbert
- Infectious Diseases Division, Department of Medicine of Uniformed Services, University of the Health Sciences, Bethesda, MD 20814, USA; (R.S.); (W.D.T.); (S.G.)
| | - Suneetha Gottumukkala
- Infectious Diseases Division, Department of Medicine of Uniformed Services, University of the Health Sciences, Bethesda, MD 20814, USA; (R.S.); (W.D.T.); (S.G.)
| | - Andrew P. Hederman
- Thayer School of Engineering, Dartmouth College, Hanover, NH 03755, USA; (A.P.H.); (M.E.A.)
| | - Guillaume Beaudoin-Bussières
- Centre de Recherche du CHUM, Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC H2X0A9, Canada; (G.B.-B.); (A.F.)
| | - Sherry Stanfield-Oakley
- Department of Medicine, Duke School of Medicine, Durham, NC 27710, USA; (S.S.-O.); (M.T.); (G.F.)
| | - Marina Tuyishime
- Department of Medicine, Duke School of Medicine, Durham, NC 27710, USA; (S.S.-O.); (M.T.); (G.F.)
| | - Guido Ferrari
- Department of Medicine, Duke School of Medicine, Durham, NC 27710, USA; (S.S.-O.); (M.T.); (G.F.)
| | - Andrés Finzi
- Centre de Recherche du CHUM, Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC H2X0A9, Canada; (G.B.-B.); (A.F.)
| | - Margaret E. Ackerman
- Thayer School of Engineering, Dartmouth College, Hanover, NH 03755, USA; (A.P.H.); (M.E.A.)
| | - Marzena Pazgier
- Infectious Diseases Division, Department of Medicine of Uniformed Services, University of the Health Sciences, Bethesda, MD 20814, USA; (R.S.); (W.D.T.); (S.G.)
- Correspondence:
| |
Collapse
|
11
|
Md Zahid H, Kuwata T, Takahama S, Kaku Y, Biswas S, Matsumoto K, Tamamura H, Matsushita S. Functional analysis of a monoclonal antibody reactive against the C1C2 of Env obtained from a patient infected with HIV-1 CRF02_AG. Retrovirology 2021; 18:23. [PMID: 34419098 PMCID: PMC8379604 DOI: 10.1186/s12977-021-00568-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 08/09/2021] [Indexed: 11/23/2022] Open
Abstract
Background Recent data suggest the importance of non-neutralizing antibodies (nnAbs) in the development of vaccines against HIV-1 because two types of nnAbs that recognize the coreceptor binding site (CoRBS) and the C1C2 region mediate antibody-dependent cellular-cytotoxicity (ADCC) against HIV-1-infected cells. However, many studies have been conducted with nnAbs obtained from subtype B-infected individuals, with few studies in patients with non-subtype B infections. Results We isolated a monoclonal antibody 1E5 from a CRF02_AG-infected individual and constructed two forms of antibody with constant regions of IgG1 or IgG3. The epitope of 1E5 belongs to the C1C2 of gp120, and 1E5 binds to 27 out of 35 strains (77 %) across the subtypes. The 1E5 showed strong ADCC activity, especially in the form of IgG3 in the presence of small CD4-mimetic compounds (CD4mc) and 4E9C (anti-CoRBS antibody), but did not show any neutralizing activity even against the isolates with strong binding activities. The enhancement in the binding of A32, anti-C1C2 antibody isolated from a patient with subtype B infection, was observed in the presence of 1E5 and the combination of 1E5, A32 and 4E9C mediated a strong ADCC activity. Conclusions These results suggest that anti-C1C2 antibodies that are induced in patients with different HIV-1 subtype infections have common functional modality and may have unexpected interactions. These data may have implications for vaccine development against HIV-1. Graphical abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s12977-021-00568-y.
Collapse
Affiliation(s)
- Hasan Md Zahid
- Division of Clinical Retrovirology, Joint Research Center for Human Retrovirus infection, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto, 860-0811, Japan
| | - Takeo Kuwata
- Division of Clinical Retrovirology, Joint Research Center for Human Retrovirus infection, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto, 860-0811, Japan
| | - Shokichi Takahama
- Division of Clinical Retrovirology, Joint Research Center for Human Retrovirus infection, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto, 860-0811, Japan.,Laboratory of Immunosenescence, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan
| | - Yu Kaku
- Division of Clinical Retrovirology, Joint Research Center for Human Retrovirus infection, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto, 860-0811, Japan
| | - Shashwata Biswas
- Division of Clinical Retrovirology, Joint Research Center for Human Retrovirus infection, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto, 860-0811, Japan
| | - Kaho Matsumoto
- Division of Clinical Retrovirology, Joint Research Center for Human Retrovirus infection, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto, 860-0811, Japan
| | - Hirokazu Tamamura
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Tokyo, Japan
| | - Shuzo Matsushita
- Division of Clinical Retrovirology, Joint Research Center for Human Retrovirus infection, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto, 860-0811, Japan.
| |
Collapse
|
12
|
Abstract
PURPOSE OF REVIEW Recent work defining Fc-mediated effector functions for both viral control and protection against infection is summarized and considered along with new strategies to drive robust Fc-mediated responses. RECENT FINDINGS In new human and nonhuman primate (NHP) vaccine trials as well as studies of natural infection, Fc-mediated effector responses have sometimes been observed to correlate with decreased risk of infection or with better clinical outcomes, suggesting a potential role for these responses in HIV-1 prevention and therapy. Recent highlights include use of antibody-dependent cellular cytotoxicity-sensitizing CD4-induced mimetic compounds, novel V1V2 immunogens, passive transfer studies, and vaccine regimens that successfully elicited Fc-mediated responses and were reported to decrease risk of infection in challenge studies in NHPs. Lastly, detailed studies of IgG3 forms of HIV-specific antibodies have reported that both neutralizing and Fc-mediated responses can be increased relative to the more prevalent IgG1 subclass. SUMMARY Successful harmonization of neutralizing and Fc-mediated responses may make key contributions to the goal of reducing HIV-1 infection via active and passive vaccination. New studies continue to highlight the importance of Fc-mediated antibody responses as correlates of decreased risk of infection and suggest enhanced phagocytosis is a potential mechanism of reduced risk of infection associated with human IgG3 responses. Results from recent studies may help guide the rational design of therapies and vaccines that aim to specifically leverage antibody effector function.
Collapse
|
13
|
Khrustalev VV. The PentaFOLD 3.0 Algorithm for the Selection of Stable Elements of Secondary Structure to be Included in Vaccine Peptides. Protein Pept Lett 2021; 28:573-588. [PMID: 33172366 DOI: 10.2174/0929866527666201110123851] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 10/18/2020] [Accepted: 10/19/2020] [Indexed: 12/18/2022]
Abstract
AIMS The aim of this study was to create a new version of the PentaFOLD algorithm and to test its performance experimentally in several proteins and peptides. BACKGROUND Synthetic vaccines can cause production of neutralizing antibodies only in case if short peptides form the same secondary structure as fragments of full-length proteins. The Penta- FOLD 3.0 algorithm was designed to check stability of alpha helices, beta strands, and random coils using several propensity scales obtained during analysis of 1730 3D structures of proteins. OBJECTIVE The algorithm has been tested in the three peptides known to keep the secondary structure of the corresponding fragments of full-length proteins: the NY25 peptide from the Influenza H1N1 hemagglutinin, the SF23 peptide from the diphtheria toxin, the NQ21 peptide from the HIV1 gp120; as well as in the CC36 peptide from the human major prion protein. METHODS Affine chromatography for antibodies against peptides accompanied by circular dichroism and fluorescence spectroscopy were used to check the predictions of the algorithm. RESULTS Immunological experiments showed that all abovementioned peptides are more or less immunogenic in rabbits. The fact that antibodies against the NY25, the SF23, and the NQ21 form stable complexes with corresponding full-length proteins has been confirmed by affine chromatography. The surface of SARS CoV-2 spike receptor-binding domain interacting with hACE2 has been shown to be unstable according to the results of the PentaFOLD 3.0. CONCLUSION The PentaFOLD 3.0 algorithm (http://chemres.bsmu.by/PentaFOLD30.htm) can be used with the aim to design vaccine peptides with stable secondary structure elements.
Collapse
|
14
|
Hu Y, Li D, Fu H, Hao Y, Ren L, Wang S, Hu X, Shao Y, Hong K, Wang Z. Identification of a CD4-binding site-directed antibody with ADCC activity from a chronic HIV-1B'-infected Chinese donor. Virus Res 2021; 302:198470. [PMID: 34097932 DOI: 10.1016/j.virusres.2021.198470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 05/25/2021] [Accepted: 05/26/2021] [Indexed: 11/19/2022]
Abstract
Antibody-dependent cell-mediated cytotoxicity (ADCC) plays an important role in controlling HIV-1 invasion and replication in vivo. Isolation and identification of monoclonal antibodies (mAbs) with ADCC activity help design effective vaccines and develop novel treatment strategies. In this study, we first identified a broad neutralizer who had been infected with an HIV-1B' strain for over 10 years. Next, through probe-specific single-B-cell sorting and PCR amplification, we obtained genes for variable regions of the heavy chain (VHs) and light chain (VLs) of six antibodies and ligated them into expression vectors. After antibody expression and ELISA screening, we obtained a CD4-binding site-directed antibody (451-B4), whose VH and VL originated from the IGHV1-24 and IGLV1-40 germlines, respectively. Although 451-B4 neutralized only the SF162 tier 1 pseudovirus and 398F1 tier 2 pseudovirus, it could mediate comparable ADCC activity to a broadly neutralizing antibody, VRC01. The 451-B4 antibody will be a useful candidate for developing an ADCC-based treatment strategy against HIV-1 replication or latent infection in vivo.
Collapse
Affiliation(s)
- Yuanyuan Hu
- State Key Laboratory of Infectious Disease Prevention and Control, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, 155 Changbai Road, Changping District, Beijing 102206, China; Division of Research of Virology and Immunology, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, 155 Changbai Road, Changping District, Beijing 102206, China
| | - Dan Li
- State Key Laboratory of Infectious Disease Prevention and Control, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, 155 Changbai Road, Changping District, Beijing 102206, China; Division of Research of Virology and Immunology, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, 155 Changbai Road, Changping District, Beijing 102206, China
| | - Hongyang Fu
- State Key Laboratory of Infectious Disease Prevention and Control, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, 155 Changbai Road, Changping District, Beijing 102206, China; Division of Research of Virology and Immunology, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, 155 Changbai Road, Changping District, Beijing 102206, China
| | - Yanling Hao
- State Key Laboratory of Infectious Disease Prevention and Control, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, 155 Changbai Road, Changping District, Beijing 102206, China; Division of Research of Virology and Immunology, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, 155 Changbai Road, Changping District, Beijing 102206, China
| | - Li Ren
- State Key Laboratory of Infectious Disease Prevention and Control, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, 155 Changbai Road, Changping District, Beijing 102206, China; Division of Research of Virology and Immunology, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, 155 Changbai Road, Changping District, Beijing 102206, China
| | - Shuo Wang
- State Key Laboratory of Infectious Disease Prevention and Control, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, 155 Changbai Road, Changping District, Beijing 102206, China; Division of Research of Virology and Immunology, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, 155 Changbai Road, Changping District, Beijing 102206, China
| | - Xintao Hu
- Present address: Human Retrovirus Pathogenesis Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Yiming Shao
- State Key Laboratory of Infectious Disease Prevention and Control, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, 155 Changbai Road, Changping District, Beijing 102206, China; Division of Research of Virology and Immunology, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, 155 Changbai Road, Changping District, Beijing 102206, China
| | - Kunxue Hong
- State Key Laboratory of Infectious Disease Prevention and Control, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, 155 Changbai Road, Changping District, Beijing 102206, China; Division of Research of Virology and Immunology, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, 155 Changbai Road, Changping District, Beijing 102206, China
| | - Zheng Wang
- State Key Laboratory of Infectious Disease Prevention and Control, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, 155 Changbai Road, Changping District, Beijing 102206, China; Division of Research of Virology and Immunology, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, 155 Changbai Road, Changping District, Beijing 102206, China.
| |
Collapse
|
15
|
Rajashekar JK, Richard J, Beloor J, Prévost J, Anand SP, Beaudoin-Bussières G, Shan L, Herndler-Brandstetter D, Gendron-Lepage G, Medjahed H, Bourassa C, Gaudette F, Ullah I, Symmes K, Peric A, Lindemuth E, Bibollet-Ruche F, Park J, Chen HC, Kaufmann DE, Hahn BH, Sodroski J, Pazgier M, Flavell RA, Smith AB, Finzi A, Kumar P. Modulating HIV-1 envelope glycoprotein conformation to decrease the HIV-1 reservoir. Cell Host Microbe 2021; 29:904-916.e6. [PMID: 34019804 PMCID: PMC8214472 DOI: 10.1016/j.chom.2021.04.014] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 02/01/2021] [Accepted: 04/20/2021] [Indexed: 11/21/2022]
Abstract
Small CD4-mimetic compounds (CD4mc) sensitize HIV-1-infected cells to antibody-dependent cellular cytotoxicity (ADCC) by facilitating antibody recognition of epitopes that are otherwise occluded on the unliganded viral envelope (Env). Combining CD4mc with two families of CD4-induced (CD4i) antibodies, which are frequently found in plasma of HIV-1-infected individuals, stabilizes Env in a conformation that is vulnerable to ADCC. We employed new-generation SRG-15 humanized mice, supporting natural killer (NK) cell and Fc-effector functions to demonstrate that brief treatment with CD4mc and CD4i-Abs significantly decreases HIV-1 replication, the virus reservoir and viral rebound after ART interruption. These effects required Fc-effector functions and NK cells, highlighting the importance of ADCC. Viral rebound was also suppressed in HIV-1+-donor cell-derived humanized mice supplemented with autologous HIV-1+-donor-derived plasma and CD4mc. These results indicate that CD4mc could have therapeutic utility in infected individuals for decreasing the size of the HIV-1 reservoir and/or achieving a functional cure.
Collapse
Affiliation(s)
- Jyothi K Rajashekar
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Jonathan Richard
- Centre de Recherche du CHUM, Montreal, QC, Canada; Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, Canada
| | - Jagadish Beloor
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Jérémie Prévost
- Centre de Recherche du CHUM, Montreal, QC, Canada; Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, Canada
| | - Sai Priya Anand
- Centre de Recherche du CHUM, Montreal, QC, Canada; Department of Microbiology and Immunology, McGill University Montreal, Montreal, QC, Canada
| | - Guillaume Beaudoin-Bussières
- Centre de Recherche du CHUM, Montreal, QC, Canada; Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, Canada
| | - Liang Shan
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | | | | | | | | | | | - Irfan Ullah
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Kelly Symmes
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Andrew Peric
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Emily Lindemuth
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Frederic Bibollet-Ruche
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jun Park
- Department of Chemistry, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA, USA
| | - Hung-Ching Chen
- Department of Chemistry, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA, USA
| | - Daniel E Kaufmann
- Centre de Recherche du CHUM, Montreal, QC, Canada; Department of Medicine, Université de Montréal, Montreal, QC, Canada
| | - Beatrice H Hahn
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Joseph Sodroski
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, and Department of Microbiology and Immunobiology, Division of AIDS, Harvard Medical School, Boston, MA, USA; Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, MA, USA
| | - Marzena Pazgier
- Infectious Diseases Division, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Richard A Flavell
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA.
| | - Amos B Smith
- Department of Chemistry, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA, USA.
| | - Andrés Finzi
- Centre de Recherche du CHUM, Montreal, QC, Canada; Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, Canada; Department of Microbiology and Immunology, McGill University Montreal, Montreal, QC, Canada.
| | - Priti Kumar
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
16
|
Abstract
The HIV-1 envelope glycoprotein (Env) trimer [(gp120/gp41)3] is a metastable complex expressed at the surface of viral particles and infected cells that samples different conformations. Before engaging CD4, Env adopts an antibody-resistant "closed" conformation (State 1). CD4 binding triggers an intermediate conformation (State 2) and then a more "open" conformation (State 3) that can be recognized by non-neutralizing antibodies (nnAbs) such as those that recognize the coreceptor binding site (CoRBS). Binding of antibodies to the CoRBS permits another family of nnAbs, the anti-cluster A family of Abs which target the gp120 inner domain, to bind and stabilize an asymmetric conformation (State 2A). Cells expressing Env in this conformation are susceptible to antibody-dependent cellular cytotoxicity (ADCC). This conformation can be stabilized by small-molecule CD4 mimetics (CD4mc) or soluble CD4 (sCD4) in combination with anti-CoRBS Ab and anti-cluster A antibodies. The precise stoichiometry of each component that permits this sequential opening of Env remains unknown. Here, we used a cell-based ELISA (CBE) assay to evaluate each component individually. In this assay we used a "trimer mixing" approach by combining wild-type (wt) subunits with subunits impaired for CD4 or CoRBS Ab binding. This enabled us to show that State 2A requires all three gp120 subunits to be bound by sCD4/CD4mc and anti-CoRBS Abs. Two of these subunits can then bind anti-cluster A Abs. Altogether, our data suggests how this antibody vulnerable Env conformation is stabilized.Importance Stabilization of HIV-1 Env State 2A has been shown to sensitize infected cells to ADCC. State 2A can be stabilized by a "cocktail" composed of CD4mc, anti-CoRBS and anti-cluster A Abs. We present evidence that optimal State 2A stabilization requires all three gp120 subunits to be bound by both CD4mc and anti-CoRBS Abs. Our study provides valuable information on how to stabilize this ADCC-vulnerable conformation. Strategies aimed at stabilizing State 2A might have therapeutic utility.
Collapse
|
17
|
Immune Complex Vaccine Strategies to Combat HIV-1 and Other Infectious Diseases. Vaccines (Basel) 2021; 9:vaccines9020112. [PMID: 33540685 PMCID: PMC7913084 DOI: 10.3390/vaccines9020112] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 01/22/2021] [Accepted: 01/27/2021] [Indexed: 01/16/2023] Open
Abstract
Immune complexes (ICs) made of antibody-bound antigens exhibit immunomodulatory activities exploitable in a vaccination strategy to optimize vaccine efficacy. The modulatory effects of ICs are typically attributed to the Fc fragments of the antibody components, which engage Fc receptors, complement and complement receptors on various immune cells. These Fc-mediated functions facilitate the critical interplay between innate and adaptive immune systems to impact the quality and quantity of the elicited adaptive responses. In addition to the Fc contribution, the Fab fragment also plays an immunoregulation role. The antigen-binding domains of the Fab fragment can bind their specific epitopes at high affinity to sterically occlude these antigenic sites from recognition by other antibodies. Moreover, the Fab-mediated binding has been demonstrated to induce allosteric alterations at nearby or distant antigenic sites. In this review article, we survey published studies to illuminate how the immunomodulatory functions of ICs have been investigated or utilized in a vaccination strategy to fight against an array of infectious pathogens, culminating with IC vaccine designs aimed at preventing HIV-1 infection. In particular, we highlight IC vaccine candidates that exploit Fab-mediated steric and allosteric effects to direct antibody responses away or toward the V1V2 domain, the V3 loop, and other antigenic sites on the HIV-1 envelope gp120 glycoprotein. Like other HIV-1 vaccine approaches, the path for IC-based vaccines to reach the clinic faces major hurdles yet to be overcome; however, investigations into this vaccine strategy have provided insights into the multifaceted activities of antibodies beyond their conventional roles in the host defense against HIV-1 and other microbial pathogens.
Collapse
|
18
|
Sherburn R, Tolbert WD, Gottumukkala S, Beaudoin-Bussières G, Finzi A, Pazgier M. Effects of gp120 Inner Domain (ID2) Immunogen Doses on Elicitation of Anti-HIV-1 Functional Fc-Effector Response to C1/C2 (Cluster A) Epitopes in Mice. Microorganisms 2020; 8:microorganisms8101490. [PMID: 32998443 PMCID: PMC7650682 DOI: 10.3390/microorganisms8101490] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 09/21/2020] [Accepted: 09/23/2020] [Indexed: 01/13/2023] Open
Abstract
Fc-mediated effector functions of antibodies, including antibody-dependent cytotoxicity (ADCC), have been shown to contribute to vaccine-induced protection from HIV-1 infection, especially those directed against non-neutralizing, CD4 inducible (CD4i) epitopes within the gp120 constant 1 and 2 regions (C1/C2 or Cluster A epitopes). However, recent passive immunization studies have not been able to definitively confirm roles for these antibodies in HIV-1 prevention mostly due to the complications of cross-species Fc–FcR interactions and suboptimal dosing strategies. Here, we use our stabilized gp120 Inner domain (ID2) immunogen that displays the Cluster A epitopes within a minimal structural unit of HIV-1 Env to investigate an immunization protocol that induces a fine-tuned antibody repertoire capable of an effective Fc-effector response. This includes the generation of isotypes and the enhanced antibody specificity known to be vital for maximal Fc-effector activities, while minimizing the induction of isotypes know to be detrimental for these functions. Although our studies were done in in BALB/c mice we conclude that when optimally titrated for the species of interest, ID2 with GLA-SE adjuvant will elicit high titers of antibodies targeting the Cluster A region with potent Fc-mediated effector functions, making it a valuable immunogen candidate for testing an exclusive role of non-neutralizing antibody response in HIV-1 protection in vaccine settings.
Collapse
Affiliation(s)
- Rebekah Sherburn
- Infectious Disease Division, Department of Medicine of Uniformed Services University of the Health Sciences, Bethesda, MD 20814-4712, USA; (R.S.); (W.D.T.); (S.G.)
| | - William D. Tolbert
- Infectious Disease Division, Department of Medicine of Uniformed Services University of the Health Sciences, Bethesda, MD 20814-4712, USA; (R.S.); (W.D.T.); (S.G.)
| | - Suneetha Gottumukkala
- Infectious Disease Division, Department of Medicine of Uniformed Services University of the Health Sciences, Bethesda, MD 20814-4712, USA; (R.S.); (W.D.T.); (S.G.)
| | | | - Andrés Finzi
- Centre de Recherche du CHUM, Montreal, QC H2X 0A9, Canada; (G.B.-B.); (A.F.)
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC H3C 3J7, Canada
- Department of Microbiology and Immunology, McGill University, Montreal, QC H3A 2B4, Canada
| | - Marzena Pazgier
- Infectious Disease Division, Department of Medicine of Uniformed Services University of the Health Sciences, Bethesda, MD 20814-4712, USA; (R.S.); (W.D.T.); (S.G.)
- Correspondence: ; Tel.: +301-295-3291; Fax: +301-295-355
| |
Collapse
|
19
|
Tolbert WD, Sherburn R, Gohain N, Ding S, Flinko R, Orlandi C, Ray K, Finzi A, Lewis GK, Pazgier M. Defining rules governing recognition and Fc-mediated effector functions to the HIV-1 co-receptor binding site. BMC Biol 2020; 18:91. [PMID: 32693837 PMCID: PMC7374964 DOI: 10.1186/s12915-020-00819-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 06/22/2020] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND The binding of HIV-1 Envelope glycoproteins (Env) to host receptor CD4 exposes vulnerable conserved epitopes within the co-receptor binding site (CoRBS) which are required for the engagement of either CCR5 or CXCR4 co-receptor to allow HIV-1 entry. Antibodies against this region have been implicated in the protection against HIV acquisition in non-human primate (NHP) challenge studies and found to act synergistically with antibodies of other specificities to deliver effective Fc-mediated effector function against HIV-1-infected cells. Here, we describe the structure and function of N12-i2, an antibody isolated from an HIV-1-infected individual, and show how the unique structural features of this antibody allow for its effective Env recognition and Fc-mediated effector function. RESULTS N12-i2 binds within the CoRBS utilizing two adjacent sulfo-tyrosines (TYS) for binding, one of which binds to a previously unknown TYS binding pocket formed by gp120 residues of high sequence conservation among HIV-1 strains. Structural alignment with gp120 in complex with the co-receptor CCR5 indicates that the new pocket corresponds to TYS at position 15 of CCR5. In addition, structure-function analysis of N12-i2 and other CoRBS-specific antibodies indicates a link between modes of antibody binding within the CoRBS and Fc-mediated effector activities. The efficiency of antibody-dependent cellular cytotoxicity (ADCC) correlated with both the level of antibody binding and the mode of antibody attachment to the epitope region, specifically with the way the Fc region was oriented relative to the target cell surface. Antibodies with poor Fc access mediated the poorest ADCC whereas those with their Fc region readily accessible for interaction with effector cells mediated the most potent ADCC. CONCLUSION Our data identify a previously unknown binding site for TYS within the assembled CoRBS of the HIV-1 virus. In addition, our combined structural-modeling-functional analyses provide new insights into mechanisms of Fc-effector function of antibodies against HIV-1, in particular, how antibody binding to Env antigen affects the efficiency of ADCC response.
Collapse
Affiliation(s)
- William D Tolbert
- Infectious Disease Division, Department of Medicine, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD, 20814-4712, USA
- Division of Vaccine Research of Institute of Human Virology, University of Maryland School of Medicine, Baltimore, USA
| | - Rebekah Sherburn
- Infectious Disease Division, Department of Medicine, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD, 20814-4712, USA
- Division of Vaccine Research of Institute of Human Virology, University of Maryland School of Medicine, Baltimore, USA
| | - Neelakshi Gohain
- Division of Vaccine Research of Institute of Human Virology, University of Maryland School of Medicine, Baltimore, USA
| | - Shilei Ding
- Centre de Recherche du CHUM, Université de Montréal, Montreal, Quebec, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, Quebec, Canada
| | - Robin Flinko
- Division of Vaccine Research of Institute of Human Virology, University of Maryland School of Medicine, Baltimore, USA
| | - Chiara Orlandi
- Division of Vaccine Research of Institute of Human Virology, University of Maryland School of Medicine, Baltimore, USA
| | - Krishanu Ray
- Infectious Disease Division, Department of Medicine, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD, 20814-4712, USA
| | - Andrés Finzi
- Centre de Recherche du CHUM, Université de Montréal, Montreal, Quebec, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, Quebec, Canada
- Department of Microbiology and Immunology, McGill University, Montreal, Quebec, Canada
| | - George K Lewis
- Division of Vaccine Research of Institute of Human Virology, University of Maryland School of Medicine, Baltimore, USA
| | - Marzena Pazgier
- Infectious Disease Division, Department of Medicine, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD, 20814-4712, USA.
- Division of Vaccine Research of Institute of Human Virology, University of Maryland School of Medicine, Baltimore, USA.
| |
Collapse
|
20
|
Recognition Patterns of the C1/C2 Epitopes Involved in Fc-Mediated Response in HIV-1 Natural Infection and the RV114 Vaccine Trial. mBio 2020; 11:mBio.00208-20. [PMID: 32605979 PMCID: PMC7327165 DOI: 10.1128/mbio.00208-20] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Antibodies (Abs) specific for CD4-induced envelope (Env) epitopes within constant region 1 and 2 (C1/C2) were induced in the RV144 vaccine trial, where antibody-dependent cellular cytotoxicity (ADCC) correlated with reduced risk of HIV-1 infection. We combined X-ray crystallography and fluorescence resonance energy transfer-fluorescence correlation spectroscopy to describe the molecular basis for epitopes of seven RV144 Abs and compared them to A32 and C11, C1/C2 Abs induced in HIV infection. Our data indicate that most vaccine Abs recognize the 7-stranded β-sandwich of gp120, a unique hybrid epitope bridging A32 and C11 binding sites. Although primarily directed at the 7-stranded β-sandwich, some accommodate the gp120 N terminus in C11-bound 8-stranded conformation and therefore recognize a broader range of CD4-triggered Env conformations. Our data also suggest that Abs of RV144 and RV305, the RV144 follow-up study, although likely initially induced by the ALVAC-HIV prime encoding full-length gp120, matured through boosting with truncated AIDSVAX gp120 variants.IMPORTANCE Antibody-dependent cellular cytotoxicity (ADCC) correlated with a reduced risk of infection from HIV-1 in the RV144 vaccine trial, the only HIV-1 vaccine trial to date to show any efficacy. Antibodies specific for CD4-induced envelope (Env) epitopes within constant region 1 and 2 (cluster A region) were induced in the RV144 trial and their ADCC activities were implicated in the vaccine efficacy. We present structural analyses of the antigen epitope targets of several RV144 antibodies specific for this region and C11, an antibody induced in natural infection, to show what the differences are in epitope specificities, mechanism of antigen recognition, and ADCC activities of antibodies induced by vaccination and during the course of HIV infection. Our data suggest that the truncated AIDSVAX gp120 variants used in the boost of the RV144 regimen may have shaped the vaccine response to this region, which could also have contributed to vaccine efficacy.
Collapse
|
21
|
Prévost J, Tolbert WD, Medjahed H, Sherburn RT, Madani N, Zoubchenok D, Gendron-Lepage G, Gaffney AE, Grenier MC, Kirk S, Vergara N, Han C, Mann BT, Chénine AL, Ahmed A, Chaiken I, Kirchhoff F, Hahn BH, Haim H, Abrams CF, Smith AB, Sodroski J, Pazgier M, Finzi A. The HIV-1 Env gp120 Inner Domain Shapes the Phe43 Cavity and the CD4 Binding Site. mBio 2020; 11:e00280-20. [PMID: 32457241 PMCID: PMC7251204 DOI: 10.1128/mbio.00280-20] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 04/24/2020] [Indexed: 12/22/2022] Open
Abstract
The HIV-1 envelope glycoproteins (Env) undergo conformational changes upon interaction of the gp120 exterior glycoprotein with the CD4 receptor. The gp120 inner domain topological layers facilitate the transition of Env to the CD4-bound conformation. CD4 engages gp120 by introducing its phenylalanine 43 (Phe43) in a cavity ("the Phe43 cavity") located at the interface between the inner and outer gp120 domains. Small CD4-mimetic compounds (CD4mc) can bind within the Phe43 cavity and trigger conformational changes similar to those induced by CD4. Crystal structures of CD4mc in complex with a modified CRF01_AE gp120 core revealed the importance of these gp120 inner domain layers in stabilizing the Phe43 cavity and shaping the CD4 binding site. Our studies reveal a complex interplay between the gp120 inner domain and the Phe43 cavity and generate useful information for the development of more-potent CD4mc.IMPORTANCE The Phe43 cavity of HIV-1 envelope glycoproteins (Env) is an attractive druggable target. New promising compounds, including small CD4 mimetics (CD4mc), were shown to insert deeply into this cavity. Here, we identify a new network of residues that helps to shape this highly conserved CD4 binding pocket and characterize the structural determinants responsible for Env sensitivity to small CD4 mimetics.
Collapse
Affiliation(s)
- Jérémie Prévost
- Centre de Recherche du CHUM, Montreal, Quebec, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, Quebec, Canada
| | - William D Tolbert
- Infectious Diseases Division, Department of Medicine of Uniformed Services, University of the Health Sciences, Bethesda, Maryland, USA
| | | | - Rebekah T Sherburn
- Infectious Diseases Division, Department of Medicine of Uniformed Services, University of the Health Sciences, Bethesda, Maryland, USA
| | - Navid Madani
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Daria Zoubchenok
- Centre de Recherche du CHUM, Montreal, Quebec, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, Quebec, Canada
| | | | - Althea E Gaffney
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Melissa C Grenier
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Sharon Kirk
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Natasha Vergara
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| | - Changze Han
- Department of Microbiology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Brendan T Mann
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
- Henry M. Jackson Foundation for the Advancement of the Military Medicine, Bethesda, Maryland, USA
| | - Agnès L Chénine
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
- Henry M. Jackson Foundation for the Advancement of the Military Medicine, Bethesda, Maryland, USA
| | - Adel Ahmed
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| | - Irwin Chaiken
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| | - Frank Kirchhoff
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| | - Beatrice H Hahn
- Departments of Medicine and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Hillel Haim
- Department of Microbiology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Cameron F Abrams
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| | - Amos B Smith
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Joseph Sodroski
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Marzena Pazgier
- Infectious Diseases Division, Department of Medicine of Uniformed Services, University of the Health Sciences, Bethesda, Maryland, USA
| | - Andrés Finzi
- Centre de Recherche du CHUM, Montreal, Quebec, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, Quebec, Canada
- Department of Microbiology and Immunology, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
22
|
Naiman NE, Slyker J, Richardson BA, John-Stewart G, Nduati R, Overbaugh JM. Antibody-dependent cellular cytotoxicity targeting CD4-inducible epitopes predicts mortality in HIV-infected infants. EBioMedicine 2020; 47:257-268. [PMID: 31501077 PMCID: PMC6796543 DOI: 10.1016/j.ebiom.2019.08.072] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 08/26/2019] [Accepted: 08/29/2019] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Antibody-dependent cellular cytotoxicity (ADCC) has been associated with improved infant outcome in mother-to-child transmission (MTCT) of HIV-1. Epitopes of these ADCC-mediating antibodies remain unidentified. CD4-inducible (CD4i) epitopes on gp120 are common ADCC targets in natural infection and vaccination. We tested whether CD4i epitope-specific ADCC mediated by maternal antibodies or passively-acquired antibodies in infants is associated with reduced MTCT and improved infant survival. METHODS We used variants of CD4i cluster A-specific antibodies, A32 and C11, and a cluster C-specific antibody, 17b, with mutations abolishing Fc-Fc receptor interactions as inhibitors in a competition rapid and fluorometric ADCC assay using gp120-coated CEM-nkr target cells with plasma from 51 non-transmitting and 21 transmitting breastfeeding mother-infant pairs. FINDINGS Cluster A-specific ADCC was common. Individually, neither A32-like nor C11-like ADCC was statistically significantly associated with risk of MTCT or infected infant survival. In combination, total maternal cluster A-specific ADCC was statistically significantly associated with decreased infected infant survival in a log-rank test (p = 0·017). There was a non-significant association for infant passively-acquired total cluster A-specific ADCC and decreased infected infant survival (p = 0·14). Surprisingly, plasma ADCC was enhanced in the presence of the defective Fc 17b competitor. Defective Fc 17b competitor-mediated maternal ADCC enhancement was statistically significantly associated with reduced infected infant survival (p = 0·011). A non-significant association was observed for passively-acquired infant ADCC enhancement and decreased survival (p = 0·19). INTERPRETATIONS These data suggest that ADCC targeting CD4i epitopes is not associated with protection against breast milk HIV transmission but is associated with decreased survival of infected infants. FUND: This study was funded by NIH grant R01AI076105 and NIH fellowship F30AI136636.
Collapse
Affiliation(s)
- Nicole E Naiman
- Human Biology Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue N, Seattle, WA 98109, United States of America; Molecular and Cellular Biology Program, University of Washington, 1959 NE Pacific Street, Seattle, WA 98195, United States of America; Medical Scientist Training Program, University of Washington, 1959 NE Pacific Street, Seattle, WA 98195, United States of America
| | - Jennifer Slyker
- Department of Global Health, University of Washington, 325 9(th) Avenue, Seattle, WA 98104, United States of America; Department of Epidemiology, University of Washington, 1959 NE Pacific Street, Seattle, WA 98195, United States of America
| | - Barbra A Richardson
- Department of Global Health, University of Washington, 325 9(th) Avenue, Seattle, WA 98104, United States of America; Department of Biostatistics, University of Washington, 1705 NE Pacific Street, Seattle, WA 98195, United States of America; Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue N, Seattle, WA 98109, United States of America; Public Health Sciences Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue N, Seattle, WA 98109, United States of America
| | - Grace John-Stewart
- Department of Global Health, University of Washington, 325 9(th) Avenue, Seattle, WA 98104, United States of America; Department of Epidemiology, University of Washington, 1959 NE Pacific Street, Seattle, WA 98195, United States of America; Department of Medicine, University of Washington, 1959 NE Pacific Street, Seattle, WA 98195, United States of America; Department of Pediatrics, University of Washington, 1959 NE Pacific Street, Seattle, WA 98195, United States of America
| | - Ruth Nduati
- Department of Paediatrics and Child Health, University of Nairobi, Kenyatta National Hospital, Nairobi, Kenya
| | - Julie M Overbaugh
- Human Biology Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue N, Seattle, WA 98109, United States of America; Public Health Sciences Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue N, Seattle, WA 98109, United States of America.
| |
Collapse
|