1
|
Reguzova A, Müller M, Pagallies F, Burri D, Salomon F, Rziha HJ, Bittner-Schrader Z, Verstrepen BE, Böszörményi KP, Verschoor EJ, Gerhauser I, Elbers K, Esen M, Manenti A, Monti M, Rammensee HG, Derouazi M, Löffler MW, Amann R. A multiantigenic Orf virus-based vaccine efficiently protects hamsters and nonhuman primates against SARS-CoV-2. NPJ Vaccines 2024; 9:191. [PMID: 39414789 PMCID: PMC11484955 DOI: 10.1038/s41541-024-00981-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 09/25/2024] [Indexed: 10/18/2024] Open
Abstract
Among the common strategies to design next-generation COVID-19 vaccines is broadening the antigenic repertoire thereby aiming to increase efficacy against emerging variants of concern (VoC). This study describes a new Orf virus-based vector (ORFV) platform to design a multiantigenic vaccine targeting SARS-CoV-2 spike and nucleocapsid antigens. Vaccine candidates were engineered, either expressing spike protein (ORFV-S) alone or co-expressing nucleocapsid protein (ORFV-S/N). Mono- and multiantigenic vaccines elicited comparable levels of spike-specific antibodies and virus neutralization in mice. Results from a SARS-CoV-2 challenge model in hamsters suggest cross-protective properties of the multiantigenic vaccine against VoC, indicating improved viral clearance with ORFV-S/N, as compared to equal doses of ORFV-S. In a nonhuman primate challenge model, vaccination with the ORFV-S/N vaccine resulted in long-term protection against SARS-CoV-2 infection. These results demonstrate the potential of the ORFV platform for prophylactic vaccination and represent a preclinical development program supporting first-in-man studies with the multiantigenic ORFV vaccine.
Collapse
Affiliation(s)
- Alena Reguzova
- Institute of Immunology, University Hospital Tübingen, Auf der Morgenstelle 15, 72076, Tübingen, Germany
| | - Melanie Müller
- Institute of Immunology, University Hospital Tübingen, Auf der Morgenstelle 15, 72076, Tübingen, Germany
| | - Felix Pagallies
- Institute of Immunology, University Hospital Tübingen, Auf der Morgenstelle 15, 72076, Tübingen, Germany
| | - Dominique Burri
- Speransa Therapeutics, Bethmannstrasse 8, 60311, Frankfurt am Main, Germany
| | - Ferdinand Salomon
- Institute of Immunology, University Hospital Tübingen, Auf der Morgenstelle 15, 72076, Tübingen, Germany
| | - Hanns-Joachim Rziha
- Institute of Immunology, University Hospital Tübingen, Auf der Morgenstelle 15, 72076, Tübingen, Germany
| | - Zsofia Bittner-Schrader
- Institute of Immunology, University Hospital Tübingen, Auf der Morgenstelle 15, 72076, Tübingen, Germany
| | - Babs E Verstrepen
- Department of Virology, Biomedical Primate Research Centre, Lange Kleiweg 161, 2288GJ, Rijswijk, The Netherlands
- Department of Viroscience, Erasmus University Medical Center, Dr. Molewaterplein 50, 3015 GE, Rotterdam, The Netherlands
| | - Kinga P Böszörményi
- Department of Virology, Biomedical Primate Research Centre, Lange Kleiweg 161, 2288GJ, Rijswijk, The Netherlands
| | - Ernst J Verschoor
- Department of Virology, Biomedical Primate Research Centre, Lange Kleiweg 161, 2288GJ, Rijswijk, The Netherlands
| | - Ingo Gerhauser
- Department of Pathology, University of Veterinary Medicine Hannover Foundation, Bünteweg 17, 30559, Hannover, Germany
| | - Knut Elbers
- Boehringer Ingelheim International GmbH, Binger Strasse 173, 55216, Ingelheim am Rhein, Germany
- ViraTherapeutics GmbH, Bundesstraße 27, 6063, Rum, Austria
| | - Meral Esen
- Institute of Tropical Medicine, University of Tübingen, Wilhelmstraße 27, 72074, Tübingen, Germany
- German Center for Infection Research (DZIF), Partner Site Tübingen; Cluster of Excellence (EXC2124) "Controlling Microbes to Fight Infection", Tübingen, Germany
| | - Alessandro Manenti
- VisMederi Srl., Strada del Petriccio e Belriguardo 35, 53100, Siena, Italy
| | - Martina Monti
- VisMederi Srl., Strada del Petriccio e Belriguardo 35, 53100, Siena, Italy
| | - Hans-Georg Rammensee
- Institute of Immunology, University Hospital Tübingen, Auf der Morgenstelle 15, 72076, Tübingen, Germany
- Cluster of Excellence iFIT (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tübingen, Germany
| | - Madiha Derouazi
- Speransa Therapeutics, Bethmannstrasse 8, 60311, Frankfurt am Main, Germany
| | - Markus W Löffler
- Institute of Immunology, University Hospital Tübingen, Auf der Morgenstelle 15, 72076, Tübingen, Germany.
- Cluster of Excellence iFIT (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tübingen, Germany.
- Institute for Clinical and Experimental Transfusion Medicine, Medical Faculty of Tübingen, University Hospital Tübingen, Otfried-Müller-Str. 4/1, 72076, Tübingen, Germany.
- Centre for Clinical Transfusion Medicine, Otfried-Müller-Str. 4/1, 72076, Tübingen, Germany.
| | - Ralf Amann
- Institute of Immunology, University Hospital Tübingen, Auf der Morgenstelle 15, 72076, Tübingen, Germany.
| |
Collapse
|
2
|
Graf A, Rziha HJ, Krebs S, Wolf E, Blum H, Büttner M. Parapoxvirus species revisited by whole genome sequencing: A retrospective analysis of bovine virus isolates. Virus Res 2024; 346:199404. [PMID: 38782262 PMCID: PMC11152744 DOI: 10.1016/j.virusres.2024.199404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/18/2024] [Accepted: 05/20/2024] [Indexed: 05/25/2024]
Abstract
Parapoxviruses (PPV) of animals are spread worldwide. While the Orf virus (ORFV) species is a molecularly well-characterized prototype pathogen of small ruminants, the genomes of virus species affecting large ruminants, namely Bovine papular stomatitis virus (BPSV) and Pseudocowpox virus (PCPV), are less well known. Using Nanopore sequencing we retrospectively show the whole genome sequences (WGS) of six BPSV, three PCPV isolates and an attenuated ORFV strain, originating from different geographic locations. A phylogenetic tree shows that the de novo assembled genomes belong to PPV species including WGS of reference PPV. Remarkably, Nanopore sequencing allowed the molecular resolution of inverted terminal repeats (ITR) and the hairpin loop within the de novo assembled WGS. Additionally, peculiarities regarding map location of two genes and the heterogeneity of a genomic region were noted. Details for the molecular variability of an interferon response modulatory gene (ORF116) and the PCPV specificity of gene 073.5 are reported. In summary, WGS gained by Nanopore sequencing allowed analysis of complete PPV genomes and confident virus species attribution within a phylogenetic tree avoiding uncertainty of limited gene-based diagnostics. Nanopore-based WGS provides robust comparison of PPV genomes and reliable identity determination of new Poxviruses.
Collapse
Affiliation(s)
- Alexander Graf
- Laboratory for Functional Genome Analysis (LAFUGA), Dept. Genomics, Gene Centre, Ludwig-Maximilians-Universität München (LMU), 81377 Munich, Germany
| | - Hanns-Joachim Rziha
- Institute of Immunology, University Hospital Tübingen, Eberhard Karls Universität Tübingen, 72076, Tübingen, Germany
| | - Stefan Krebs
- Laboratory for Functional Genome Analysis (LAFUGA), Dept. Genomics, Gene Centre, Ludwig-Maximilians-Universität München (LMU), 81377 Munich, Germany
| | - Eckhard Wolf
- Laboratory for Functional Genome Analysis (LAFUGA), Dept. Genomics, Gene Centre, Ludwig-Maximilians-Universität München (LMU), 81377 Munich, Germany
| | - Helmut Blum
- Laboratory for Functional Genome Analysis (LAFUGA), Dept. Genomics, Gene Centre, Ludwig-Maximilians-Universität München (LMU), 81377 Munich, Germany
| | - Mathias Büttner
- Institute of Immunology, Faculty of Veterinary Medicine, University of Leipzig, 04103, Leipzig, Germany.
| |
Collapse
|
3
|
Pagallies F, Labisch JJ, Wronska M, Pflanz K, Amann R. Efficient and scalable clarification of Orf virus from HEK suspension for vaccine development. Vaccine X 2024; 18:100474. [PMID: 38523620 PMCID: PMC10958475 DOI: 10.1016/j.jvacx.2024.100474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 03/01/2024] [Accepted: 03/12/2024] [Indexed: 03/26/2024] Open
Abstract
The Orf virus (ORFV) is a promising vector platform for the generation of vaccines against infectious diseases and cancer, highlighted by its progression to clinical testing phases. One of the critical steps during GMP manufacturing is the clarification of crude harvest because of the enveloped nature and large size of ORFV. This study presents the first description of ORFV clarification process from a HEK suspension batch process. We examined various filter materials, membrane pore sizes, harvest timings, and nuclease treatments. Employing the Ambr® crossflow system for high-throughput, small-volume experiments, we identified polypropylene-based Sartopure® PP3 filters as ideal. These filters, used in two consecutive stages with reducing pore sizes, significantly enhanced ORFV recovery and addressed scalability challenges. Moreover, we demonstrated that the time of harvest and the use of a nuclease play a decisive role to increase ORFV yields. With these findings, we were able to establish an efficient and scalable clarification process of ORFV derived from a suspension production process, essential for advancing ORFV vaccine manufacturing.
Collapse
Affiliation(s)
- Felix Pagallies
- Department of Immunology, University of Tuebingen, Auf der Morgenstelle 15, 72076 Tübingen, Germany
| | - Jennifer J. Labisch
- Lab Essentials Applications Development, Sartorius, Otto-Brenner-Straße 20, 37079 Göttingen, Germany
| | - Malgorzata Wronska
- Department of Immunology, University of Tuebingen, Auf der Morgenstelle 15, 72076 Tübingen, Germany
- PRiME Vector Technologies, Herrenberger Straße 24, 72070 Tübingen, Germany
| | - Karl Pflanz
- Lab Essentials Applications Development, Sartorius, Otto-Brenner-Straße 20, 37079 Göttingen, Germany
| | - Ralf Amann
- Department of Immunology, University of Tuebingen, Auf der Morgenstelle 15, 72076 Tübingen, Germany
- PRiME Vector Technologies, Herrenberger Straße 24, 72070 Tübingen, Germany
| |
Collapse
|
4
|
Metz C, Haug V, Müller M, Amann R. Pharmacokinetic and Environmental Risk Assessment of Prime-2-CoV, a Non-Replicating Orf Virus-Based Vaccine against SARS-CoV-2. Vaccines (Basel) 2024; 12:492. [PMID: 38793743 PMCID: PMC11126055 DOI: 10.3390/vaccines12050492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/26/2024] [Accepted: 04/29/2024] [Indexed: 05/26/2024] Open
Abstract
Viral vector vaccines represent a substantial advancement in immunization technology, offering numerous benefits over traditional vaccine modalities. The Orf virus (ORFV) strain D1701-VrV is a particularly promising candidate for vaccine development due to its distinctive attributes, such as a good safety profile, the ability to elicit both humoral and cellular immunity, and its favorable genetic and thermal stability. Despite ORFV's theoretical safety advantages, such as its narrow host range and limited systemic spread post-inoculation, a critical gap persists between these theoretical benefits and the empirical evidence regarding its in vivo safety profile. This discrepancy underscores the need for comprehensive preclinical validations to bridge this knowledge gap, especially considering ORFV's use in humans. Our research introduces Prime-2-CoV, an innovative ORFV-based vaccine candidate against COVID-19, designed to elicit a robust immune response by expressing SARS-CoV-2 Nucleocapsid and Spike proteins. Currently under clinical trials, Prime-2-CoV marks the inaugural application of ORFV in human subjects. Addressing the aforementioned safety concerns, our extensive preclinical evaluation, including an environmental risk assessment (ERA) and detailed pharmacokinetic studies in rats and immunocompromised NOG mice, demonstrates Prime-2-CoV's favorable pharmacokinetic profile, negligible environmental impact, and minimal ERA risks. These findings not only affirm the vaccine's safety and efficacy but also pioneer the use of ORFV-based therapeutics, highlighting its potential for wider therapeutic applications.
Collapse
Affiliation(s)
- Carina Metz
- Institute of Immunology, University Hospital Tübingen, 72076 Tübingen, Germany; (C.M.); (V.H.); (M.M.)
- Institute for Tropical Medicine, Travel Medicine, and Human Parasitology, University Hospital Tübingen, 72076 Tübingen, Germany
| | - Verena Haug
- Institute of Immunology, University Hospital Tübingen, 72076 Tübingen, Germany; (C.M.); (V.H.); (M.M.)
- Institute for Tropical Medicine, Travel Medicine, and Human Parasitology, University Hospital Tübingen, 72076 Tübingen, Germany
| | - Melanie Müller
- Institute of Immunology, University Hospital Tübingen, 72076 Tübingen, Germany; (C.M.); (V.H.); (M.M.)
| | - Ralf Amann
- Institute of Immunology, University Hospital Tübingen, 72076 Tübingen, Germany; (C.M.); (V.H.); (M.M.)
| |
Collapse
|
5
|
Burri DJ, Renz L, Mueller M, Pagallies F, Klinkhardt U, Amann R, Derouazi M. Novel Multi-Antigen Orf-Virus-Derived Vaccine Elicits Protective Anti-SARS-CoV-2 Response in Monovalent and Bivalent Formats. Vaccines (Basel) 2024; 12:490. [PMID: 38793740 PMCID: PMC11126134 DOI: 10.3390/vaccines12050490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 04/28/2024] [Accepted: 04/29/2024] [Indexed: 05/26/2024] Open
Abstract
Prime-2-CoV_Beta is a novel Orf virus (ORFV)-based COVID-19 vaccine candidate expressing both the nucleocapsid and spike proteins of SARS-CoV-2 with the receptor-binding domain (RBD) of the Beta strain. This candidate was shown to be safe and immunogenic in a first-in-human Phase I clinical trial. With the shift in the immune landscape toward the Omicron variant and the widespread vaccine- and/or infection-derived immunity, further pre-clinical research was needed to characterize Prime-2-CoV. Here, we quantified the humoral and cellular response to Prime-2-CoV_Beta in pre-immunized mice and compared the protective efficacy of mono- and bivalent variant-based Prime-2-CoV vaccine candidates in hamsters. Prime-2-CoV_Beta induced robust humoral and cellular immune responses in naïve animals but did not further boost antibody titers in the tested setting when given as repeat booster at short interval. We furthermore showed that Prime-2-CoV_Beta-based mono- and bivalent immunization strategies produced comparable immunogenicity and protection from infection. Our results highlight the potential of the Orf virus as a vaccine platform against SARS-CoV-2 and potentially other infectious viruses.
Collapse
Affiliation(s)
- Dominique Julien Burri
- Speransa Therapeutics, Frankfurt am Main, 60327 Frankfurt, Germany; (D.J.B.); (L.R.); (U.K.)
| | - Louis Renz
- Speransa Therapeutics, Frankfurt am Main, 60327 Frankfurt, Germany; (D.J.B.); (L.R.); (U.K.)
| | - Melanie Mueller
- Institute of Immunology, University Hospital of Tübingen, 72016 Tübingen, Germany; (M.M.)
| | - Felix Pagallies
- Institute of Immunology, University Hospital of Tübingen, 72016 Tübingen, Germany; (M.M.)
| | - Ute Klinkhardt
- Speransa Therapeutics, Frankfurt am Main, 60327 Frankfurt, Germany; (D.J.B.); (L.R.); (U.K.)
| | - Ralf Amann
- Institute of Immunology, University Hospital of Tübingen, 72016 Tübingen, Germany; (M.M.)
| | - Madiha Derouazi
- Speransa Therapeutics, Frankfurt am Main, 60327 Frankfurt, Germany; (D.J.B.); (L.R.); (U.K.)
| |
Collapse
|
6
|
Eilts F, Harsy YMJ, Lothert K, Pagallies F, Amann R, Wolff MW. An investigation of excipients for a stable Orf viral vector formulation. Virus Res 2023; 336:199213. [PMID: 37657509 PMCID: PMC10495626 DOI: 10.1016/j.virusres.2023.199213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 08/27/2023] [Accepted: 08/29/2023] [Indexed: 09/03/2023]
Abstract
The Orf virus (ORFV) is a promising candidate for vector vaccines as well as for immunomodulatory and oncolytic therapies. However, few publications are available on its infectivity degradation or on suitable additives for prolonging its viral stability. In this study, the non-supplemented ORFV itself showed a very high stability at storage temperatures up to 28 °C, with a linear titer loss of 0.10 log infectious particles per day at 4 °C over a period of five weeks. To prolong this inherent stability, thirty additives, i.e., detergents, sugars, proteins, salts, and buffers as well as amino acids, were tested for their time- and temperature-dependent influence on the ORFV infectivity. A stabilizing effect on the infectivity was identified for the addition of all tested proteins, i.e., gelatine, bovine serum albumin, and recombinant human serum albumin (rHSA), of several sugars, i.e., mannitol, galactose, sucrose, and trehalose, of amino acids, i.e., arginine and proline, of the detergent Pluronic F68, and of the salt Na2SO4. The infectivity preservation was especially pronounced for proteins in liquid and frozen formulations, sugars in frozen state, and arginine und Pluronic in liquid formulations at high storage temperatures (37 °C). The addition of 1% rHSA with and without 5% sucrose was evaluated as a very stable formulation with a high safety profile and economic validity at storage temperatures up to 28 °C. At increased temperatures, the supplementation with 200 mM arginine performed better than with rHSA. In summary, this comprehensive data provides different options for a stable ORFV formulation, considering temperature, storage time, economic aspects, and downstream processing integrity.
Collapse
Affiliation(s)
- Friederike Eilts
- Institute of Bioprocess Engineering and Pharmaceutical Technology, University of Applied Sciences Mittelhessen (THM), Wiesenstr.14, Giessen 35390, Germany
| | - Yasmina M J Harsy
- Institute of Bioprocess Engineering and Pharmaceutical Technology, University of Applied Sciences Mittelhessen (THM), Wiesenstr.14, Giessen 35390, Germany
| | - Keven Lothert
- Institute of Bioprocess Engineering and Pharmaceutical Technology, University of Applied Sciences Mittelhessen (THM), Wiesenstr.14, Giessen 35390, Germany
| | - Felix Pagallies
- Department of Immunology, University of Tuebingen, Auf der Morgenstelle 15, Tuebingen 72076, Germany
| | - Ralf Amann
- Department of Immunology, University of Tuebingen, Auf der Morgenstelle 15, Tuebingen 72076, Germany; PRiME Vector Technologies, Herrenberger Straße 24, Tuebingen 72070, Germany
| | - Michael W Wolff
- Institute of Bioprocess Engineering and Pharmaceutical Technology, University of Applied Sciences Mittelhessen (THM), Wiesenstr.14, Giessen 35390, Germany.
| |
Collapse
|
7
|
AlDaif BA, Mercer AA, Fleming SB. The parapoxvirus Orf virus inhibits dsDNA-mediated type I IFN expression via STING-dependent and STING-independent signalling pathways. J Gen Virol 2023; 104. [PMID: 37882657 DOI: 10.1099/jgv.0.001912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2023] Open
Abstract
Type I interferons (IFNs) are critical in the host defence against viruses. They induce hundreds of interferon-stimulated genes (ISGs) many of which have an antiviral role. Poxviruses induce IFNs via their pathogen-associated molecular patterns, in particular, their genomic DNA. In a majority of cell types, dsDNA is detected by a range of cytoplasmic DNA sensors that mediate type I IFN expression via stimulator of interferon genes (STING). Orf virus (ORFV) induces cutaneous pustular skin lesions and is the type species of the Parapoxvirus genus within the Poxviridae family. The aim of this study was to investigate whether ORFV modulates dsDNA-induced type I IFN expression via STING-dependent signalling pathways in human dermal fibroblasts (hNDF) and THP-1 cells. We showed that ORFV infection of these cell types treated with poly(dA:dT) resulted in strong inhibition of expression of IFN-β. In hNDFs, we showed using siRNA knock-down that STING was essential for type I IFN induction. IFN-β expression was further reduced when both STING and RIG-I were knocked down. In addition, HEK293 cells that do not express STING or Toll-like receptors also produce IFN-β following stimulation with poly(dA:dT). The 5' triphosphate dsRNA produced by RNA polymerase III specifically results in the induction of type I IFNs through the RIG-I receptor. We showed that ORFV infection resulted in strong inhibition of IFN-β expression in HEK293 cells stimulated with poly(dA:dT). Overall, this study shows that ORFV potently counteracts the STING-dependent and STING-independent IFN response by antagonizing dsDNA-activated IFN signalling pathways.
Collapse
Affiliation(s)
- Basheer A AlDaif
- Virus Research Unit, Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Andrew A Mercer
- Virus Research Unit, Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Stephen B Fleming
- Virus Research Unit, Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| |
Collapse
|
8
|
Eilts F, Labisch JJ, Orbay S, Harsy YMJ, Steger M, Pagallies F, Amann R, Pflanz K, Wolff MW. Stability studies for the identification of critical process parameters for a pharmaceutical production of the Orf virus. Vaccine 2023:S0264-410X(23)00722-3. [PMID: 37353451 DOI: 10.1016/j.vaccine.2023.06.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 06/01/2023] [Accepted: 06/12/2023] [Indexed: 06/25/2023]
Abstract
A promising new vaccine platform is based on the Orf virus, a viral vector of the genus Parapoxvirus, which is currently being tested in phase I clinical trials. The application as a vaccine platform mandates a well-characterised, robust, and efficient production process. To identify critical process parameters in the production process affecting the virus' infectivity, the Orf virus was subjected to forced degradation studies, including thermal, pH, chemical, and mechanical stress conditions. The tests indicated a robust virus infectivity within a pH range of 5-7.4 and in the presence of the tested buffering substances (TRIS, HEPES, PBS). The ionic strength up to 0.5 M had no influence on the Orf virus' infectivity stability for NaCl and MgCl2, while NH4Cl destabilized significantly. Furthermore, short-term thermal stress of 2d up to 37 °C and repeated freeze-thaw cycles (20cycles) did not affect the virus' infectivity. The addition of recombinant human serum albumin was found to reduce virus inactivation. Last, the Orf virus showed a low shear sensitivity induced by peristaltic pumps and mixing, but was sensitive to ultrasonication. The isoelectric point of the applied Orf virus genotype D1707-V was determined at pH3.5. The broad picture of the Orf virus' infectivity stability against environmental parameters is an important contribution for the identification of critical process parameters for the production process, and supports the development of a stable pharmaceutical formulation. The work is specifically relevant for enveloped (large DNA) viruses, like the Orf virus and like most vectored vaccine approaches.
Collapse
Affiliation(s)
- Friederike Eilts
- Institute of Bioprocess Engineering and Pharmaceutical Technology, University of Applied Sciences Mittelhessen (THM), Wiesenstr.14, 35390 Giessen, Germany
| | - Jennifer J Labisch
- Lab Essentials Applications Development, Sartorius Stedim Biotech GmbH, August-Spindler-Straße 11, 37079 Goettingen, Germany; Institute of Technical Chemistry, Leibniz University Hannover, Callinstraße 3-9, 30167 Hannover, Lower Saxony, Germany
| | - Sabri Orbay
- Institute of Bioprocess Engineering and Pharmaceutical Technology, University of Applied Sciences Mittelhessen (THM), Wiesenstr.14, 35390 Giessen, Germany
| | - Yasmina M J Harsy
- Institute of Bioprocess Engineering and Pharmaceutical Technology, University of Applied Sciences Mittelhessen (THM), Wiesenstr.14, 35390 Giessen, Germany
| | - Marleen Steger
- Institute of Bioprocess Engineering and Pharmaceutical Technology, University of Applied Sciences Mittelhessen (THM), Wiesenstr.14, 35390 Giessen, Germany
| | - Felix Pagallies
- Department of Immunology, University of Tuebingen, Auf der Morgenstelle 15/3.008, 72076 Tuebingen, Germany
| | - Ralf Amann
- Department of Immunology, University of Tuebingen, Auf der Morgenstelle 15/3.008, 72076 Tuebingen, Germany; Prime Vector Technologies, Herrenberger Straße 24, 72070 Tuebingen, Germany
| | - Karl Pflanz
- Lab Essentials Applications Development, Sartorius Stedim Biotech GmbH, August-Spindler-Straße 11, 37079 Goettingen, Germany
| | - Michael W Wolff
- Institute of Bioprocess Engineering and Pharmaceutical Technology, University of Applied Sciences Mittelhessen (THM), Wiesenstr.14, 35390 Giessen, Germany.
| |
Collapse
|
9
|
Shen Z, Liu B, Zhu Z, Du J, Zhou Z, Pan C, Chen Y, Yin C, Luo Y, Li H, Chen X. Construction of a Triple-Gene Deletion Mutant of Orf Virus and Evaluation of Its Safety, Immunogenicity and Protective Efficacy. Vaccines (Basel) 2023; 11:vaccines11050909. [PMID: 37243014 DOI: 10.3390/vaccines11050909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/17/2023] [Accepted: 04/25/2023] [Indexed: 05/28/2023] Open
Abstract
Contagious ecthyma is a zoonotic disease caused by the orf virus (ORFV). Since there is no specific therapeutic drug available, vaccine immunization is the main tool to prevent and control the disease. Previously, we have reported the construction of a double-gene deletion mutant of ORFV (rGS14ΔCBPΔGIF) and evaluated it as a vaccine candidate. Building on this previous work, the current study reports the construction of a new vaccine candidate, generated by deleting a third gene (gene 121) to generate ORFV rGS14ΔCBPΔGIFΔ121. The in vitro growth characteristics, as well as the in vivo safety, immunogenicity, and protective efficacy, were evaluated. RESULTS: There was a minor difference in viral replication and proliferation between ORFV rGS14ΔCBPΔGIFΔ121 and the other two strains. ORFV rGS14ΔCBPΔGIFΔ121 induced continuous differentiation of PBMC to CD4+T cells, CD8+T cells and CD80+CD86+ cells and caused mainly Th1-like cell-mediated immunity. By comparing the triple-gene deletion mutant with the parental strain and the double-gene deletion mutant, we found that the safety of both the triple-gene deletion mutant and the double-gene deletion mutant could reach 100% in goats, while the safety of parental virus was only 50% after continually observing immunized animals for 14 days. A virulent field strain of ORFV from an ORF scab was used in the challenge experiment by inoculating the virus to the hairless area of the inner thigh of immunized animals. The result showed that the immune protection rate of triple-gene deletion mutant, double-gene mutant, and the parental virus was 100%, 66.7%, and 28.6%, respectively. In conclusion, the safety, immunogenicity, and immune-protectivity of the triple-gene deletion mutant were greatly improved to 100%, making it an excellent vaccine candidate.
Collapse
Affiliation(s)
- Zhanning Shen
- Animal Science and Techology College, Beijing University of Agriculture, Beijing 102208, China
- China Institute of Veterinary Drug Control, Beijing 100081, China
| | - Bo Liu
- China Institute of Veterinary Drug Control, Beijing 100081, China
- International Atomic Energy Agency, Vienna International Centre, P.O. Box 100, A-1400 Vienna, Austria
| | - Zhen Zhu
- China Institute of Veterinary Drug Control, Beijing 100081, China
| | - Jige Du
- China Institute of Veterinary Drug Control, Beijing 100081, China
| | - Zhiyu Zhou
- China Institute of Veterinary Drug Control, Beijing 100081, China
| | - Chenfan Pan
- China Institute of Veterinary Drug Control, Beijing 100081, China
| | - Yong Chen
- China Institute of Veterinary Drug Control, Beijing 100081, China
| | - Chunsheng Yin
- China Institute of Veterinary Drug Control, Beijing 100081, China
| | - Yufeng Luo
- China Institute of Veterinary Drug Control, Beijing 100081, China
| | - Huanrong Li
- Animal Science and Techology College, Beijing University of Agriculture, Beijing 102208, China
| | - Xiaoyun Chen
- China Institute of Veterinary Drug Control, Beijing 100081, China
| |
Collapse
|
10
|
Dalton CS, Workentine ML, Leclerc LM, Kutz S, van der Meer F. Next-generation sequencing approach to investigate genome variability of Parapoxvirus in Canadian muskoxen (Ovibos moschatus). INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2023; 109:105414. [PMID: 36775047 DOI: 10.1016/j.meegid.2023.105414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/20/2023] [Accepted: 02/08/2023] [Indexed: 02/12/2023]
Abstract
In 2016, the first orf virus, a double-stranded DNA (dsDNA) virus of the genus parapoxvirus, from a muskox was isolated on Victoria Island, Nunavut (NU), Canada. We used deep sequencing on DNA extracted from orf virus-positive tissues from wild muskoxen from locations on Victoria Island and the adjacent mainland. Orf virus sequence reads derived from four samples were nearly identical. The consensus sequences generated from pooled reads of MxOV comprises of a large contiguous sequence (contig) of 131,759 bp and a smaller right terminal contig of 3552 bp, containing all coding sequences identified as Parapoxvirus. Individual gene comparisons reveal that MxOV shares genetic characteristics with reference strains from both sheep and goat origin. Recombination analysis using Bootscan, MAXCHI, GENECONV, CHIMAERA, SISCAN, and RDP algorithms within the RDP4 software predicted recombination events in two virulence factors, and a large 3000 bp segment of the MxOV genome. Partial B2L nucleotide sequences from strains around the world and other North American isolates were compared to MxOV using MUSCLE alignments and RAxML phylogenetic trees. MxOV was identical to our previously characterized isolate, and shared similarity with orf virus isolated from sheep and goats. The phylogenetic grouping of partial B2L nucleotide sequences did not follow the sample geographic distribution. More full genomes of orf virus, or at least full B2L gene squences, in wildlife are needed especially in North America to better understand the epidemiology of the disease in muskoxen.
Collapse
Affiliation(s)
- Chimone S Dalton
- Department of Ecosystem & Public Health, Faculty of Veterinary Medicine, University of Calgary, 3280 Hospital Drive NW, Calgary, AB T2N 4Z6, Canada.
| | - Matthew L Workentine
- Faculty of Veterinary Medicine, University of Calgary, 3280 Hospital Drive NW, Calgary, AB T2N 4Z6, Canada
| | - Lisa-Marie Leclerc
- Department of Environment, Government of Nunavut, P.O. 377, Kugluktuk, NU X0B 0E0, Canada
| | - Susan Kutz
- Department of Ecosystem & Public Health, Faculty of Veterinary Medicine, University of Calgary, 3280 Hospital Drive NW, Calgary, AB T2N 4Z6, Canada
| | - Frank van der Meer
- Department of Ecosystem & Public Health, Faculty of Veterinary Medicine, University of Calgary, 3280 Hospital Drive NW, Calgary, AB T2N 4Z6, Canada
| |
Collapse
|
11
|
Yu Y, Zhang F, Duan X, Yang C, Cui Y, Yu L. ORFV can carry TRAP gene expression via intracellular CRISPR/Cas9 gene editing technology. J Virol Methods 2023; 312:114652. [PMID: 36493528 DOI: 10.1016/j.jviromet.2022.114652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 11/09/2022] [Accepted: 11/11/2022] [Indexed: 12/12/2022]
Abstract
Orf is an acute and highly contracted human and animal infection caused by orf virus (ORFV), which mainly affects sheep, goats, and other species. Clinically, opportunistic or conditional pathogens such as Staphylococcus aureus (S. aureus) are often detected in cases of orf, which greatly increases the risk of disease progression and clinical death. It has been reported that TRAP gene products of S. aureus can broadly influence bacterial life and pathogenicity in vivo, and introduction of exogenous TRAP genes may help to inhibit the proliferation of bacteria. In order to achieve the combined control of ORFV and S. aureus, a novel approach to design a S. aureus TRAP gene vaccine using a live attenuated ORFV vector is proposed. In this study, CRISPR/Cas9 gene editing technology was used to disable vascular endothelial growth factor E of ORFV (VEGF-v) and introduced TRAP gene into this position. TRAP gene expression was detected in keratinocytes infected with recombinant virus. The construction and experimental verification of recombinant ORFV (ORFV-v/TRAP) will provide a reference for in-depth studies on the prevention and control of mixed infectious disease.
Collapse
Affiliation(s)
- YongZhong Yu
- College of Biological Science and Technology, Heilongjiang Bayi Agricultural University, Daqing 163319, PR China.
| | - Fan Zhang
- College of Biological Science and Technology, Heilongjiang Bayi Agricultural University, Daqing 163319, PR China
| | - Xuyang Duan
- College of Biological Science and Technology, Heilongjiang Bayi Agricultural University, Daqing 163319, PR China.
| | - ChaoQun Yang
- College of Biological Science and Technology, Heilongjiang Bayi Agricultural University, Daqing 163319, PR China
| | - YuDong Cui
- College of Biological Science and Technology, Heilongjiang Bayi Agricultural University, Daqing 163319, PR China
| | - Li Yu
- Division of Livestock Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 427 Maduan Street, Harbin 150001, PR China
| |
Collapse
|
12
|
Sun S, Zhao K, Lu H, Liu X, Li Y, Li Q, Song D, Lan Y, He W, Gao F, Li Z, Guan J. Establishment of a sheep immortalization cell line for generating and amplifying Orf virus recombinants. Front Vet Sci 2022; 9:1062908. [PMID: 36619965 PMCID: PMC9813594 DOI: 10.3389/fvets.2022.1062908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 12/08/2022] [Indexed: 12/24/2022] Open
Abstract
Orf virus (ORFV) causes highly contagious vesiculoulcerative pustular and skin lesions in ruminants like sheep. Developing ORFV-based recombinant vaccine is a potential way to combat Orf disease. Although ORFV could propagate in some kinds of primary cells, the proliferative capacity of primary cells is limited. Therefore, establishing immortalized stable cell line is an effective and affordable way for the production of live ORFV vaccine. In the present study, we introduced a telomerase reverse transcriptase (TERT) gene-expressing cassette into primary ovine fetal turbinate (OFTu) cells, then selected and expanded the cells, which was considered as immortalized OFTu cell line. Our results showed that TERT introduction has successfully expended the lifespan of OFTu cell line over 80 passages, without changing the cellular morphology, affecting chromosomes karyotype and inducing the cellular tumorigenic ability. Immortalized OFTu cell line-derived ORFV has caused similar levels of cytopathic effects (CPE), viral titers and viral particles when compared with the ORFV from primary OFTu cell. Importantly, immortalized OFTu cell line was suitable for generating gene-modified ORFV recombinant through homologous recombination, and for the amplification of ORFV recombinant. In summary, an immortalized OFTu cell line was established and characterized, which could be a powerful tool for preparing ORFV recombinant vaccines.
Collapse
|
13
|
Eilts F, Steger M, Pagallies F, Rziha HJ, Hardt M, Amann R, Wolff MW. Comparison of sample preparation techniques for the physicochemical characterization of Orf virus particles. J Virol Methods 2022; 310:114614. [PMID: 36084768 DOI: 10.1016/j.jviromet.2022.114614] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 09/04/2022] [Accepted: 09/05/2022] [Indexed: 12/24/2022]
Abstract
The determination of the electrostatic charge of biological nanoparticles requires a purified, mono-disperse, and concentrated sample. Previous studies proofed an impact of the preparation protocol on the stability and electro-hydrodynamics of viruses, whereas commonly used methods are often complex and do not allow the required sample throughput. In the present study, the application of the (I) steric exclusion chromatography (SXC) for the Orf virus (ORFV) purification and subsequent physicochemical characterization was evaluated and compared to (II) SXC followed by centrifugal diafiltration and (III) sucrose cushion ultracentrifugation. The three methods were characterized in terms of protein removal, size distribution, infectious virus recovery, visual appearance, and electrophoretic mobility as a function of pH. All preparation techniques achieved a protein removal of more than 99 %, and (I) an infectious ORFV recovery of more than 85 %. Monodisperse samples were realized by (I) and (III). In summary, ORFV samples prepared by (I) and (III) displayed comparable quality. Additionally, (I) offered the shortest operation time and easy application. Based on the obtained data, the three procedures were ranked according to eight criteria of possible practical relevance, which delineate the potential of SXC as virus preparation method for physicochemical analysis.
Collapse
Affiliation(s)
- Friederike Eilts
- Institute of Bioprocess Engineering and Pharmaceutical Technology, University of Applied Sciences Mittelhessen (THM), Wiesenstr.14, 35390 Giessen, Germany.
| | - Marleen Steger
- Institute of Bioprocess Engineering and Pharmaceutical Technology, University of Applied Sciences Mittelhessen (THM), Wiesenstr.14, 35390 Giessen, Germany
| | - Felix Pagallies
- Department of Immunology, University of Tuebingen, Auf der Morgenstelle 15, 72076 Tuebingen, Germany
| | - Hanns-Joachim Rziha
- Department of Immunology, University of Tuebingen, Auf der Morgenstelle 15, 72076 Tuebingen, Germany
| | - Martin Hardt
- Imaging Unit, Biomedical Research Centre Seltersberg, Justus Liebig University, Schubertstraße 81, 35392 Giessen, Germany
| | - Ralf Amann
- Department of Immunology, University of Tuebingen, Auf der Morgenstelle 15, 72076 Tuebingen, Germany; PRiME Vector Technologies, Herrenberger Straße 24, 72070 Tuebingen, Germany
| | - Michael W Wolff
- Institute of Bioprocess Engineering and Pharmaceutical Technology, University of Applied Sciences Mittelhessen (THM), Wiesenstr.14, 35390 Giessen, Germany; Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Ohlebergsweg 12, 35392 Giessen, Germany.
| |
Collapse
|
14
|
Eilts F, Lothert K, Orbay S, Pagallies F, Amann R, Wolff MW. A Summary of Practical Considerations for the Application of the Steric Exclusion Chromatography for the Purification of the Orf Viral Vector. MEMBRANES 2022; 12:1070. [PMID: 36363625 PMCID: PMC9696199 DOI: 10.3390/membranes12111070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/18/2022] [Accepted: 10/26/2022] [Indexed: 06/16/2023]
Abstract
Steric exclusion chromatography (SXC) is a promising purification method for biological macromolecules such as the Orf virus (ORFV) vector. The method's principle is closely related to conventional polyethylene glycol (PEG) precipitation, repeatedly implementing membranes as porous chromatographic media. In the past decade, several purification tasks with SXC showed exceptionally high yields and a high impurity removal. However, the effect of varying process parameters, on the precipitation success and its limitations to SXC, is not yet well understood. For this reason, the precipitation behavior and SXC adaptation for ORFV were investigated for the PEG/ORFV contact time, the membranes pore size, and the type and concentration of ions. All three parameters influenced the ORFV recoveries significantly. A small pore size and a long contact time induced filtration effects and inhibited a full virus recovery. The application of salts had complex concentration-dependent effects on precipitation and SXC yields, and ranged from a complete prevention of precipitation in the presence of kosmotropic substances to increased efficiencies with Mg2+ ions. The latter finding might be useful to reduce PEG concentrations while maintaining high yields. With this knowledge, we hope to clarify several limitations of SXC operations and improve the tool-set for a successful process adaptation.
Collapse
Affiliation(s)
- Friederike Eilts
- Institute of Bioprocess Engineering and Pharmaceutical Technology, University of Applied Sciences Mittelhessen (THM), Wiesenstr.14, 35390 Giessen, Germany
| | - Keven Lothert
- Institute of Bioprocess Engineering and Pharmaceutical Technology, University of Applied Sciences Mittelhessen (THM), Wiesenstr.14, 35390 Giessen, Germany
| | - Sabri Orbay
- Institute of Bioprocess Engineering and Pharmaceutical Technology, University of Applied Sciences Mittelhessen (THM), Wiesenstr.14, 35390 Giessen, Germany
| | - Felix Pagallies
- Department of Immunology, University of Tuebingen, Auf der Morgenstelle 15, 72076 Tuebingen, Germany
| | - Ralf Amann
- Department of Immunology, University of Tuebingen, Auf der Morgenstelle 15, 72076 Tuebingen, Germany
- PRiME Vector Technologies, Herrenberger Straße 24, 72070 Tuebingen, Germany
| | - Michael W. Wolff
- Institute of Bioprocess Engineering and Pharmaceutical Technology, University of Applied Sciences Mittelhessen (THM), Wiesenstr.14, 35390 Giessen, Germany
- Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Ohlebergsweg 12, 35392 Giessen, Germany
| |
Collapse
|
15
|
Zhu Z, Qu G, Du J, Wang C, Chen Y, Shen Z, Zhou Z, Yin C, Chen X. Construction and characterization of a contagious ecthyma virus double-gene deletion strain and evaluation of its potential as a live-attenuated vaccine in goat. Front Immunol 2022; 13:961287. [PMID: 36119021 PMCID: PMC9478544 DOI: 10.3389/fimmu.2022.961287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Accepted: 08/10/2022] [Indexed: 11/13/2022] Open
Abstract
Contagious ecthyma is a highly contagious viral disease with zoonotic significance caused by orf virus (ORFV) that affects domestic, ruminants and humans. Live attenuated virus and attenuated tissue culture vaccines are widely used in the fight against ORFV, however, the conventional attenuated vaccine strains have many drawbacks. The aim of this project was to construct a promising contagious ecthyma vaccine strain with safety, high protection efficacy and accessibility by genetic manipulation to against the disease. Using a natural ORFV-GS14 strain as the parental virus, recombinant virus, rGS14-ΔCBP-ΔGIF, with double deletions in the genes encoding the chemokine binding protein (CBP) and granulocyte/macrophage colony-stimulating factor inhibitory factor (GIF) was generated and characterized in vitro and in vivo. Results showed that the growth kinetics curve of rGS14-ΔCBP-ΔGIF and parental virus was consistent, both reaching plateau phase at 48 h post infection, which indicated that the double deletion of cbp and gif genes had little impact on the replication properties of the recombinant virus in primary goat testis (PGT) cell cultures compared with the parental virus. The safety of the double gene-deleted virus was evaluated in lambs. The lambs were monitored for 21 days post infection of the recombinant virus and no ORFV associated symptoms were observed in 21 days post-infection except for slight fever and anorexia in 5 days post-infection, and all lambs inoculated with either recombinant virus or PBS exhibited no clinical signs. To assess the protection efficacy of the rGS14-ΔCBP-ΔGIF, groups of four lambs each were inoculated with rGS14-ΔCBP-ΔGIF, rGS14-ΔCBP, rGS14-ΔGIF or PBS and challenged by a wild type virulent ORFV strain that was isolated from proliferative scabby lesions tissues of infected goat at 21-day post-inoculation. During 14 days post-challenging, lambs inoculated with rGS14-ΔCBP-ΔGIF all remained healthy with unimmunized group all infected, while the single gene-deleted viruses only protected 40% to 50% animals. These results indicated that the double gene-deleted recombinant virus could provide complete protection against virulent ORFV challenging. In conclusion, the double gene-deleted recombinant virus strain, rGS14-ΔCBP-ΔGIF, would be a promising candidate vaccine strains with safety, high protection efficacy and availability.
Collapse
Affiliation(s)
- Zhen Zhu
- China Institute of Veterinary Drug Control, Beijing, China
| | - Guanggang Qu
- Shandong Binzhou Animal Science and Veterinary Medicine Academy, Binzhou, China
| | - Jige Du
- China Institute of Veterinary Drug Control, Beijing, China
| | - Changjiang Wang
- Shandong Binzhou Animal Science and Veterinary Medicine Academy, Binzhou, China
| | - Yong Chen
- China Institute of Veterinary Drug Control, Beijing, China
| | - Zhanning Shen
- China Institute of Veterinary Drug Control, Beijing, China
| | - Zhiyu Zhou
- China Institute of Veterinary Drug Control, Beijing, China
| | - Chunsheng Yin
- China Institute of Veterinary Drug Control, Beijing, China
| | - Xiaoyun Chen
- China Institute of Veterinary Drug Control, Beijing, China
| |
Collapse
|
16
|
Müller M, Reguzova A, Löffler MW, Amann R. Orf Virus-Based Vectors Preferentially Target Professional Antigen-Presenting Cells, Activate the STING Pathway and Induce Strong Antigen-Specific T Cell Responses. Front Immunol 2022; 13:873351. [PMID: 35615366 PMCID: PMC9124846 DOI: 10.3389/fimmu.2022.873351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 03/28/2022] [Indexed: 11/18/2022] Open
Abstract
Background Orf virus (ORFV)-based vectors are attractive for vaccine development as they enable the induction of potent immune responses against specific transgenes. Nevertheless, the precise mechanisms of immune activation remain unknown. This study therefore aimed to characterize underlying mechanisms in human immune cells. Methods Peripheral blood mononuclear cells were infected with attenuated ORFV strain D1701-VrV and analyzed for ORFV infection and activation markers. ORFV entry in susceptible cells was examined using established pharmacological inhibitors. Using the THP1-Dual™ reporter cell line, activation of nuclear factor-κB and interferon regulatory factor pathways were simultaneously evaluated. Infection with an ORFV recombinant encoding immunogenic peptides (PepTrio-ORFV) was used to assess the induction of antigen-specific CD8+ T cells. Results ORFV was found to preferentially target professional antigen-presenting cells (APCs) in vitro, with ORFV uptake mediated primarily by macropinocytosis. ORFV-infected APCs exhibited an activated phenotype, required for subsequent lymphocyte activation. Reporter cells revealed that the stimulator of interferon genes pathway is a prerequisite for ORFV-mediated cellular activation. PepTrio-ORFV efficiently induced antigen-specific CD8+ T cell recall responses in a dose-dependent manner. Further, activation and expansion of naïve antigen-specific CD8+ T cells was observed in response. Discussion Our findings confirm that ORFV induces a strong antigen-specific immune response dependent on APC uptake and activation. These data support the notion that ORFV D1701-VrV is a promising vector for vaccine development and the design of innovative immunotherapeutic applications.
Collapse
Affiliation(s)
- Melanie Müller
- Department of Immunology, Interfaculty Institute for Cell Biology, University of Tübingen, Tübingen, Germany
| | - Alena Reguzova
- Department of Immunology, Interfaculty Institute for Cell Biology, University of Tübingen, Tübingen, Germany
| | - Markus W. Löffler
- Department of Immunology, Interfaculty Institute for Cell Biology, University of Tübingen, Tübingen, Germany
- Department of General, Visceral and Transplant Surgery, University Hospital Tübingen, Tübingen, Germany
- Department of Clinical Pharmacology, University Hospital Tübingen, Tübingen, Germany
- Cluster of Excellence iFIT (EXC2180) ‘Image-Guided and Functionally Instructed Tumor Therapies’, University of Tübingen, Tübingen, Germany
- *Correspondence: Ralf Amann, ; Markus W. Löffler,
| | - Ralf Amann
- Department of Immunology, Interfaculty Institute for Cell Biology, University of Tübingen, Tübingen, Germany
- *Correspondence: Ralf Amann, ; Markus W. Löffler,
| |
Collapse
|
17
|
Reguzova A, Fischer N, Müller M, Salomon F, Jaenisch T, Amann R. A Novel Orf Virus D1701-VrV-Based Dengue Virus (DENV) Vaccine Candidate Expressing HLA-Specific T Cell Epitopes: A Proof-of-Concept Study. Biomedicines 2021; 9:biomedicines9121862. [PMID: 34944678 PMCID: PMC8698572 DOI: 10.3390/biomedicines9121862] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 12/01/2021] [Accepted: 12/02/2021] [Indexed: 12/02/2022] Open
Abstract
Although dengue virus (DENV) affects almost half of the world’s population there are neither preventive treatments nor any long-lasting and protective vaccines available at this time. The complexity of the protective immune response to DENV is still not fully understood. The most advanced vaccine candidates focus specifically on humoral immune responses and the production of virus-neutralizing antibodies. However, results from several recent studies have revealed the protective role of T cells in the immune response to DENV. Hence, in this study, we generated a novel and potent DENV vaccine candidate based on an Orf virus (ORFV, genus Parapoxvirus) vector platform engineered to encode five highly conserved or cross-reactive DENV human leukocyte antigen (HLA)-A*02- or HLA-B*07-restricted epitopes as minigenes (ORFV-DENV). We showed that ORFV-DENV facilitates the in vitro priming of CD8+ T cells from healthy blood donors based on responses to each of the encoded immunogenic peptides. Moreover, we demonstrated that peripheral blood mononuclear cells isolated from clinically confirmed DENV-positive donors stimulated with ORFV-DENV generate cytotoxic T cell responses to at least three of the expressed DENV peptides. Finally, we showed that ORFV-DENV could activate CD8+ T cells isolated from donors who had recovered from Zika virus (ZIKV) infection. ZIKV belongs to the same virus family (Flaviviridae) and has epitope sequences that are homologous to those of DENV. We found that highly conserved HLA-B*07-restricted ZIKV and DENV epitopes induced functional CD8+ T cell responses in PBMCs isolated from confirmed ZIKV-positive donors. In summary, this proof-of-concept study characterizes a promising new ORFV D1701-VrV-based DENV vaccine candidate that induces broad and functional epitope-specific CD8+ T cell responses.
Collapse
Affiliation(s)
- Alena Reguzova
- Department of Immunology, Interfaculty Institute for Cell Biology, University of Tübingen, 72076 Tübingen, Germany; (A.R.); (M.M.); (F.S.)
| | - Nico Fischer
- Department of Infectious Diseases, Heidelberg Institute of Global Health (HIGH) & Tropical Medicine, Heidelberg University Hospital, 69120 Heidelberg, Germany; (N.F.); (T.J.)
| | - Melanie Müller
- Department of Immunology, Interfaculty Institute for Cell Biology, University of Tübingen, 72076 Tübingen, Germany; (A.R.); (M.M.); (F.S.)
| | - Ferdinand Salomon
- Department of Immunology, Interfaculty Institute for Cell Biology, University of Tübingen, 72076 Tübingen, Germany; (A.R.); (M.M.); (F.S.)
| | - Thomas Jaenisch
- Department of Infectious Diseases, Heidelberg Institute of Global Health (HIGH) & Tropical Medicine, Heidelberg University Hospital, 69120 Heidelberg, Germany; (N.F.); (T.J.)
| | - Ralf Amann
- Department of Immunology, Interfaculty Institute for Cell Biology, University of Tübingen, 72076 Tübingen, Germany; (A.R.); (M.M.); (F.S.)
- Correspondence: ; Tel.: +49-707-1298-7614
| |
Collapse
|
18
|
Bukar AM, Jesse FFA, Abdullah CAC, Noordin MM, Lawan Z, Mangga HK, Balakrishnan KN, Azmi MLM. Immunomodulatory Strategies for Parapoxvirus: Current Status and Future Approaches for the Development of Vaccines against Orf Virus Infection. Vaccines (Basel) 2021; 9:1341. [PMID: 34835272 PMCID: PMC8624149 DOI: 10.3390/vaccines9111341] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 08/25/2021] [Accepted: 08/25/2021] [Indexed: 11/17/2022] Open
Abstract
Orf virus (ORFV), the prototype species of the parapoxvirus genus, is the causative agent of contagious ecthyma, an extremely devastating skin disease of sheep, goats, and humans that causes enormous economic losses in livestock production. ORFV is known for its ability to repeatedly infect both previously infected and vaccinated sheep due to several immunomodulatory genes encoded by the virus that temporarily suppress host immunity. Therefore, the development of novel, safe and effective vaccines against ORFV infection is an important priority. Although, the commercially licensed live-attenuated vaccines have provided partial protection against ORFV infections, the attenuated viruses have been associated with major safety concerns. In addition to safety issues, the persistent reinfection of vaccinated animals warrants the need to investigate several factors that may affect vaccine efficacy. Perhaps, the reason for the failure of the vaccine is due to the long-term adaptation of the virus in tissue culture. In recent years, the development of vaccines against ORFV infection has achieved great success due to technological advances in recombinant DNA technologies, which have opened a pathway for the development of vaccine candidates that elicit robust immunity. In this review, we present current knowledge on immune responses elicited by ORFV, with particular attention to the effects of the viral immunomodulators on the host immune system. We also discuss the implications of strain variation for the development of rational vaccines. Finally, the review will also aim to demonstrate future strategies for the development of safe and efficient vaccines against ORFV infections.
Collapse
Affiliation(s)
- Alhaji Modu Bukar
- Department of Pathology and Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (M.M.N.); (Z.L.); (H.K.M.); (K.N.B.)
- Department of Science Laboratory Technology, School Agriculture and Applied Sciences, Ramat Polytechnic Maiduguri, Maiduguri 1070, Borno, Nigeria
| | - Faez Firdaus Abdullah Jesse
- Department of Veterinary Clinical Studies, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia;
| | | | - Mustapha M. Noordin
- Department of Pathology and Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (M.M.N.); (Z.L.); (H.K.M.); (K.N.B.)
| | - Zaharaddeen Lawan
- Department of Pathology and Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (M.M.N.); (Z.L.); (H.K.M.); (K.N.B.)
| | - Hassana Kyari Mangga
- Department of Pathology and Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (M.M.N.); (Z.L.); (H.K.M.); (K.N.B.)
| | - Krishnan Nair Balakrishnan
- Department of Pathology and Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (M.M.N.); (Z.L.); (H.K.M.); (K.N.B.)
| | - Mohd-Lila Mohd Azmi
- Department of Pathology and Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (M.M.N.); (Z.L.); (H.K.M.); (K.N.B.)
| |
Collapse
|
19
|
Martins M, Rodrigues FS, Joshi LR, Jardim JC, Flores MM, Weiblen R, Flores EF, Diel DG. Orf virus ORFV112, ORFV117 and ORFV127 contribute to ORFV IA82 virulence in sheep. Vet Microbiol 2021; 257:109066. [PMID: 33866062 DOI: 10.1016/j.vetmic.2021.109066] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 04/06/2021] [Indexed: 11/17/2022]
Abstract
The parapoxvirus orf virus (ORFV) encodes several immunomodulatory proteins (IMPs) that modulate host innate and pro-inflammatory responses to infection. Using the ORFV IA82 strain as the parental virus, recombinant viruses with individual deletions in the genes encoding the IMPs chemokine binding protein (CBP; ORFV112), inhibitor of granulocyte-monocyte colony-stimulating factor and IL-2 (GIF, ORFV117) and interleukin 10 homologue (vIL-10; ORFV127) were generated and characterized in vitro and in vivo. The replication properties of the individual gene deletion viruses in cell culture was not affected comparing with the parental virus. To investigate the effect of the individual gene deletions in ORFV infection and pathogenesis, groups of four lambs were inoculated with each virus and were monitored thereafter. Lambs inoculated with either recombinant or with the parental ORFV developed characteristic lesions of contagious ecthyma. The onset, nature and severity of the lesions in the oral commissure were similar in all inoculated groups from the onset (3 days post-inoculation [pi]) to the peak of clinical lesions (days 11-13 pi). Nonetheless, from days 11-13 pi onwards, the oral lesions in lambs inoculated with the recombinant viruses regressed faster than the lesions produced by the parental virus. Similarly, the amount of virus shed in the lesions were equivalent among lambs of all groups up to day 15 pi, yet they were significantly higher in the parental virus group from day 16-21 pi. In conclusion, individual deletion of these IMP genes from the ORFV genome resulted in slight reduction in virulence in vivo, as evidenced by a reduction in the duration of the clinical disease and virus shedding.
Collapse
Affiliation(s)
- Mathias Martins
- Department of Veterinary and Biomedical Sciences, South Dakota State University, Brookings, SD, United States; Setor de Virologia, Departamento de Medicina Veterinária Preventiva, Universidade Federal de Santa Maria, Av. Roraima 1000, prédio 63A, Santa Maria, Rio Grande do Sul, 97105-900, Brazil; Laboratório de Virologia, Medicina Veterinária, Programa de Pós-Graduação em Sanidade e Produção Animal, Universidade do Oeste de Santa Catarina, Campus II, Rodovia Rovilho Bortoluzzi, SC 480, Km 3.5, Xanxere, Santa Catarina, 89820-000, Brazil; Department of Population Medicine and Diagnostic Sciences, Animal Health Diagnostic Center, College of Veterinary Medicine, Cornell University, 240 Farrier Rd, Ithaca, NY, 14853, United States; Laboratório de Patologia Veterinária, Departamento de Patologia, Universidade Federal de Santa Maria, Av. Roraima, 1000, Santa Maria, Rio Grande do Sul, 97105-900, Brazil
| | - Fernando S Rodrigues
- Department of Veterinary and Biomedical Sciences, South Dakota State University, Brookings, SD, United States; Laboratório de Patologia Veterinária, Departamento de Patologia, Universidade Federal de Santa Maria, Av. Roraima, 1000, Santa Maria, Rio Grande do Sul, 97105-900, Brazil
| | - Lok R Joshi
- Department of Veterinary and Biomedical Sciences, South Dakota State University, Brookings, SD, United States; Department of Population Medicine and Diagnostic Sciences, Animal Health Diagnostic Center, College of Veterinary Medicine, Cornell University, 240 Farrier Rd, Ithaca, NY, 14853, United States; Laboratório de Patologia Veterinária, Departamento de Patologia, Universidade Federal de Santa Maria, Av. Roraima, 1000, Santa Maria, Rio Grande do Sul, 97105-900, Brazil
| | - José C Jardim
- Department of Veterinary and Biomedical Sciences, South Dakota State University, Brookings, SD, United States; Laboratório de Patologia Veterinária, Departamento de Patologia, Universidade Federal de Santa Maria, Av. Roraima, 1000, Santa Maria, Rio Grande do Sul, 97105-900, Brazil
| | - Mariana M Flores
- Setor de Virologia, Departamento de Medicina Veterinária Preventiva, Universidade Federal de Santa Maria, Av. Roraima 1000, prédio 63A, Santa Maria, Rio Grande do Sul, 97105-900, Brazil; Laboratório de Patologia Veterinária, Departamento de Patologia, Universidade Federal de Santa Maria, Av. Roraima, 1000, Santa Maria, Rio Grande do Sul, 97105-900, Brazil
| | - Rudi Weiblen
- Setor de Virologia, Departamento de Medicina Veterinária Preventiva, Universidade Federal de Santa Maria, Av. Roraima 1000, prédio 63A, Santa Maria, Rio Grande do Sul, 97105-900, Brazil; Laboratório de Patologia Veterinária, Departamento de Patologia, Universidade Federal de Santa Maria, Av. Roraima, 1000, Santa Maria, Rio Grande do Sul, 97105-900, Brazil
| | - Eduardo F Flores
- Setor de Virologia, Departamento de Medicina Veterinária Preventiva, Universidade Federal de Santa Maria, Av. Roraima 1000, prédio 63A, Santa Maria, Rio Grande do Sul, 97105-900, Brazil; Laboratório de Patologia Veterinária, Departamento de Patologia, Universidade Federal de Santa Maria, Av. Roraima, 1000, Santa Maria, Rio Grande do Sul, 97105-900, Brazil.
| | - Diego G Diel
- Department of Veterinary and Biomedical Sciences, South Dakota State University, Brookings, SD, United States; Department of Population Medicine and Diagnostic Sciences, Animal Health Diagnostic Center, College of Veterinary Medicine, Cornell University, 240 Farrier Rd, Ithaca, NY, 14853, United States; Laboratório de Patologia Veterinária, Departamento de Patologia, Universidade Federal de Santa Maria, Av. Roraima, 1000, Santa Maria, Rio Grande do Sul, 97105-900, Brazil.
| |
Collapse
|
20
|
Struzik J, Szulc-Dąbrowska L. NF-κB as an Important Factor in Optimizing Poxvirus-Based Vaccines against Viral Infections. Pathogens 2020; 9:pathogens9121001. [PMID: 33260450 PMCID: PMC7760304 DOI: 10.3390/pathogens9121001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 11/24/2020] [Accepted: 11/27/2020] [Indexed: 11/16/2022] Open
Abstract
Poxviruses are large dsDNA viruses that are regarded as good candidates for vaccine vectors. Because the members of the Poxviridae family encode numerous immunomodulatory proteins in their genomes, it is necessary to carry out certain modifications in poxviral candidates for vaccine vectors to improve the vaccine. Currently, several poxvirus-based vaccines targeted at viral infections are under development. One of the important aspects of the influence of poxviruses on the immune system is that they encode a large array of inhibitors of the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), which is the key element of both innate and adaptive immunity. Importantly, the NF-κB transcription factor induces the mechanisms associated with adaptive immunological memory involving the activation of effector and memory T cells upon vaccination. Since poxviruses encode various NF-κB inhibitor proteins, before the use of poxviral vaccine vectors, modifications that influence NF-κB activation and consequently affect the immunogenicity of the vaccine should be carried out. This review focuses on NF-κB as an essential factor in the optimization of poxviral vaccines against viral infections.
Collapse
|
21
|
Yao X, Pang M, Wang T, Chen X, Tang X, Chang J, Chen D, Ma W. Genomic Features and Evolution of the Parapoxvirus during the Past Two Decades. Pathogens 2020; 9:E888. [PMID: 33120928 PMCID: PMC7694016 DOI: 10.3390/pathogens9110888] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 10/21/2020] [Accepted: 10/24/2020] [Indexed: 11/23/2022] Open
Abstract
Parapoxvirus (PPV) has been identified in some mammals and poses a great threat to both the livestock production and public health. However, the prevalence and evolution of this virus are still not fully understood. Here, we performed an in silico analysis to investigate the genomic features and evolution of PPVs. We noticed that although there were significant differences of GC contents between orf virus (ORFV) and other three species of PPVs, all PPVs showed almost identical nucleotide bias, that is GC richness. The structural analysis of PPV genomes showed the divergence of different PPV species, which may be due to the specific adaptation to their natural hosts. Additionally, we estimated the phylogenetic diversity of seven different genes of PPV. According to all available sequences, our results suggested that during 2010-2018, ORFV was the dominant virus species under the selective pressure of the optimal gene patterns. Furthermore, we found the substitution rates ranged from 3.56 × 10-5 to 4.21 × 10-4 in different PPV segments, and the PPV VIR gene evolved at the highest substitution rate. In these seven protein-coding regions, purifying selection was the major evolutionary pressure, while the GIF and VIR genes suffered the greatest positive selection pressure. These results may provide useful knowledge on the virus genetic evolution from a new perspective which could help to create prevention and control strategies.
Collapse
Affiliation(s)
- Xiaoting Yao
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China; (X.Y.); (M.P.); (T.W.); (X.C.); (X.T.)
| | - Ming Pang
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China; (X.Y.); (M.P.); (T.W.); (X.C.); (X.T.)
| | - Tianxing Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China; (X.Y.); (M.P.); (T.W.); (X.C.); (X.T.)
| | - Xi Chen
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China; (X.Y.); (M.P.); (T.W.); (X.C.); (X.T.)
| | - Xidian Tang
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China; (X.Y.); (M.P.); (T.W.); (X.C.); (X.T.)
| | - Jianjun Chang
- College of Agriculture and Animal Husbandry, Qinghai University, Xining 810016, China;
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining 810016, China
| | - Dekun Chen
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China; (X.Y.); (M.P.); (T.W.); (X.C.); (X.T.)
| | - Wentao Ma
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China; (X.Y.); (M.P.); (T.W.); (X.C.); (X.T.)
| |
Collapse
|
22
|
Lothert K, Pagallies F, Eilts F, Sivanesapillai A, Hardt M, Moebus A, Feger T, Amann R, Wolff MW. A scalable downstream process for the purification of the cell culture-derived Orf virus for human or veterinary applications. J Biotechnol 2020; 323:221-230. [PMID: 32860824 DOI: 10.1016/j.jbiotec.2020.08.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 08/06/2020] [Accepted: 08/23/2020] [Indexed: 12/11/2022]
Abstract
The large demand for safe and efficient viral vector-based vaccines and gene therapies against both inherited and acquired diseases accelerates the development of viral vectors. One outstanding example, the Orf virus, has a wide range of applications, a superior efficacy and an excellent safety profile combined with a reduced pathogenicity compared to other viral vectors. However, besides these favorable attributes, an efficient and scalable downstream process still needs to be developed. Recently, we screened potential chromatographic stationary phases for Orf virus purification. Based on these previous accomplishments, we developed a complete downstream process for the cell culture-derived Orf virus. The described process comprises a membrane-based clarification step, a nuclease treatment, steric exclusion chromatography, and a secondary chromatographic purification step using Capto® Core 700 resin. The applicability of this process to a variety of diverse Orf virus vectors was shown, testing two different genotypes. These studies render the possibility to apply the developed downstream scheme for both genotypes, and lead to overall virus yields of about 64 %, with step recoveries of >70 % for the clarification, and >90 % for the chromatography train. Protein concentrations of the final product are below the detection limits, and the final DNA concentration of about 1 ng per 1E + 06 infective virus units resembles a total DNA depletion of 96-98 %.
Collapse
Affiliation(s)
- Keven Lothert
- Institute of Bioprocess Engineering and Pharmaceutical Technology, University of Applied Sciences Mittelhessen (THM), Giessen, Germany
| | - Felix Pagallies
- Department of Immunology, University of Tuebingen, Tuebingen, Germany
| | - Friederike Eilts
- Institute of Bioprocess Engineering and Pharmaceutical Technology, University of Applied Sciences Mittelhessen (THM), Giessen, Germany
| | - Arabi Sivanesapillai
- Institute of Bioprocess Engineering and Pharmaceutical Technology, University of Applied Sciences Mittelhessen (THM), Giessen, Germany
| | - Martin Hardt
- Imaging Unit, Biomedical Research Centre Seltersberg, Justus Liebig University, Giessen, Germany
| | - Anna Moebus
- Imaging Unit, Biomedical Research Centre Seltersberg, Justus Liebig University, Giessen, Germany
| | - Thomas Feger
- Department of Immunology, University of Tuebingen, Tuebingen, Germany
| | - Ralf Amann
- Department of Immunology, University of Tuebingen, Tuebingen, Germany
| | - Michael W Wolff
- Institute of Bioprocess Engineering and Pharmaceutical Technology, University of Applied Sciences Mittelhessen (THM), Giessen, Germany; Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Giessen, Germany.
| |
Collapse
|
23
|
Orf Virus-Based Therapeutic Vaccine for Treatment of Papillomavirus-Induced Tumors. J Virol 2020; 94:JVI.00398-20. [PMID: 32404527 DOI: 10.1128/jvi.00398-20] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 05/01/2020] [Indexed: 12/17/2022] Open
Abstract
Orf virus (ORFV) represents a suitable vector for the generation of efficient, prophylactic antiviral vaccines against different pathogens. The present study investigated for the first time the therapeutic application of ORFV vector-based vaccines against tumors induced by cottontail rabbit papillomavirus (CRPV). ORFV-CRPV recombinants were constructed expressing the early CRPV gene E1, E2, E7, or LE6. In two independent experiments we used in total 23 rabbits which were immunized with a mixture of the four ORFV-CRPV recombinants or empty ORFV vector as a control 5 weeks after the appearance of skin tumors. For the determination of the therapeutic efficacy, the subsequent growth of the tumors was recorded. In the first experiment, we could demonstrate that three immunizations of rabbits with high tumor burden with the combined four ORFV-CRPV recombinants resulted in significant growth retardation of the tumors compared to the control. A second experiment was performed to test the therapeutic effect of 5 doses of the combined vaccine in rabbits with a lower tumor burden than in nonimmunized rabbits. Tumor growth was significantly reduced after immunization, and one vaccinated rabbit even displayed complete tumor regression until the end of the observation period at 26 weeks. Results of delayed-type hypersensitivity (DTH) skin tests suggest the induction of a cellular immune response mediated by the ORFV-CRPV vaccine. The data presented show for the first time a therapeutic potential of the ORFV vector platform and encourage further studies for the development of a therapeutic vaccine against virus-induced tumors.IMPORTANCE Viral vectors are widely used for the development of therapeutic vaccines for the treatment of tumors. In our study we have used Orf virus (ORFV) strain D1701-V for the generation of recombinant vaccines expressing cottontail rabbit papillomavirus (CRPV) early proteins E1, E2, LE6, and E7. The therapeutic efficacy of the ORFV-CRPV vaccines was evaluated in two independent experiments using the outbred CRPV rabbit model. In both experiments the immunization achieved significant suppression of tumor growth. In total, 84.6% of all outbred animals benefited from the ORFV-CRPV vaccination, showing reduction in tumor size and significant tumor growth inhibition, including one animal with complete tumor regression without recurrence.
Collapse
|
24
|
Reguzova A, Ghosh M, Müller M, Rziha HJ, Amann R. Orf Virus-Based Vaccine Vector D1701-V Induces Strong CD8+ T Cell Response against the Transgene but Not against ORFV-Derived Epitopes. Vaccines (Basel) 2020; 8:E295. [PMID: 32531997 PMCID: PMC7349966 DOI: 10.3390/vaccines8020295] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 06/03/2020] [Accepted: 06/06/2020] [Indexed: 01/14/2023] Open
Abstract
The potency of viral vector-based vaccines depends on their ability to induce strong transgene-specific immune response without triggering anti-vector immunity. Previously, Orf virus (ORFV, Parapoxvirus) strain D1701-V was reported as a novel vector mediating protection against viral infections. The short-lived ORFV-specific immune response and the absence of virus neutralizing antibodies enables repeated immunizations and enhancement of humoral immune responses against the inserted antigens. However, only limited information exists about the D1701-V induced cellular immunity. In this study we employed major histocompatibility complex (MHC) ligandomics and immunogenicity analysis to identify ORFV-specific epitopes. Using liquid chromatography-tandem mass spectrometry we detected 36 ORFV-derived MHC I peptides, originating from various proteins. Stimulated splenocytes from ORFV-immunized mice did not exhibit specific CD8+ T cell responses against the tested peptides. In contrast, immunization with ovalbumin-expressing ORFV recombinant elicited strong SIINFEKL-specific CD8+ T lymphocyte response. In conclusion, our data indicate that cellular immunity to the ORFV vector is negligible, while strong CD8+ T cell response is induced against the inserted transgene. These results further emphasize the ORFV strain D1701-V as an attractive vector for vaccine development. Moreover, the presented experiments describe prerequisites for the selection of T cell epitopes exploitable for generation of ORFV-based vaccines by reverse genetics.
Collapse
Affiliation(s)
| | | | | | | | - Ralf Amann
- Department of Immunology, Interfaculty Institute for Cell Biology, University of Tübingen, 72076 Tübingen, Germany; (A.R.); (M.G.); (M.M.); (H.-J.R.)
| |
Collapse
|
25
|
Yamada Y, Liao GR, Tseng CY, Tseng YY, Hsu WL. Establishment and characterization of transformed goat primary cells by expression of simian virus 40 large T antigen for orf virus propagations. PLoS One 2019; 14:e0226105. [PMID: 31805146 PMCID: PMC6894772 DOI: 10.1371/journal.pone.0226105] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 11/19/2019] [Indexed: 12/18/2022] Open
Abstract
Due to the limited host range of orf virus (ORFV), primary cells derived from its natural hosts, such as goats and sheep, are recommended for isolation and propagation of wild type ORFV. This situation limits the option for the study of virus-host interaction during ORFV infection since primary cells only support a few numbers of passages. SV40 T antigen is a viral oncoprotein that can abrogate replicative senescence, leading to an extended life span of cells. In this study, the transformation of two goat primary cells, fibroblast (FB) and testis (GT) cells, were achieved by stably expressing SV40 T antigen using the lentiviral technique. The presence of the gene encoding SV40 T antigen was validated by polymerase chain reaction (PCR) and western blot analyses. As evidenced by immunofluorescent microscopy, the two types of cells expressing SV40 T antigen (namely, FBT and GTT) were purified to homogeneity. Moreover, faster growth kinetics and a lower serum dependency were noticed in FBT and GTT, as compared with their counterpart parental cells. FBT and GTT remain permissive and can form plaque of ORFV, despite with different profiles; generally speaking, with SV40 T expression, ORFV forms plaques with smaller size and distinct margin. Most importantly, the prolonged life span of goat FBT and GTT serves as an ideal cell culture resource for ORFV isolation from the field, studies of ORFV pathogenesis and efficient vaccine development.
Collapse
Affiliation(s)
- Yumiko Yamada
- Graduate Institute of Microbiology and Public Health, National Chung Hsing University, Taichung, Taiwan
| | - Guan-Ru Liao
- Graduate Institute of Microbiology and Public Health, National Chung Hsing University, Taichung, Taiwan
| | - Ching-Yu Tseng
- Graduate Institute of Microbiology and Public Health, National Chung Hsing University, Taichung, Taiwan
| | - Yeu-Yang Tseng
- Graduate Institute of Microbiology and Public Health, National Chung Hsing University, Taichung, Taiwan
- Department of Immunology and Infectious Diseases, John Curtin School of Medical Research, Australian National University, Canberra, Australia
| | - Wei-Li Hsu
- Graduate Institute of Microbiology and Public Health, National Chung Hsing University, Taichung, Taiwan
- * E-mail:
| |
Collapse
|