1
|
Escaffre O, Juelich TL, Smith JK, Zhang L, Pearson M, Bourne N, Freiberg AN. Efficacy of Polyphenylene Carboxymethylene (PPCM) Gel at Protecting Type I Interferon Receptors Knockout Mice from Intravaginal Ebola Virus Challenge. Viruses 2024; 16:1693. [PMID: 39599808 PMCID: PMC11598907 DOI: 10.3390/v16111693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/24/2024] [Accepted: 10/28/2024] [Indexed: 11/29/2024] Open
Abstract
Ebola virus (EBOV) is one of three filovirus members of the Orthoebolavirus genus that can cause severe Ebola disease (EBOD) in humans. Transmission predominantly occurs from spillover events from wildlife but has also happened between humans with infected bodily fluids. Specifically, the sexual route through infectious male survivors could be the origin of flare up events leading to the deaths of multiple women. More studies are needed to comprehend this route of infection which has recently received more focus. The use of microbicides prior to intercourse is of interest if neither of the Ebola vaccines are an option. These experimental products have been used against sexually transmitted diseases, and recently polyphenylene carboxymethylene (PPCM) showed efficacy against EBOV in vitro. Shortly after, the first animal model of EBOV sexual transmission was established using type I interferon receptors (IFNAR-/-) knockout female mice in which mortality endpoint could be achieved. Here, we investigated PPCM efficacy against a mouse-adapted (ma)EBOV isolate in IFNAR-/- mice and demonstrated that 4% PPCM gel caused a 20% reduction in mortality in two distinct groups compared to control groups when inoculated prior to virus challenge. Among animals that succumbed to disease despite PPCM treatment, we report an increase in median survival time as well as a less infectious virus, and fewer virus positive vaginal swabs compared to those from vehicle-treated animals, altogether indicating the beneficial effect of using PPCM prior to exposure. A post-study analysis of the different gel formulations tested indicated that buffering the gels would have prevented an increase in acidity seen only in vehicles, suggesting that PPCM antiviral efficacy against EBOV was suboptimal in our experimental set-up. These results are encouraging and warrant further studies using optimized stable formulations with the goal of providing additional safe protective countermeasures from sexual transmission of EBOV in humans.
Collapse
Affiliation(s)
- Olivier Escaffre
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA
- Institute for Human Infections & Immunity and Sealy & Smith Foundation, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Terry L. Juelich
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Jennifer K. Smith
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Lihong Zhang
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Madison Pearson
- Institute for Translational Sciences, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Nigel Bourne
- Institute for Human Infections & Immunity and Sealy & Smith Foundation, University of Texas Medical Branch, Galveston, TX 77555, USA
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
- Department of Pediatrics, University of Texas Medical Branch, Galveston, TX 77555, USA
- Sealy Institute for Vaccine Sciences, University of Texas Medical Branch, Galveston, TX 77555, USA
- Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Alexander N. Freiberg
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA
- Institute for Human Infections & Immunity and Sealy & Smith Foundation, University of Texas Medical Branch, Galveston, TX 77555, USA
- Sealy Institute for Vaccine Sciences, University of Texas Medical Branch, Galveston, TX 77555, USA
- Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, TX 77555, USA
| |
Collapse
|
2
|
Johnson DM, Juelich T, Zhang L, Smith JK, Kalveram BK, Perez D, Smith J, Grimes MR, Garron T, Torres M, Massey S, Brasel T, Beasley DWC, Freiberg AN, Comer JE. Comparison of Routes of Administration, Frequency, and Duration of Favipiravir Treatment in Mouse and Guinea Pig Models of Ebola Virus Disease. Viruses 2024; 16:1101. [PMID: 39066263 PMCID: PMC11281331 DOI: 10.3390/v16071101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 06/28/2024] [Accepted: 07/03/2024] [Indexed: 07/28/2024] Open
Abstract
Favipiravir is a ribonucleoside analogue that has been explored as a therapeutic for the treatment of Ebola Virus Disease (EVD). Promising data from rodent models has informed nonhuman primate trials, as well as evaluation in patients during the 2013-2016 West African EVD outbreak of favipiravir treatment. However, mixed results from these studies hindered regulatory approval of favipiravir for the indication of EVD. This study examined the influence of route of administration, duration of treatment, and treatment schedule of favipiravir in immune competent mouse and guinea pig models using rodent-adapted Zaire ebolavirus (EBOV). A dose of 300 mg/kg/day of favipiravir with an 8-day treatment was found to be fully effective at preventing lethal EVD-like disease in BALB/c mice regardless of route of administration (oral, intraperitoneal, or subcutaneous) or whether it was provided as a once-daily dose or a twice-daily split dose. Preclinical data generated in guinea pigs demonstrates that an 8-day treatment of 300 mg/kg/day of favipiravir reduces mortality following EBOV challenge regardless of route of treatment or duration of treatments for 8, 11, or 15 days. This work supports the future translational development of favipiravir as an EVD therapeutic.
Collapse
Affiliation(s)
- Dylan M. Johnson
- Department of Microbiology and Immunology, University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA
- Department of Biotechnology & Bioengineering, Sandia National Laboratories, Livermore, CA 945501, USA
| | - Terry Juelich
- Department of Pathology, University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA; (T.J.)
| | - Lihong Zhang
- Department of Pathology, University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA; (T.J.)
| | - Jennifer K. Smith
- Department of Pathology, University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA; (T.J.)
| | - Birte K. Kalveram
- Department of Pathology, University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA; (T.J.)
| | - David Perez
- Office of Biosafety, Texas A&M University, College Station, TX 77843, USA
| | - Jeanon Smith
- Office of Regulated Nonclinical Studies, University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA (S.M.)
| | - Michael R. Grimes
- Center for Molecular and Translational Human Infectious Diseases Research, Houston Methodist, Houston, TX 77030, USA;
| | - Tania Garron
- Department of Microbiology and Immunology, University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA
| | - Maricela Torres
- Department of Microbiology and Immunology, University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA
| | - Shane Massey
- Office of Regulated Nonclinical Studies, University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA (S.M.)
| | - Trevor Brasel
- Department of Microbiology and Immunology, University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA
- Office of Regulated Nonclinical Studies, University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA (S.M.)
| | - David W. C. Beasley
- Department of Microbiology and Immunology, University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA
- Office of Regulated Nonclinical Studies, University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA (S.M.)
| | - Alex N. Freiberg
- Department of Pathology, University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA; (T.J.)
| | - Jason E. Comer
- Department of Microbiology and Immunology, University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA
- Office of Regulated Nonclinical Studies, University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA (S.M.)
| |
Collapse
|
3
|
Dupuy LC, Spiropoulou CF, Towner JS, Spengler JR, Sullivan NJ, Montgomery JM. Filoviruses: Scientific Gaps and Prototype Pathogen Recommendation. J Infect Dis 2023; 228:S446-S459. [PMID: 37849404 PMCID: PMC11009505 DOI: 10.1093/infdis/jiad362] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2023] Open
Abstract
Viruses in the family Filoviridae, including the commonly known Ebola (EBOV) and Marburg (MARV) viruses, can cause severe hemorrhagic fever in humans and nonhuman primates. Sporadic outbreaks of filovirus disease occur in sub-Saharan Africa with reported case fatality rates ranging from 25% to 90%. The high mortality and increasing frequency and magnitude of recent outbreaks along with the increased potential for spread from rural to urban areas highlight the importance of pandemic preparedness for these viruses. Despite their designation as high-priority pathogens, numerous scientific gaps exist in critical areas. In this review, these gaps and an assessment of potential prototype pathogen candidates are presented for this important virus family.
Collapse
Affiliation(s)
- Lesley C Dupuy
- Virology Branch, Division of Microbiology and Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Christina F Spiropoulou
- Viral Special Pathogens Branch, Division of High Consequence Pathogens and Pathology, National Center for Emerging Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Jonathan S Towner
- Viral Special Pathogens Branch, Division of High Consequence Pathogens and Pathology, National Center for Emerging Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Jessica R Spengler
- Viral Special Pathogens Branch, Division of High Consequence Pathogens and Pathology, National Center for Emerging Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Nancy J Sullivan
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, Massachusetts, USA
| | - Joel M Montgomery
- Viral Special Pathogens Branch, Division of High Consequence Pathogens and Pathology, National Center for Emerging Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| |
Collapse
|
4
|
Escaffre O, Juelich TL, Smith JK, Zhang L, Bourne N, Freiberg AN. The Susceptibility of BALB/c Mice to a Mouse-Adapted Ebola Virus Intravaginal Infection. Viruses 2023; 15:1590. [PMID: 37515275 PMCID: PMC10386242 DOI: 10.3390/v15071590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/17/2023] [Accepted: 07/20/2023] [Indexed: 07/30/2023] Open
Abstract
Ebola virus (EBOV) causes Ebola virus disease (EVD), which is characterized by hemorrhagic fever with high mortality rates in humans. EBOV sexual transmission has been a concern since the 2014-2016 outbreak in Africa, as persistent infection in the testis and transmission to women was demonstrated. The only study related to establishing an intravaginal small animal infection model was recently documented in IFNAR-/- mice using wild-type and mouse-adapted EBOV (maEBOV), and resulted in 80% mortality, supporting epidemiological data. However, this route of transmission is still poorly understood in women, and the resulting EVD from it is understudied. Here, we contribute to this field of research by providing data from immunocompetent BALB/c mice. We demonstrate that progesterone priming increased the likelihood of maEBOV vaginal infection and of exhibiting the symptoms of disease and seroconversion. However, our data suggest subclinical infection, regardless of the infective dose. We conclude that maEBOV can infect BALB/c mice through vaginal inoculation, but that this route of infection causes significantly less disease compared to intraperitoneal injection at a similar dose, which is consistent with previous studies using other peripheral routes of inoculation in that animal model. Our data are inconsistent with the disease severity described in female patients, therefore suggesting that BALB/c mice are unsuitable for modeling typical EVD following vaginal challenge with maEBOV. Further studies are required to determine the mechanisms by which EVD is attenuated in BALB/c mice, using maEBOV via the vaginal route, as in our experimental set-up.
Collapse
Affiliation(s)
- Olivier Escaffre
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555-0609, USA
- Institute for Human Infections & Immunity and Sealy & Smith Foundation, University of Texas Medical Branch, Galveston, TX 77555-0609, USA
| | - Terry L Juelich
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555-0609, USA
| | - Jennifer K Smith
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555-0609, USA
| | - Lihong Zhang
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555-0609, USA
| | - Nigel Bourne
- Institute for Human Infections & Immunity and Sealy & Smith Foundation, University of Texas Medical Branch, Galveston, TX 77555-0609, USA
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555-0609, USA
- Department of Pediatrics, University of Texas Medical Branch, Galveston, TX 77555-0609, USA
- Sealy Institute for Vaccine Sciences, University of Texas Medical Branch, Galveston, TX 77555-0609, USA
- Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, TX 77555-0609, USA
| | - Alexander N Freiberg
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555-0609, USA
- Institute for Human Infections & Immunity and Sealy & Smith Foundation, University of Texas Medical Branch, Galveston, TX 77555-0609, USA
- Sealy Institute for Vaccine Sciences, University of Texas Medical Branch, Galveston, TX 77555-0609, USA
- Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, TX 77555-0609, USA
| |
Collapse
|
5
|
Finch CL, Dowling WE, King TH, Martinez C, Nguyen BV, Roozendaal R, Rustomjee R, Skiadopoulos MH, Vert-Wong E, Yellowlees A, Sullivan NJ. Bridging Animal and Human Data in Pursuit of Vaccine Licensure. Vaccines (Basel) 2022; 10:1384. [PMID: 36146462 PMCID: PMC9503666 DOI: 10.3390/vaccines10091384] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 08/03/2022] [Accepted: 08/17/2022] [Indexed: 11/17/2022] Open
Abstract
The FDA Animal Rule was devised to facilitate approval of candidate vaccines and therapeutics using animal survival data when human efficacy studies are not practical or ethical. This regulatory pathway is critical for candidates against pathogens with high case fatality rates that prohibit human challenge trials, as well as candidates with low and sporadic incidences of outbreaks that make human field trials difficult. Important components of a vaccine development plan for Animal Rule licensure are the identification of an immune correlate of protection and immunobridging to humans. The relationship of vaccine-induced immune responses to survival after vaccination and challenge must be established in validated animal models and then used to infer predictive vaccine efficacy in humans via immunobridging. The Sabin Vaccine Institute is pursuing licensure for candidate filovirus vaccines via the Animal Rule and has convened meetings of key opinion leaders and subject matter experts to define fundamental components for vaccine licensure in the absence of human efficacy data. Here, filoviruses are used as examples to review immune correlates of protection and immunobridging. The points presented herein reflect the presentations and discussions during the second meeting held in October 2021 and are intended to address important considerations for developing immunobridging strategies.
Collapse
Affiliation(s)
| | - William E. Dowling
- Coalition for Epidemic Preparedness Innovations, Washington, DC 20006, USA
| | | | | | - Bai V. Nguyen
- Biomedical Advanced Research and Development Authority, Office of the Assistant Secretary for Preparedness and Response, Department of Health and Human Services, Washington, DC 20201, USA
| | - Ramon Roozendaal
- Janssen Vaccines and Prevention B.V., Leiden Archimedesweg 4, 2333 CN Leiden, The Netherlands
| | | | | | | | | | - Nancy J. Sullivan
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
6
|
Dhanya CR, Shailaja A, Mary AS, Kandiyil SP, Savithri A, Lathakumari VS, Veettil JT, Vandanamthadathil JJ, Madhavan M. RNA Viruses, Pregnancy and Vaccination: Emerging Lessons from COVID-19 and Ebola Virus Disease. Pathogens 2022; 11:800. [PMID: 35890044 PMCID: PMC9322689 DOI: 10.3390/pathogens11070800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 07/10/2022] [Accepted: 07/11/2022] [Indexed: 02/01/2023] Open
Abstract
Pathogenic viruses with an RNA genome represent a challenge for global human health since they have the tremendous potential to develop into devastating pandemics/epidemics. The management of the recent COVID-19 pandemic was possible to a certain extent only because of the strong foundations laid by the research on previous viral outbreaks, especially Ebola Virus Disease (EVD). A clear understanding of the mechanisms of the host immune response generated upon viral infections is a prime requisite for the development of new therapeutic strategies. Hence, we present here a comparative study of alterations in immune response upon SARS-CoV-2 and Ebola virus infections that illustrate many common features. Vaccination and pregnancy are two important aspects that need to be studied from an immunological perspective. So, we summarize the outcomes and immune responses in vaccinated and pregnant individuals in the context of COVID-19 and EVD. Considering the significance of immunomodulatory approaches in combating both these diseases, we have also presented the state of the art of such therapeutics and prophylactics. Currently, several vaccines against these viruses have been approved or are under clinical trials in various parts of the world. Therefore, we also recapitulate the latest developments in these which would inspire researchers to look for possibilities of developing vaccines against many other RNA viruses. We hope that the similar aspects in COVID-19 and EVD open up new avenues for the development of pan-viral therapies.
Collapse
Affiliation(s)
| | - Aswathy Shailaja
- Department of Pediatrics, Duke University School of Medicine, Durham, NC 27710, USA;
| | - Aarcha Shanmugha Mary
- Department of Microbiology, School of Life Sciences, Central University of Tamil Nadu, Thiruvarur 610105, India;
| | | | - Ambili Savithri
- Department of Biochemistry, Sree Narayana College, Kollam 691001, India;
| | | | | | | | - Maya Madhavan
- Department of Biochemistry, Government College for Women, Thiruvananthapuram 695014, India
| |
Collapse
|
7
|
Collette N, Dhungel P, Lund SJ, Schwedler JL, Saada EA, Light YK, Sinha A, Schoeniger JS, Negrete OA. Immunocompromised Cas9 transgenic mice for rapid in vivo assessment of host factors involved in highly pathogenic virus infection. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2021; 23:286-295. [PMID: 34729376 PMCID: PMC8526419 DOI: 10.1016/j.omtm.2021.09.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 09/24/2021] [Indexed: 11/26/2022]
Abstract
Targeting host factors for anti-viral development offers several potential advantages over traditional countermeasures that include broad-spectrum activity and prevention of resistance. Characterization of host factors in animal models provides strong evidence of their involvement in disease pathogenesis, but the feasibility of performing high-throughput in vivo analyses on lists of genes is problematic. To begin addressing the challenges of screening candidate host factors in vivo, we combined advances in CRISPR-Cas9 genome editing with an immunocompromised mouse model used to study highly pathogenic viruses. Transgenic mice harboring a constitutively expressed Cas9 allele (Cas9tg/tg) with or without knockout of type I interferon receptors served to optimize in vivo delivery of CRISPR single-guide RNA (sgRNA) using Invivofectamine 3.0, a simple and easy-to-use lipid nanoparticle reagent. Invivofectamine 3.0-mediated liver-specific editing to remove activity of the critical Ebola virus host factor Niemann-Pick disease type C1 in an average of 74% of liver cells protected immunocompromised Cas9tg/tg mice from lethal surrogate Ebola virus infection. We envision that immunocompromised Cas9tg/tg mice combined with straightforward sgRNA in vivo delivery will enable efficient host factor loss-of-function screening in the liver and other organs to rapidly study their effects on viral pathogenesis and help initiate development of broad-spectrum, host-directed therapies against emerging pathogens.
Collapse
Affiliation(s)
- Nicole Collette
- Physical and Life Science Directorate, Lawrence Livermore National Laboratory, Livermore, CA, 94550, USA
| | - Pragyesh Dhungel
- Department of Biotechnology and Bioengineering, Sandia National Laboratories, Livermore, CA 94550, USA
| | - Sean J Lund
- Department of Biotechnology and Bioengineering, Sandia National Laboratories, Livermore, CA 94550, USA
| | - Jennifer L Schwedler
- Department of Biotechnology and Bioengineering, Sandia National Laboratories, Livermore, CA 94550, USA
| | - Edwin A Saada
- Department of Systems Biology, Sandia National Laboratories, Livermore, CA 94550, USA
| | - Yooli K Light
- Department of Systems Biology, Sandia National Laboratories, Livermore, CA 94550, USA
| | - Anupama Sinha
- Department of Systems Biology, Sandia National Laboratories, Livermore, CA 94550, USA
| | - Joseph S Schoeniger
- Department of Systems Biology, Sandia National Laboratories, Livermore, CA 94550, USA
| | - Oscar A Negrete
- Department of Biotechnology and Bioengineering, Sandia National Laboratories, Livermore, CA 94550, USA
| |
Collapse
|
8
|
Escaffre O, Juelich TL, Neef N, Massey S, Smith J, Brasel T, Smith JK, Kalveram B, Zhang L, Perez D, Ikegami T, Freiberg AN, Comer JE. STAT-1 Knockout Mice as a Model for Wild-Type Sudan Virus (SUDV). Viruses 2021; 13:v13071388. [PMID: 34372594 PMCID: PMC8310124 DOI: 10.3390/v13071388] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/14/2021] [Accepted: 07/16/2021] [Indexed: 12/03/2022] Open
Abstract
Currently there is no FDA-licensed vaccine or therapeutic against Sudan ebolavirus (SUDV) infections. The largest ever reported 2014–2016 West Africa outbreak, as well as the 2021 outbreak in the Democratic Republic of Congo, highlight the critical need for countermeasures against filovirus infections. A well-characterized small animal model that is susceptible to wild-type filoviruses would greatly add to the screening of antivirals and vaccines. Here, we infected signal transducer and activator of transcription-1 knock out (STAT-1 KO) mice with five different wildtype filoviruses to determine susceptibility. SUDV and Marburg virus (MARV) were the most virulent, and caused 100% or 80% lethality, respectively. Zaire ebolavirus (EBOV), Bundibugyo ebolavirus (BDBV), and Taï Forest ebolavirus (TAFV) caused 40%, 20%, and no mortality, respectively. Further characterization of SUDV in STAT-1 KO mice demonstrated lethality down to 3.1 × 101 pfu. Viral genomic material was detectable in serum as early as 1 to 2 days post-challenge. The onset of viremia was closely followed by significant changes in total white blood cells and proportion of neutrophils and lymphocytes, as well as by an influx of neutrophils in the liver and spleen. Concomitant significant fluctuations in blood glucose, albumin, globulin, and alanine aminotransferase were also noted, altogether consistent with other models of filovirus infection. Finally, favipiravir treatment fully protected STAT-1 KO mice from lethal SUDV challenge, suggesting that this may be an appropriate small animal model to screen anti-SUDV countermeasures.
Collapse
Affiliation(s)
- Olivier Escaffre
- Department of Pathology, University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA; (O.E.); (T.L.J.); (J.K.S.); (B.K.); (L.Z.); (T.I.)
| | - Terry L. Juelich
- Department of Pathology, University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA; (O.E.); (T.L.J.); (J.K.S.); (B.K.); (L.Z.); (T.I.)
| | - Natasha Neef
- XTR Toxicologic Pathology Services LLC, Sterling, VA 20165, USA;
| | - Shane Massey
- Office of Regulated Nonclinical Studies, University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA; (S.M.); (J.S.); (T.B.)
| | - Jeanon Smith
- Office of Regulated Nonclinical Studies, University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA; (S.M.); (J.S.); (T.B.)
| | - Trevor Brasel
- Office of Regulated Nonclinical Studies, University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA; (S.M.); (J.S.); (T.B.)
- Department of Microbiology and Immunology, University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA
- The Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA
| | - Jennifer K. Smith
- Department of Pathology, University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA; (O.E.); (T.L.J.); (J.K.S.); (B.K.); (L.Z.); (T.I.)
| | - Birte Kalveram
- Department of Pathology, University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA; (O.E.); (T.L.J.); (J.K.S.); (B.K.); (L.Z.); (T.I.)
| | - Lihong Zhang
- Department of Pathology, University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA; (O.E.); (T.L.J.); (J.K.S.); (B.K.); (L.Z.); (T.I.)
| | - David Perez
- Texas A&M University Division of Research, Texas A&M University, College Station, TX 77843, USA;
| | - Tetsuro Ikegami
- Department of Pathology, University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA; (O.E.); (T.L.J.); (J.K.S.); (B.K.); (L.Z.); (T.I.)
- The Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA
- Sealy Institute for Vaccine Sciences, University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA
- Institute for Human Infections and Immunity, University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA
| | - Alexander N. Freiberg
- Department of Pathology, University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA; (O.E.); (T.L.J.); (J.K.S.); (B.K.); (L.Z.); (T.I.)
- The Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA
- Sealy Institute for Vaccine Sciences, University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA
- Institute for Human Infections and Immunity, University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA
- Correspondence: (A.N.F.); (J.E.C.)
| | - Jason E. Comer
- Office of Regulated Nonclinical Studies, University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA; (S.M.); (J.S.); (T.B.)
- Department of Microbiology and Immunology, University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA
- The Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA
- Institute of Translational Sciences, University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA
- Correspondence: (A.N.F.); (J.E.C.)
| |
Collapse
|
9
|
Brasel T, Comer JE, Massey S, Smith J, Smith J, Hyde M, Kocsis A, Gainey M, Niemuth N, Triplett C, Rudge T. Mucosal Challenge Ferret Models of Ebola Virus Disease. Pathogens 2021; 10:pathogens10030292. [PMID: 33806375 PMCID: PMC8001755 DOI: 10.3390/pathogens10030292] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/26/2021] [Accepted: 03/01/2021] [Indexed: 01/03/2023] Open
Abstract
Recent studies have shown the domestic ferret (Mustela putorius furo) to be a promising small animal model for the study of Ebola virus (EBOV) disease and medical countermeasure evaluation. To date, most studies have focused on traditional challenge routes, predominantly intramuscular and intranasal administration. Here, we present results from a non-clinical pathogenicity study examining oronasal, oral, and ocular mucosal challenge routes in ferrets. Animals were challenged with 1, 10, or 100 plaque forming units EBOV followed by monitoring of disease progression and biosampling. Ferrets administered virus via oronasal and oral routes met euthanasia criteria due to advanced disease 5–10 days post-challenge. Conversely, all ferrets dosed via the ocular route survived until the scheduled study termination 28-day post-challenge. In animals that succumbed to disease, a dose/route response was not observed; increases in disease severity, febrile responses, serum and tissue viral load, alterations in clinical pathology, and gross/histopathology findings were similar between subjects. Disease progression in ferrets challenged via ocular administration was unremarkable throughout the study period. Results from this study further support the ferret as a model for EBOV disease following oral and nasal mucosa exposure.
Collapse
Affiliation(s)
- Trevor Brasel
- Department of Microbiology and Immunology, University of Texas Medical Branch, 301 University Blvd., Galveston, TX 77573, USA; (J.E.C.); (S.M.); (J.S.)
- Correspondence: ; Tel.: +1-409-266-6907
| | - Jason E. Comer
- Department of Microbiology and Immunology, University of Texas Medical Branch, 301 University Blvd., Galveston, TX 77573, USA; (J.E.C.); (S.M.); (J.S.)
| | - Shane Massey
- Department of Microbiology and Immunology, University of Texas Medical Branch, 301 University Blvd., Galveston, TX 77573, USA; (J.E.C.); (S.M.); (J.S.)
| | - Jeanon Smith
- Department of Microbiology and Immunology, University of Texas Medical Branch, 301 University Blvd., Galveston, TX 77573, USA; (J.E.C.); (S.M.); (J.S.)
| | - Jennifer Smith
- Department of Pathology, University of Texas Medical Branch, 301 University Blvd., Galveston, TX 77573, USA;
| | - Matthew Hyde
- Animal Resources Center, University of Texas Medical Branch, 301 University Blvd., Galveston, TX 77573, USA; (M.H.); (A.K.)
| | - Andrew Kocsis
- Animal Resources Center, University of Texas Medical Branch, 301 University Blvd., Galveston, TX 77573, USA; (M.H.); (A.K.)
| | - Melicia Gainey
- Battelle, 1425 Plain City-Georgesville Road, NE, West Jefferson, OH 43162, USA; (M.G.); (N.N.); (C.T.); (T.R.J.)
| | - Nancy Niemuth
- Battelle, 1425 Plain City-Georgesville Road, NE, West Jefferson, OH 43162, USA; (M.G.); (N.N.); (C.T.); (T.R.J.)
| | - Cheryl Triplett
- Battelle, 1425 Plain City-Georgesville Road, NE, West Jefferson, OH 43162, USA; (M.G.); (N.N.); (C.T.); (T.R.J.)
| | - Thomas Rudge
- Battelle, 1425 Plain City-Georgesville Road, NE, West Jefferson, OH 43162, USA; (M.G.); (N.N.); (C.T.); (T.R.J.)
| |
Collapse
|
10
|
Rubsamen R, Burkholz S, Massey C, Brasel T, Hodge T, Wang L, Herst C, Carback R, Harris P. Anti-IL-6 Versus Anti-IL-6R Blocking Antibodies to Treat Acute Ebola Infection in BALB/c Mice: Potential Implications for Treating Cytokine Release Syndrome. Front Pharmacol 2020; 11:574703. [PMID: 33071786 PMCID: PMC7538647 DOI: 10.3389/fphar.2020.574703] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Accepted: 08/31/2020] [Indexed: 12/15/2022] Open
Abstract
Cytokine release syndrome (CRS) is known to be a factor in morbidity and mortality associated with acute viral infections including those caused by filoviruses and coronaviruses. IL-6 has been implicated as a cytokine negatively associated with survival after filovirus and coronavirus infection. However, IL-6 has also been shown to be an important mediator of innate immunity and important for the host response to an acute viral infection. Clinical studies are now being conducted by various researchers to evaluate the possible role of IL-6 blockers to improve outcomes in critically ill patients with CRS. Most of these studies involve the use of anti-IL-6R monoclonal antibodies (α-IL-6R mAbs). We present data showing that direct neutralization of IL-6 with an α-IL-6 mAb in a BALB/c Ebolavirus (EBOV) challenge model produced a statistically significant improvement in outcome compared with controls when administered within the first 24 h of challenge and repeated every 72 h. A similar effect was seen in mice treated with the same dose of α-IL-6R mAb when the treatment was delayed 48 h post-challenge. These data suggest that direct neutralization of IL-6, early during the course of infection, may provide additional clinical benefits to IL-6 receptor blockade alone during treatment of patients with virus-induced CRS.
Collapse
Affiliation(s)
- Reid Rubsamen
- Flow Pharma Inc., Pleasant Hill, CA, United States.,Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, United States
| | | | - Christopher Massey
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, United States
| | - Trevor Brasel
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, United States
| | - Tom Hodge
- Flow Pharma Inc., Pleasant Hill, CA, United States
| | - Lu Wang
- Flow Pharma Inc., Pleasant Hill, CA, United States
| | | | | | - Paul Harris
- Department of Medicine, Columbia University, New York, NY, United States
| |
Collapse
|
11
|
Lane TR, Massey C, Comer JE, Freiberg AN, Zhou H, Dyall J, Holbrook MR, Anantpadma M, Davey RA, Madrid PB, Ekins S. Pyronaridine tetraphosphate efficacy against Ebola virus infection in guinea pig. Antiviral Res 2020; 181:104863. [PMID: 32682926 PMCID: PMC8194506 DOI: 10.1016/j.antiviral.2020.104863] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 06/15/2020] [Accepted: 06/16/2020] [Indexed: 12/22/2022]
Abstract
The recent outbreaks of the Ebola virus (EBOV) in Africa have brought global visibility to the shortage of available therapeutic options to treat patients infected with this or closely related viruses. We have recently computationally identified three molecules which have all demonstrated statistically significant efficacy in the mouse model of infection with mouse adapted Ebola virus (ma-EBOV). One of these molecules is the antimalarial pyronaridine tetraphosphate (IC50 range of 0.82-1.30 μM against three strains of EBOV and IC50 range of 1.01-2.72 μM against two strains of Marburg virus (MARV)) which is an approved drug in the European Union and used in combination with artesunate. To date, no small molecule drugs have shown statistically significant efficacy in the guinea pig model of EBOV infection. Pharmacokinetics and range-finding studies in guinea pigs directed us to a single 300 mg/kg or 600 mg/kg oral dose of pyronaridine 1hr after infection. Pyronaridine resulted in statistically significant survival of 40% at 300 mg/kg and protected from a lethal challenge with EBOV. In comparison, oral favipiravir (300 mg/kg dosed once a day) had 43.5% survival. All animals in the vehicle treatment group succumbed to disease by study day 12 (100% mortality). The in vitro metabolism and metabolite identification of pyronaridine and another of our EBOV active molecules, tilorone, suggested significant species differences which may account for the efficacy or lack thereof, respectively in guinea pig. In summary, our studies with pyronaridine demonstrates its utility for repurposing as an antiviral against EBOV and MARV.
Collapse
Affiliation(s)
- Thomas R. Lane
- Collaborations Pharmaceuticals, Inc., 840 Main Campus Drive, Lab 3510, Raleigh, NC 27606, USA
| | - Christopher Massey
- Institutional Office of Regulated Nonclinical Studies, University of Texas Medical Branch, 301 University Blvd., Galveston, TX 77555, USA
| | - Jason E. Comer
- Institutional Office of Regulated Nonclinical Studies, University of Texas Medical Branch, 301 University Blvd., Galveston, TX 77555, USA
- Department of Microbiology and Immunology, University of Texas Medical Branch, 301 University Blvd., Galveston, TX 77555, USA
- Sealy Institute for Vaccine Sciences, University of Texas Medical Branch, 301 University Blvd., Galveston, TX 77555, USA
| | - Alexander N. Freiberg
- Sealy Institute for Vaccine Sciences, University of Texas Medical Branch, 301 University Blvd., Galveston, TX 77555, USA
- Department of Pathology, University of Texas Medical Branch, 301 University Blvd., Galveston, TX 77555, USA
| | - Huanying Zhou
- Integrated Research Facility, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, MD, USA
| | - Julie Dyall
- Integrated Research Facility, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, MD, USA
| | - Michael R. Holbrook
- Integrated Research Facility, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, MD, USA
| | - Manu Anantpadma
- Texas Biomedical Research Institute, San Antonio, TX 78227, USA
| | - Robert A. Davey
- Texas Biomedical Research Institute, San Antonio, TX 78227, USA
| | - Peter B. Madrid
- SRI International, 333 Ravenswood Avenue, Menlo Park, CA 94025, USA
| | - Sean Ekins
- Collaborations Pharmaceuticals, Inc., 840 Main Campus Drive, Lab 3510, Raleigh, NC 27606, USA
| |
Collapse
|
12
|
A Surrogate Animal Model for Screening of Ebola and Marburg Glycoprotein-Targeting Drugs Using Pseudotyped Vesicular Stomatitis Viruses. Viruses 2020; 12:v12090923. [PMID: 32842671 PMCID: PMC7552044 DOI: 10.3390/v12090923] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 08/20/2020] [Accepted: 08/20/2020] [Indexed: 12/25/2022] Open
Abstract
Filoviruses, including Ebola virus (EBOV) and Marburg virus (MARV), cause severe hemorrhagic fever in humans and nonhuman primates with high mortality rates. There is no approved therapy against these deadly viruses. Antiviral drug development has been hampered by the requirement of a biosafety level (BSL)-4 facility to handle infectious EBOV and MARV because of their high pathogenicity to humans. In this study, we aimed to establish a surrogate animal model that can be used for anti-EBOV and -MARV drug screening under BSL-2 conditions by focusing on the replication-competent recombinant vesicular stomatitis virus (rVSV) pseudotyped with the envelope glycoprotein (GP) of EBOV (rVSV/EBOV) and MARV (rVSV/MARV), which has been investigated as vaccine candidates and thus widely used in BSL-2 laboratories. We first inoculated mice, rats, and hamsters intraperitoneally with rVSV/EBOV and found that only hamsters showed disease signs and succumbed within 4 days post-infection. Infection with rVSV/MARV also caused lethal infection in hamsters. Both rVSV/EBOV and rVSV/MARV were detected at high titers in multiple organs including the liver, spleen, kidney, and lungs of infected hamsters, indicating acute and systemic infection resulting in fatal outcomes. Therapeutic effects of passive immunization with an anti-EBOV neutralizing antibody were specifically observed in rVSV/EBOV-infected hamsters. Thus, this animal model is expected to be a useful tool to facilitate in vivo screening of anti-filovirus drugs targeting the GP molecule.
Collapse
|
13
|
Lane TR, Ekins S. Toward the Target: Tilorone, Quinacrine, and Pyronaridine Bind to Ebola Virus Glycoprotein. ACS Med Chem Lett 2020; 11:1653-1658. [PMID: 32832035 DOI: 10.1021/acsmedchemlett.0c00298] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 07/23/2020] [Indexed: 12/20/2022] Open
Abstract
Pyronaridine, tilorone, and quinacrine were recently identified by a machine learning model and demonstrated in vitro and in vivo activity against Ebola virus (EBOV) and represent viable candidates for drug repurposing. The target for these molecules was previously unknown. These drugs have now been docked into the crystal structure of the ebola glycoprotein and then experimentally validated in vitro using microscale thermophoresis to generate K d values for tilorone (0.73 μM), pyronaridine (7.34 μM), and quinacrine (7.55 μM). These molecules were shown to bind with a higher affinity than the previously reported toremifene (16 μM). These three structures provide more insight into the structural diversity of ebola glycoprotein inhibitors which can be utilized in the discovery and design of additional inhibitors.
Collapse
Affiliation(s)
- Thomas R. Lane
- Collaborations Pharmaceuticals, Inc., 840 Main Campus Drive, Lab 3510, Raleigh, North Carolina 27606, United States
| | - Sean Ekins
- Collaborations Pharmaceuticals, Inc., 840 Main Campus Drive, Lab 3510, Raleigh, North Carolina 27606, United States
| |
Collapse
|
14
|
Zivcec M, Spiropoulou CF, Spengler JR. The use of mice lacking type I or both type I and type II interferon responses in research on hemorrhagic fever viruses. Part 2: Vaccine efficacy studies. Antiviral Res 2020; 174:104702. [PMID: 31982149 DOI: 10.1016/j.antiviral.2019.104702] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 11/13/2019] [Accepted: 12/20/2019] [Indexed: 12/24/2022]
Abstract
For more than 20 years, researchers have used laboratory mice lacking type I or both type I and II interferon (IFN) responses to study high-containment viruses that cause hemorrhagic fevers (HF) in humans. With the exception of Rift Valley fever virus, agents that cause viral HF in humans, such as Ebola and Lassa virus, do not cause disease in mature immunocompetent mice. In contrast, IFN-deficient mice typically develop severe or fatal disease when inoculated with these agents. The sensitivity of IFN-deficient mice to disease has led to their widespread use in biocontainment laboratories to assess the efficacy of novel vaccines against HF viruses, often without considering whether adaptive immune responses in IFN-deficient mice accurately mirror those in immunocompetent humans. Failure to recognize these questions may lead to inappropriate expectations of the predictive value of mouse experiments. In two invited articles, we investigate these questions. The present article reviews the use of IFN-deficient mice for assessing novel vaccines against HF viruses, including Ebola, Lassa, Crimean-Congo hemorrhagic fever and Rift Valley fever viruses. A companion paper examines the general question of how the lack of IFN signaling may affect adaptive immune responses and the outcome of vaccine studies in mice.
Collapse
Affiliation(s)
- Marko Zivcec
- Viral Special Pathogens Branch, Division of High Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Christina F Spiropoulou
- Viral Special Pathogens Branch, Division of High Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Jessica R Spengler
- Viral Special Pathogens Branch, Division of High Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA.
| |
Collapse
|
15
|
Ebola virus disease: An emerging and re-emerging viral threat. J Autoimmun 2019; 106:102375. [PMID: 31806422 DOI: 10.1016/j.jaut.2019.102375] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 11/19/2019] [Accepted: 11/21/2019] [Indexed: 12/21/2022]
Abstract
The genus Ebolavirus from the family Filoviridae is composed of five species including Sudan ebolavirus, Reston ebolavirus, Bundibugyo ebolavirus, Taï Forest ebolavirus, and Ebola virus (previously known as Zaire ebolavirus). These viruses have a large non-segmented, negative-strand RNA of approximately 19 kb that encodes for glycoproteins (i.e., GP, sGP, ssGP), nucleoproteins, virion proteins (i.e., VP 24, 30,40) and an RNA dependent RNA polymerase. These viruses have become a global health concern because of mortality, their rapid dissemination, new outbreaks in West-Africa, and the emergence of a new condition known as "Post-Ebola virus disease syndrome" that resembles inflammatory and autoimmune conditions such as rheumatoid arthritis, systemic lupus erythematosus and spondyloarthritis with uveitis. However, there are many gaps in the understanding of the mechanisms that may induce the development of such autoimmune-like syndromes. Some of these mechanisms may include a high formation of neutrophil extracellular traps, an uncontrolled "cytokine storm", and the possible formation of auto-antibodies. The likely appearance of autoimmune phenomena in Ebola survivors suppose a new challenge in the management and control of this disease and opens a new field of research in a special subgroup of patients. Herein, the molecular biology, pathogenesis, clinical manifestations, and treatment of Ebola virus disease are reviewed and some strategies for control of disease are discussed.
Collapse
|