1
|
Bedsted AE, Rasmussen TB, Martinenghi LD, Bøtner A, Nauwynck H, Belsham GJ. Porcine respiratory coronavirus genome sequences; comparisons and relationships to transmissible gastroenteritis viruses. Virology 2024; 595:110072. [PMID: 38599031 DOI: 10.1016/j.virol.2024.110072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/14/2024] [Accepted: 03/29/2024] [Indexed: 04/12/2024]
Abstract
Porcine respiratory coronavirus (PRCV) was initially detected in Europe, and later in the United States of America (US), in the 1980s. In this study we obtained and compared PRCV sequences from Europe and the US, and investigated how these are related to transmissible gastroenteritis virus (TGEV) sequences. The whole genome sequences of Danish (1/90-DK), Italian (PRCV15087/12 III NPTV Parma), and Belgian PRCV (91V44) strains are presented. These sequences were aligned with nine other PRCV sequences from Europe and the US, and 43 TGEV sequences. Following alignment of the PRCV sequences, it was apparent that multiple amino acid variations in the structural proteins were distinct between the European and US strains. The alignments were used to build phylogenetic trees to infer the evolutionary relationships between the strains. In these trees, the European PRCV strains clustered as a separate group, whereas the US strains of PRCV all clustered with TGEVs.
Collapse
Affiliation(s)
- Amalie Ehlers Bedsted
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 1870, Frederiksberg, Denmark
| | - Thomas Bruun Rasmussen
- Department of Virus and Microbiological Special Diagnostics, Statens Serum Institut, Copenhagen, Denmark
| | - Laura D Martinenghi
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 1870, Frederiksberg, Denmark; Department of Virus and Microbiological Special Diagnostics, Statens Serum Institut, Copenhagen, Denmark
| | - Anette Bøtner
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 1870, Frederiksberg, Denmark
| | - Hans Nauwynck
- Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, University of Ghent, 9820, Merelbeke, Belgium
| | - Graham J Belsham
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 1870, Frederiksberg, Denmark.
| |
Collapse
|
2
|
Ujike M, Suzuki T. Progress of research on coronaviruses and toroviruses in large domestic animals using reverse genetics systems. Vet J 2024; 305:106122. [PMID: 38641200 DOI: 10.1016/j.tvjl.2024.106122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 03/24/2024] [Accepted: 04/14/2024] [Indexed: 04/21/2024]
Abstract
The generation of genetically engineered recombinant viruses from modified DNA/RNA is commonly referred to as reverse genetics, which allows the introduction of desired mutations into the viral genome. Reverse genetics systems (RGSs) are powerful tools for studying fundamental viral processes, mechanisms of infection, pathogenesis and vaccine development. However, establishing RGS for coronaviruses (CoVs) and toroviruses (ToVs), which have the largest genomes among vertebrate RNA viruses, is laborious and hampered by technical constraints. Hence, little research has focused on animal CoVs and ToVs using RGSs, especially in large domestic animals such as pigs and cattle. In the last decade, however, studies of porcine CoVs and bovine ToVs using RGSs have been reported. In addition, the coronavirus disease-2019 pandemic has prompted the development of new and simple CoV RGSs, which will accelerate RGS-based research on animal CoVs and ToVs. In this review, we summarise the general characteristics of CoVs and ToVs, the RGSs available for CoVs and ToVs and the progress made in the last decade in RGS-based research on porcine CoVs and bovine ToVs.
Collapse
Affiliation(s)
- Makoto Ujike
- Laboratory of Veterinary Infectious Diseases, Faculty of Veterinary Medicine, Nippon Veterinary and Life Science University, 1-7-1 Kyonan-cho, Musashino, Tokyo 180-8602, Japan; Research Center for Animal Life Science, Nippon Veterinary and Life Science University, 1-7-1 Kyonan-cho, Musashino, Tokyo 180-8602, Japan.
| | - Tohru Suzuki
- Division of Zoonosis Research, Sapporo Research Station, National Institute of Animal Health, NARO, Sapporo, Hokkaido 062-0045, Japan
| |
Collapse
|
3
|
Xie Y, Chen C, Zhang D, Jiao Z, Chen Y, Wang G, Tan Y, Zhang W, Xiao S, Peng G, Shi Y. Diversity for endoribonuclease nsp15-mediated regulation of alpha-coronavirus propagation and virulence. Microbiol Spectr 2023; 11:e0220923. [PMID: 37938022 PMCID: PMC10715224 DOI: 10.1128/spectrum.02209-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 08/24/2023] [Indexed: 11/09/2023] Open
Abstract
IMPORTANCE Understanding the role of the endoribonuclease non-structural protein 15 (nsp15) (EndoU) in coronavirus (CoV) infection and pathogenesis is essential for vaccine target discovery. Whether the EndoU activity of CoV nsp15, as a virulence-related protein, has a diverse effect on viral virulence needs to be further explored. Here, we found that the transmissible gastroenteritis virus (TGEV) and feline infectious peritonitis virus (FIPV) nsp15 proteins antagonize SeV-induced interferon-β (IFN-β) production in human embryonic kidney 293 cells. Interestingly, compared with wild-type infection, infection with EnUmt-TGEV or EnUmt-FIPV did not change the IFN-β response or reduce viral propagation in immunocompetent cells. The results of animal experiments showed that EnUmt viruses did not reduce the clinical presentation and mortality caused by TGEV and FIPV. Our findings enrich the understanding of nsp15-mediated regulation of alpha-CoV propagation and virulence and reveal that the conserved functions of nonstructural proteins have diverse effects on the pathogenicity of CoVs.
Collapse
Affiliation(s)
- Yunfei Xie
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, China
| | - Chener Chen
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, China
| | - Ding Zhang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, China
| | - Zhe Jiao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, China
| | - Yixi Chen
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, China
| | - Gang Wang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, China
| | - Yubei Tan
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, China
| | - Wanpo Zhang
- Veterinary Pathology Laboratory, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Shaobo Xiao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, China
| | - Guiqing Peng
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, China
| | - Yuejun Shi
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, China
| |
Collapse
|
4
|
Rawal G, Yim-im W, Aljets E, Halbur PG, Zhang J, Opriessnig T. Porcine Respiratory Coronavirus (PRCV): Isolation and Characterization of a Variant PRCV from USA Pigs. Pathogens 2023; 12:1097. [PMID: 37764905 PMCID: PMC10536027 DOI: 10.3390/pathogens12091097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/23/2023] [Accepted: 08/23/2023] [Indexed: 09/29/2023] Open
Abstract
Porcine respiratory coronavirus (PRCV), a mutant of the transmissible gastroenteritis virus (TGEV), was first reported in Belgium in 1984. PRCV typically replicates and induces mild lesions in the respiratory tract, distinct from the enteric tropism of TGEV. In the past 30 years, PRCV has rarely been studied, and most cited information is on traditional isolates obtained during the 1980s and 1990s. Little is known about the genetic makeup and pathogenicity of recent PRCV isolates. The objective of this study was to obtain a contemporary PRCV isolate from US pigs for genetic characterization. In total, 1245 lung homogenate samples from pigs in various US states were tested via real-time PCR targeting PRCV and TGEV RNA. Overall, PRCV RNA was detected in five samples, and a single isolate (ISU20-92330) was successfully cultured and sequenced for its full-length genome. The isolate clustered with a new group of variant TGEVs and differed in various genomic regions compared to traditional PRCV isolates. Pathogens, such as PRCV, commonly circulate in pig herds without causing major disease. There may be value in tracking genomic changes and regularly updating the diagnostic methods for such viruses to be better prepared for the emergence of variants in ecology and pathogenicity.
Collapse
Affiliation(s)
- Gaurav Rawal
- Department of Veterinary Diagnostic and Production Animal Medicine, Iowa State University, Ames, IA 50011, USA; (G.R.); (W.Y.-i.); (E.A.); (P.G.H.)
| | - Wannarat Yim-im
- Department of Veterinary Diagnostic and Production Animal Medicine, Iowa State University, Ames, IA 50011, USA; (G.R.); (W.Y.-i.); (E.A.); (P.G.H.)
| | - Ethan Aljets
- Department of Veterinary Diagnostic and Production Animal Medicine, Iowa State University, Ames, IA 50011, USA; (G.R.); (W.Y.-i.); (E.A.); (P.G.H.)
| | - Patrick G. Halbur
- Department of Veterinary Diagnostic and Production Animal Medicine, Iowa State University, Ames, IA 50011, USA; (G.R.); (W.Y.-i.); (E.A.); (P.G.H.)
| | - Jianqiang Zhang
- Department of Veterinary Diagnostic and Production Animal Medicine, Iowa State University, Ames, IA 50011, USA; (G.R.); (W.Y.-i.); (E.A.); (P.G.H.)
| | - Tanja Opriessnig
- Department of Veterinary Diagnostic and Production Animal Medicine, Iowa State University, Ames, IA 50011, USA; (G.R.); (W.Y.-i.); (E.A.); (P.G.H.)
- Vaccines and Diagnostics Department, Moredun Research Institute, Penicuik EH26 0PZ, UK
| |
Collapse
|
5
|
Zhang H, Duan K, Du Y, Xiao S, Fang L, Zhou Y. One-Step Assembly of a PRRSV Infectious cDNA Clone and a Convenient CRISPR/Cas9-Based Gene-Editing Technology for Manipulation of PRRSV Genome. Viruses 2023; 15:1816. [PMID: 37766223 PMCID: PMC10536534 DOI: 10.3390/v15091816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/18/2023] [Accepted: 08/24/2023] [Indexed: 09/29/2023] Open
Abstract
Porcine reproductive and respiratory syndrome (PRRS) has been a persistent challenge for the swine industry for over three decades due to the lack of effective treatments and vaccines. Reverse genetics systems have been extensively employed to build rapid drug screening platforms and develop genetically engineered vaccines. Herein, we rescued recombinant PRRS virus (rPRRSV) WUH3 using an infectious cDNA clone of PRRSV WUH3 acquired through a BstXI-based one-step-assembly approach. The rPRRSV WUH3 and its parental PRRSV WUH3 share similar plaque sizes and multiple-step growth curves. Previously, gene-editing of viral genomes depends on appropriate restrictive endonucleases, which are arduous to select in some specific viral genes. Thus, we developed a restrictive endonucleases-free method based on CRISPR/Cas9 to edit the PRRSV genome. Using this method, we successfully inserted the exogenous gene (EGFP gene as an example) into the interval between ORF1b and ORF2a of the PRRSV genome to generate rPRRSV WUH3-EGFP, or precisely mutated the lysine (K) at position 150 of PRRSV nsp1α to glutamine (Q) to acquire rPRRSV WUH3 nsp1α-K150Q. Taken together, our study provides a rapid and convenient method for the development of genetically engineered vaccines against PRRSV and the study on the functions of PRRSV genes.
Collapse
Affiliation(s)
- Hejin Zhang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (H.Z.); (K.D.); (Y.D.); (S.X.); (L.F.)
- The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Kaiqi Duan
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (H.Z.); (K.D.); (Y.D.); (S.X.); (L.F.)
- The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Yingbin Du
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (H.Z.); (K.D.); (Y.D.); (S.X.); (L.F.)
- The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Shaobo Xiao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (H.Z.); (K.D.); (Y.D.); (S.X.); (L.F.)
- The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Liurong Fang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (H.Z.); (K.D.); (Y.D.); (S.X.); (L.F.)
- The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Yanrong Zhou
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (H.Z.); (K.D.); (Y.D.); (S.X.); (L.F.)
- The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| |
Collapse
|
6
|
Rawal G, Zhang J, Halbur PG, Gauger PC, Wang C, Opriessnig T. Experimental Infection of Pigs with a Traditional or a Variant Porcine Respiratory Coronavirus (PRCV) Strain and Impact on Subsequent Influenza A Infection. Pathogens 2023; 12:1031. [PMID: 37623991 PMCID: PMC10459072 DOI: 10.3390/pathogens12081031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 07/28/2023] [Accepted: 08/05/2023] [Indexed: 08/26/2023] Open
Abstract
Porcine respiratory coronavirus (PRCV) pathogenicity in pigs has been characterized using traditional PRCV isolates; however, information is lacking on pathogenicity of currently circulating PRCV isolates. Recently, a contemporary US PRCV variant was isolated. The infection dynamics of that strain (PRCV-var) and a traditional PRCV strain (PRCV-trad) were compared. In brief, 4-week-old pigs were divided into three groups with five pigs each. The pigs were inoculated with PRCV-trad or PRCV-var, or left uninfected. Nasal swabs were collected daily, and all pigs were necropsied at day (D) 3. PRCV nasal shedding was significantly higher in PRCV-var pigs compared to PRCV-trad pigs. To investigate the impact of trad and var PRCVs on subsequent infection with influenza A virus (IAV), four additional groups of five pigs were used: PRCV-trad-IAV (PRCV-trad at D0, co-infected with IAV at D5), PRCV-var-IAV, and IAV positive and negative controls. Significantly higher mean PRCV antibody titers and a significantly higher area under the curve (AUC) for PRCV shedding were observed in PRCV-var compared to PRCV-trad-pigs at D10. There was no impact on IAV infection. In conclusion, a 2020 PRCV variant isolate was similar in pathogenicity but more transmissible compared to a traditional 1989 isolate. These findings raise concerns about virus evolution towards more highly pathogenic and transmissible strains and the need to monitor such viruses.
Collapse
Affiliation(s)
- Gaurav Rawal
- Department of Veterinary Diagnostic and Production Animal Medicine, Iowa State University, Ames, IA 50011, USA; (G.R.); (P.G.H.); (P.C.G.); (C.W.)
| | - Jianqiang Zhang
- Department of Veterinary Diagnostic and Production Animal Medicine, Iowa State University, Ames, IA 50011, USA; (G.R.); (P.G.H.); (P.C.G.); (C.W.)
| | - Patrick G. Halbur
- Department of Veterinary Diagnostic and Production Animal Medicine, Iowa State University, Ames, IA 50011, USA; (G.R.); (P.G.H.); (P.C.G.); (C.W.)
| | - Phillip C. Gauger
- Department of Veterinary Diagnostic and Production Animal Medicine, Iowa State University, Ames, IA 50011, USA; (G.R.); (P.G.H.); (P.C.G.); (C.W.)
| | - Chong Wang
- Department of Veterinary Diagnostic and Production Animal Medicine, Iowa State University, Ames, IA 50011, USA; (G.R.); (P.G.H.); (P.C.G.); (C.W.)
| | - Tanja Opriessnig
- Department of Veterinary Diagnostic and Production Animal Medicine, Iowa State University, Ames, IA 50011, USA; (G.R.); (P.G.H.); (P.C.G.); (C.W.)
- Vaccines and Diagnostics Department, Moredun Research Institute, Penicuik, Midlothian EH26 0PZ, UK
| |
Collapse
|
7
|
Wang PH, Nawal Bahoussi A, Tariq Shah P, Guo YY, Wu C, Xing L. Genetic comparison of transmissible gastroenteritis coronaviruses. Front Vet Sci 2023; 10:1146648. [PMID: 37138909 PMCID: PMC10150923 DOI: 10.3389/fvets.2023.1146648] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 03/29/2023] [Indexed: 05/05/2023] Open
Abstract
Transmissible gastroenteritis virus (TGEV) is a porcine coronavirus that threatens animal health and remains elusive despite years of research efforts. The systematical analysis of all available full-length genomes of TGEVs (a total of 43) and porcine respiratory coronaviruses PRCVs (a total of 7) showed that TGEVs fell into two independent evolutionary phylogenetic clades, GI and GII. Viruses circulating in China (until 2021) clustered with the traditional or attenuated vaccine strains within the same evolutionary clades (GI). In contrast, viruses latterly isolated in the USA fell into GII clade. The viruses circulating in China have a lower similarity with that isolated latterly in the USA all through the viral genome. In addition, at least four potential genomic recombination events were identified, three of which occurred in GI clade and one in GII clade. TGEVs circulating in China are distinct from the viruses latterly isolated in the USA at either genomic nucleotide or antigenic levels. Genomic recombination serves as a factor driving the expansion of TGEV genomic diversity.
Collapse
Affiliation(s)
- Pei-Hua Wang
- Institutes of Biomedical Sciences, Shanxi University, Taiyuan, China
| | | | - Pir Tariq Shah
- Institutes of Biomedical Sciences, Shanxi University, Taiyuan, China
| | - Yan-Yan Guo
- Institutes of Biomedical Sciences, Shanxi University, Taiyuan, China
| | - Changxin Wu
- Institutes of Biomedical Sciences, Shanxi University, Taiyuan, China
- Shanxi Provincial Key Laboratory of Medical Molecular Cell Biology, Shanxi University, Taiyuan, China
- Shanxi Provincial Key Laboratory for Prevention and Treatment of Major Infectious Diseases, Taiyuan, China
- The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, China
| | - Li Xing
- Institutes of Biomedical Sciences, Shanxi University, Taiyuan, China
- Shanxi Provincial Key Laboratory of Medical Molecular Cell Biology, Shanxi University, Taiyuan, China
- Shanxi Provincial Key Laboratory for Prevention and Treatment of Major Infectious Diseases, Taiyuan, China
- The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, China
- *Correspondence: Li Xing
| |
Collapse
|
8
|
Different Mechanisms Are Utilized by Coronavirus Transmissible Gastroenteritis Virus To Regulate Interferon Lambda 1 and Interferon Lambda 3 Production. J Virol 2022; 96:e0138822. [PMID: 36448799 PMCID: PMC9769389 DOI: 10.1128/jvi.01388-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
Type III interferons (IFN-λ) are shown to be preferentially produced by epithelial cells, which provide front-line protection at barrier surfaces. Transmissible gastroenteritis virus (TGEV), belonging to the genus Alphacoronavirus of the family Coronaviridae, can cause severe intestinal injuries in porcine, resulting in enormous economic losses for the swine industry, worldwide. Here, we demonstrated that although IFN-λ1 had a higher basal expression, TGEV infection induced more intense IFN-λ3 production in vitro and in vivo than did IFN-λ1. We explored the underlying mechanism of IFN-λ induction by TGEV and found a distinct regulation mechanism of IFN-λ1 and IFN-λ3. The classical RIG-I-like receptor (RLR) pathway is involved in IFN-λ3 but not IFN-λ1 production. Except for the signaling pathways mediated by RIG-I and MDA5, TGEV nsp1 induces IFN-λ1 and IFN-λ3 by activating NF-κB via the unfolded protein responses (UPR) PERK-eIF2α pathway. Furthermore, functional domain analysis indicated that the induction of IFN-λ by the TGEV nsp1 protein was located at amino acids 85 to 102 and was dependent on the phosphorylation of eIF2α and the nuclear translocation of NF-κB. Moreover, the recombinant TGEV with the altered amino acid motif of nsp1 85-102 was constructed, and the nsp1 (85-102sg) mutant virus significantly reduced the production of IFN-λ, compared with the wild strain. Compared to the antiviral activities of IFN-λ1, the administration of IFN-λ3 showed greater antiviral activity against TGEV infections in IPEC-J2 cells. In summary, our data point to the significant role of IFN-λ in the host innate antiviral responses to coronavirus infections within mucosal organs and in the distinct mechanisms of IFN-λ1 and IFN-λ3 regulation. IMPORTANCE Coronaviruses cause infectious diseases in various mammals and birds and exhibit an epithelial cell tropism in enteric and respiratory tracts. It is critical to explore how coronavirus infections modulate IFN-λ, a key innate cytokine against mucosal viral infection. Our results uncovered the different processes of IFN-λ1 and IFN-λ3 production that are involved in the classical RLR pathway and determined that TGEV nsp1 induces IFN-λ1 and IFN-λ3 production by activating NF-κB via the PERK-eIF2α pathway in UPR. These studies highlight the unique regulation of antiviral defense in the intestine during TGEV infection. We also demonstrated that IFN-λ3 induced greater antiviral activity against TGEV replication than did IFN-λ1 in IPEC-J2 cells, which is helpful in finding a novel strategy for the treatment of coronavirus infections.
Collapse
|
9
|
Adaptive Mutation in the Main Protease Cleavage Site of Feline Coronavirus Renders the Virus More Resistant to Main Protease Inhibitors. J Virol 2022; 96:e0090722. [PMID: 36000844 PMCID: PMC9472640 DOI: 10.1128/jvi.00907-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The rapid global emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused serious health problems, highlighting the urgent need for antiviral drugs. The viral main protease (Mpro) plays an important role in viral replication and thus remains the target of choice for the prevention or treatment of several viral diseases due to high sequence and structural conservation. Prolonged use of viral protease inhibitors can lead to the development of mutants resistant to those inhibitors and to many of the available antiviral drugs. Here, we used feline infectious peritonitis virus (FIPV) as a model to investigate its development of resistance under pressure from the Mpro inhibitor GC376. Passage of wild-type (WT) FIPV in the presence of GC376 selected for a mutation in the nsp12 region where Mpro cleaves the substrate between nsp12 and nsp13. This mutation confers up to 3-fold resistance to GC376 and nirmatrelvir, as determined by EC50 assay. In vitro biochemical and cellular experiments confirmed that FIPV adapts to the stress of GC376 by mutating the nsp12 and nsp13 hydrolysis site to facilitate cleavage by Mpro and release to mediate replication and transcription. Finally, we demonstrate that GC376 cannot treat FIP-resistant mutants that cause FIP in animals. Taken together, these results suggest that Mpro affects the replication of coronaviruses (CoVs) and the drug resistance to GC376 by regulating the amount of RdRp from a distant site. These findings provide further support for the use of an antiviral drug combination as a broad-spectrum therapy to protect against contemporary and emerging CoVs. IMPORTANCE CoVs cause serious human infections, and antiviral drugs are currently approved to treat these infections. The development of protease-targeting therapeutics for CoV infection is hindered by resistance mutations. Therefore, we should pay attention to its resistance to antiviral drugs. Here, we identified possible mutations that lead to relapse after clinical treatment of FIP. One amino acid substitution in the nsp12 polymerase at the Mpro cleavage site provided low-level resistance to GC376 after selection exposure to the GC376 parental nucleoside. Resistance mutations enhanced FIPV viral fitness in vitro and attenuated the therapeutic effect of GC376 in an animal model of FIPV infection. Our research explains the evolutionary characteristics of coronaviruses under antiviral drugs, which is helpful for a more comprehensive understanding of the molecular basis of virus resistance and provides important basic data for the effective prevention and control of CoVs.
Collapse
|
10
|
Bhujbal S, Bhujbal R, Giram P. An overview: CRISPR/Cas-based gene editing for viral vaccine development. Expert Rev Vaccines 2022; 21:1581-1593. [PMID: 35959589 DOI: 10.1080/14760584.2022.2112952] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION : Gene-editing technology revolutionized vaccine manufacturing and offers a variety of benefits over traditional vaccinations, such as improved immune response, higher production rate, stability, precise immunogenic activity, and fewer adverse effects. The more recently discovered Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/associated protein 9 (Cas9) system has become the most widely utilized technology based on its efficiency, utility, flexibility, versatility, ease of use, and cheaper compared to other gene-editing techniques. Considering its wider scope for genomic modification, CRISPR/Cas9-based technology's potential is explored for vaccine development. AREAS COVERED : In this review, we will address the recent advances in the CRISPR/Cas system for the development of vaccines and viral vectors for delivery. In addition, we will discuss strategies for the development of the vaccine, as well as the limitations and future prospects of the CRISPR/Cas system. EXPERT OPINION : Human and animal viruses have been exposed to antiviral CRISPR/Cas9-based engineering to prevent infection, which uses knockout, knock-in, gene activation/deactivation, RNA targeting, and editing cell lines strategies for gene editing of viruses. Because of that CRISPR/Cas system is used to boost the vaccine production yield by removing unwanted genes that cause disease or are required for viral infection.
Collapse
Affiliation(s)
- Santosh Bhujbal
- Department of Pharmacognosy, Dr. D. Y. Patil Institute of Pharmaceutical Sciences and Research, Sant. Tukaram Nagar Pimpri, Pune, Maharashtra (India) -411018
| | - Rushikesh Bhujbal
- Department of Quality Assurance Technique, Dr. D. Y. Patil Institute of Pharmaceutical Sciences and Research, Sant. Tukaram Nagar Pimpri, Pune, Maharashtra (India) -411018
| | - Prabhanjan Giram
- Department of Pharmaceutics, Dr. D. Y. Patil Institute of Pharmaceutical Sciences and Research, Sant. Tukaram Nagar Pimpri, Pune, Maharashtra (India) -411018.,Department of Pharmaceutics, Department of Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA- 14260-1660
| |
Collapse
|
11
|
Long-Term Expanding Porcine Airway Organoids Provide Insights into the Pathogenesis and Innate Immunity of Porcine Respiratory Coronavirus Infection. J Virol 2022; 96:e0073822. [PMID: 35762755 PMCID: PMC9327677 DOI: 10.1128/jvi.00738-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Respiratory coronaviruses cause serious health threats to humans and animals. Porcine respiratory coronavirus (PRCoV), a natural transmissible gastroenteritis virus (TGEV) mutant with partial spike deletion, causes mild respiratory disease and is an interesting animal respiratory coronavirus model for human respiratory coronaviruses. However, the absence of robust ex vivo models of porcine airway epithelium hinders an understanding of the pathogenesis of PRCoV infection. Here, we generated long-term porcine airway organoids (AOs) derived from basal epithelial cells, which recapitulate the in vivo airway complicated epithelial cellularity. Both 3D and 2D AOs are permissive for PRCoV infection. Unlike TGEV, which established successful infection in both AOs and intestinal organoids, PRCoV was strongly amplified only in AOs, not intestinal organoids. Furthermore, PRCoV infection in AOs mounted vigorous early type I and III interferon (IFN) responses and upregulated the expression of overzealous inflammatory genes, including pattern recognition receptors (PRRs) and proinflammatory cytokines. Collectively, these data demonstrate that stem-derived porcine AOs can serve as a promising disease model for PRCoV infection and provide a valuable tool to study porcine respiratory infection. IMPORTANCE Porcine respiratory CoV (PRCoV), a natural mutant of TGEV, shows striking pathogenetic similarities to human respiratory CoV infection and provides an interesting animal model for human respiratory CoVs, including SARS-CoV-2. The lack of an in vitro model recapitulating the complicated cellularity and structure of the porcine respiratory tract is a major roadblock for the study of PRCoV infection. Here, we developed long-term 3D airway organoids (AOs) and further established 2D AO monolayer cultures. The resultant 3D and 2D AOs are permissive for PRCoV infection. Notably, PRCoV mediated pronounced IFN and inflammatory responses in AOs, which recapitulated the inflammatory responses associated with PRCoV in vivo infection. Therefore, porcine AOs can be utilized to characterize the pathogenesis of PRCoV and, more broadly, can serve as a universal platform for porcine respiratory infection.
Collapse
|
12
|
Known Cellular and Receptor Interactions of Animal and Human Coronaviruses: A Review. Viruses 2022; 14:v14020351. [PMID: 35215937 PMCID: PMC8878323 DOI: 10.3390/v14020351] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 02/03/2022] [Accepted: 02/05/2022] [Indexed: 12/12/2022] Open
Abstract
This article aims to review all currently known interactions between animal and human coronaviruses and their cellular receptors. Over the past 20 years, three novel coronaviruses have emerged that have caused severe disease in humans, including SARS-CoV-2 (severe acute respiratory syndrome virus 2); therefore, a deeper understanding of coronavirus host-cell interactions is essential. Receptor-binding is the first stage in coronavirus entry prior to replication and can be altered by minor changes within the spike protein-the coronavirus surface glycoprotein responsible for the recognition of cell-surface receptors. The recognition of receptors by coronaviruses is also a major determinant in infection, tropism, and pathogenesis and acts as a key target for host-immune surveillance and other potential intervention strategies. We aim to highlight the need for a continued in-depth understanding of this subject area following on from the SARS-CoV-2 pandemic, with the possibility for more zoonotic transmission events. We also acknowledge the need for more targeted research towards glycan-coronavirus interactions as zoonotic spillover events from animals to humans, following an alteration in glycan-binding capability, have been well-documented for other viruses such as Influenza A.
Collapse
|
13
|
Establishment of Full-Length cDNA Clones and an Efficient Oral Infection Model for Feline Coronavirus in Cats. J Virol 2021; 95:e0074521. [PMID: 34406859 DOI: 10.1128/jvi.00745-21] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Feline infectious peritonitis virus (FIPV) is the etiologic agent of feline infectious peritonitis (FIP) and causes fatal disease in cats of almost all ages. Currently, there are no clinically approved drugs or effective vaccines for FIP. Furthermore, the pathogenesis of FIP is still not fully understood. There is an urgent need for an effective infection model of feline infectious peritonitis induced by FIPV. Here, we constructed a field type I FIPV full-length cDNA clone, pBAC-QS, corresponding to the isolated FIPV QS. By replacing the FIPV QS spike gene with the commercially available type II FIPV 79-1146 (79-1146_CA) spike gene, we established and rescued a recombinant virus, designated rQS-79. Moreover, we constructed 79-1146_CA infectious full-length cDNA pBAC-79-1146_CA, corresponding to recombinant feline coronavirus (FCoV) 79-1146_CA (r79-1146_CA). In animal experiments with 1- to 2-year-old adult cats orally infected with the recombinant virus, rQS-79 induced typical FIP signs and 100% mortality. In contrast to cats infected with rQS-79, cats infected with 79-1146_CA did not show obvious signs. Furthermore, by rechallenging rQS-79 in surviving cats previously infected with 79-1146_CA, we found that there was no protection against rQS-79 with different titers of neutralizing antibodies. However, high titers of neutralizing antibodies may help prolong the cat survival time. Overall, we report the first reverse genetics of virulent recombinant FCoV (causing 100% mortality in adult cats) and attenuated FCoV (causing no mortality in adult cats), which will be powerful tools to study pathogenesis, antiviral drugs, and vaccines for FCoV. IMPORTANCE Tissue- or cell culture-adapted feline infectious peritonitis virus (FIPV) usually loses pathogenicity. To develop a highly virulent FIPV, we constructed a field isolate type I FIPV full-length clone with the spike gene replaced by the 79-1146 spike gene, corresponding to a virus named rQS-79, which induces high mortality in adult cats. rQS-79 represents the first described reverse genetics system for highly pathogenic FCoV. By further constructing the cell culture-adapted FCoV 79-1146_CA, we obtained infectious clones of virulent and attenuated FCoV. By in vitro and in vivo experiments, we established a model that can serve to study the pathogenic mechanisms of FIPV. Importantly, the wild-type FIPV replicase skeleton of serotype I will greatly facilitate the screening of antiviral drugs, both in vivo and in vitro.
Collapse
|
14
|
Tang N, Zhang Y, Shen Z, Yao Y, Nair V. Application of CRISPR-Cas9 Editing for Virus Engineering and the Development of Recombinant Viral Vaccines. CRISPR J 2021; 4:477-490. [PMID: 34406035 DOI: 10.1089/crispr.2021.0017] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
CRISPR-Cas technology, discovered originally as a bacterial defense system, has been extensively repurposed as a powerful tool for genome editing for multiple applications in biology. In the field of virology, CRISPR-Cas9 technology has been widely applied on genetic recombination and engineering of genomes of various viruses to ask some fundamental questions about virus-host interactions. Its high efficiency, specificity, versatility, and low cost have also provided great inspiration and hope in the field of vaccinology to solve a series of bottleneck problems in the development of recombinant viral vaccines. This review highlights the applications of CRISPR editing in the technological advances compared to the traditional approaches used for the construction of recombinant viral vaccines and vectors, the main factors affecting their application, and the challenges that need to be overcome for further streamlining their effective usage in the prevention and control of diseases. Factors affecting efficiency, target specificity, and fidelity of CRISPR-Cas editing in the context of viral genome editing and development of recombinant vaccines are also discussed.
Collapse
Affiliation(s)
- Na Tang
- Shandong Binzhou Animal Science and Veterinary Medicine Academy and UK-China Centre of Excellence for Research on Avian Diseases, Binzhou, P.R. China; University of Oxford, Oxford, United Kingdom
| | - Yaoyao Zhang
- The Pirbright Institute and UK-China Centre of Excellence for Research on Avian Diseases, Pirbright, Ash road, Guildford, Surrey, United Kingdom; University of Oxford, Oxford, United Kingdom
| | - Zhiqiang Shen
- Shandong Binzhou Animal Science and Veterinary Medicine Academy and UK-China Centre of Excellence for Research on Avian Diseases, Binzhou, P.R. China; University of Oxford, Oxford, United Kingdom
| | - Yongxiu Yao
- The Pirbright Institute and UK-China Centre of Excellence for Research on Avian Diseases, Pirbright, Ash road, Guildford, Surrey, United Kingdom; University of Oxford, Oxford, United Kingdom
| | - Venugopal Nair
- The Pirbright Institute and UK-China Centre of Excellence for Research on Avian Diseases, Pirbright, Ash road, Guildford, Surrey, United Kingdom; University of Oxford, Oxford, United Kingdom.,The Jenner Institute Laboratories, University of Oxford, Oxford, United Kingdom; and University of Oxford, Oxford, United Kingdom.,Department of Zoology, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
15
|
The trypsin-enhanced infection of porcine epidemic diarrhea virus is determined by the S2 subunit of the spike glycoprotein. J Virol 2021; 95:JVI.02453-20. [PMID: 33692210 PMCID: PMC8139691 DOI: 10.1128/jvi.02453-20] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Porcine epidemic diarrhea virus (PEDV) is an enteric pathogen in the swine industry, causing high mortality in neonatal piglets. Efficient PEDV infection usually relies on the presence of trypsin, yet the mechanism of trypsin dependency is ambiguous. Here, we identified two PEDV strains, trypsin-enhanced YN200 and trypsin-independent DR13, in which the spike (S) protein of YN200 exhibits a stronger ability to induce syncytium formation and cleaved by trypsin than that of DR13. Using a full-length infectious YN200 cDNA clone, we confirmed that the S protein is a trypsin dependency determinant by comparison of rYN200 and rYN200-SDR13 To explore the trypsin-associated sites of the YN200 S protein, we then constructed a series of mutations adjacent to the fusion peptide. The results show that the putative S2' cleavage site (R892G) is not the determinant for virus trypsin dependency. Hence, we generated viruses carrying chimeric S proteins: the S1 subunit, S2 subunit, and S2720∼892 aa domain (NS2') were individually replaced by the corresponding DR13 sequences. Intriguingly, only the S2 substitution, not the S1 or NS2' substitutions, provides trypsin-independent growth of YN200. Additionally, the NS2' recombinant virus significantly abrogated effective infection, indicating a vital role for NS2' in viral entry. These findings suggest that the trypsin dependency of PEDV is mainly controlled by mutations in the S2 subunit rather than directly trypsin cleavage site.ImportanceWith the emergence of new variants, PEDV remains a major problem in the global swine industry. Efficient PEDV infection usually requires trypsin, while the mechanism of trypsin dependency is complex. Here, we used two PEDV strains, trypsin-enhanced YN200 and trypsin-independent DR13, and results showed that the S protein determined PEDV trypsin dependency by using a reverse genetic system of YN200. The S2 subunit was verified as the main portion of PEDV trypsin dependency, though the putative S2' site mutation cannot render trypsin-independent growth of YN200. Finally, these results provide some different insight to the PEDV trypsin dependency and might inspire vaccine development.
Collapse
|
16
|
Shen Z, Yang Y, Yang S, Zhang G, Xiao S, Fu ZF, Peng G. Structural and Biological Basis of Alphacoronavirus nsp1 Associated with Host Proliferation and Immune Evasion. Viruses 2020; 12:v12080812. [PMID: 32731335 PMCID: PMC7472224 DOI: 10.3390/v12080812] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 07/22/2020] [Accepted: 07/23/2020] [Indexed: 12/13/2022] Open
Abstract
Non-structural protein 1 (nsp1) is only characterized in alphacoronaviruses (α-CoVs) and betacoronaviruses (β-CoVs). There have been extensive researches on how the β-CoVs nsp1 regulates viral virulence by inhibiting host protein synthesis, but the regulatory mechanism of the α-CoVs nsp1 is still unclear. Here, we report the 2.1-Å full-length crystal structure of nsp1 in emerging porcine SADS-CoV and the 1.8-Å full-length crystal structure of nsp1 in the highly lethal cat FIPV. Although they belong to different subtypes of α-CoVs, these viruses all have a bucket-shaped fold composed of six β-sheets, similar to the crystal structure of PEDV and TGEV nsp1. Comparing the above four structures, we found that the structure of α-CoVs nsp1 in the same subtype was more conserved. We then selected mammalian cells that were treated with SADS-CoV and FIPV nsp1 for RNA sequencing analysis and found that nsp1 had a specific inhibitory effect on interferon (IFN) and cell cycle genes. Using the Renilla luciferase (Rluc) assay and Western blotting, we confirmed that seven representative α-CoVs nsp1s could significantly inhibit the phosphorylation of STAT1-S727 and interfere with the effect of IFN-I. Moreover, the cell cycle experiment confirmed that α-CoVs nsp1 could encourage host cells to stay in the G0/G1 phase. Based on these findings, we not only greatly improved the crystal structure data on α-CoVs nsp1, but we also speculated that α-CoVs nsp1 regulated host proliferation and immune evasion-related biological functions by inhibiting the synthesis of host proteins, thus creating an environment conducive to the virus.
Collapse
Affiliation(s)
- Zhou Shen
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (Z.S.); (Y.Y.); (S.Y.); (G.Z.); (S.X.); (Z.F.F.)
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Yiling Yang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (Z.S.); (Y.Y.); (S.Y.); (G.Z.); (S.X.); (Z.F.F.)
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Siqi Yang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (Z.S.); (Y.Y.); (S.Y.); (G.Z.); (S.X.); (Z.F.F.)
| | - Guangxu Zhang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (Z.S.); (Y.Y.); (S.Y.); (G.Z.); (S.X.); (Z.F.F.)
| | - Shaobo Xiao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (Z.S.); (Y.Y.); (S.Y.); (G.Z.); (S.X.); (Z.F.F.)
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Zhen F. Fu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (Z.S.); (Y.Y.); (S.Y.); (G.Z.); (S.X.); (Z.F.F.)
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
- Department of Pathology, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA
| | - Guiqing Peng
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (Z.S.); (Y.Y.); (S.Y.); (G.Z.); (S.X.); (Z.F.F.)
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
- Correspondence: ; Tel.: +86-27-8728-0170
| |
Collapse
|
17
|
Abstract
Since the end of 2019, the global COVID-19 outbreak has once again made coronaviruses a hot topic. Vaccines are hoped to be an effective way to stop the spread of the virus. However, there are no clinically approved vaccines available for coronavirus infections. Reverse genetics technology can realize the operation of RNA virus genomes at the DNA level and provide new ideas and strategies for the development of new vaccines. In this review, we systematically describe the role of reverse genetics technology in studying the effects of coronavirus proteins on viral virulence and innate immunity, cell and tissue tropism and antiviral drug screening. An efficient reverse genetics platform is useful for obtaining the ideal attenuated strain to prepare an attenuated live vaccine.
Collapse
|
18
|
Minimum Determinants of Transmissible Gastroenteritis Virus Enteric Tropism Are Located in the N-Terminus of Spike Protein. Pathogens 2019; 9:pathogens9010002. [PMID: 31861369 PMCID: PMC7168613 DOI: 10.3390/pathogens9010002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 12/12/2019] [Accepted: 12/14/2019] [Indexed: 01/08/2023] Open
Abstract
Transmissible gastroenteritis virus (TGEV) is an enteric coronavirus causing high morbidity and mortality in porcine herds worldwide, that possesses both enteric and respiratory tropism. The ability to replicate in the enteric tract directly correlates with virulence, as TGEVs with an exclusive respiratory tropism are attenuated. The tissue tropism is determined by spike (S) protein, although the molecular bases for enteric tropism remain to be fully characterized. Both pAPN and sialic acid binding domains (aa 506–655 and 145–155, respectively) are necessary but not sufficient for enteric tract infection. Using a TGEV infectious cDNA and enteric (TGEV-SC11) or respiratory (TGEV-SPTV) isolates, encoding a full-length S protein, a set of chimeric recombinant viruses, with a sequential modification in S protein amino terminus, was engineered. In vivo tropism, either enteric, respiratory or both, was studied by inoculating three-day-old piglets and analyzing viral titers in lung and gut. The data indicated that U655>G change in S gene (S219A in S protein) was required to confer enteric tropism to a respiratory virus that already contains the pAPN and sialic acid binding domains in its S protein. Moreover, an engineered virus containing U655>G and a 6 nt insertion at position 1124 (Y374-T375insND in S protein) was genetically stable after passage in cell cultures, and increased virus titers in gut by 1000-fold. We postulated that the effect of these residues in enteric tropism may be mediated by the modification of both glycosaminoglycan binding and S protein structure.
Collapse
|
19
|
Shen Z, Wang G, Yang Y, Shi J, Fang L, Li F, Xiao S, Fu ZF, Peng G. A conserved region of nonstructural protein 1 from alphacoronaviruses inhibits host gene expression and is critical for viral virulence. J Biol Chem 2019; 294:13606-13618. [PMID: 31350335 PMCID: PMC6746460 DOI: 10.1074/jbc.ra119.009713] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 07/24/2019] [Indexed: 12/22/2022] Open
Abstract
Coronaviruses are enveloped, single-stranded RNA viruses that are distributed worldwide. They include transmissible gastroenteritis virus (TGEV), porcine epidemic diarrhea virus (PEDV), and the human coronaviruses severe acute respiratory syndrome coronavirus (SARS-CoV) and Middle East respiratory syndrome coronavirus (MERS-CoV), many of which seriously endanger human health and well-being. Only alphacoronaviruses and betacoronaviruses harbor nonstructural protein 1 (nsp1), which performs multiple functions in inhibiting antiviral host responses. The role of the C terminus of betacoronavirus nsp1 in virulence has been characterized, but the location of the alphacoronavirus nsp1 region that is important for virulence remains unclear. Here, using TGEV nsp1 as a model to explore the function of this protein in alphacoronaviruses, we demonstrate that alphacoronavirus nsp1 inhibits host gene expression. Solving the crystal structure of full-length TGEV at 1.85-Å resolution and conducting several biochemical analyses, we observed that a specific motif (amino acids 91-95) of alphacoronavirus nsp1 is a conserved region that inhibits host protein synthesis. Using a reverse-genetics system based on CRISPR/Cas9 technology to construct a recombinant TGEV in which this specific nsp1 motif was altered, we found that this mutation does not affect virus replication in cell culture but significantly reduces TGEV pathogenicity in pigs. Taken together, our findings suggest that alphacoronavirus nsp1 is an essential virulence determinant, providing a potential paradigm for the development of a new attenuated vaccine based on modified nsp1.
Collapse
Affiliation(s)
- Zhou Shen
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Gang Wang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Yiling Yang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Jiale Shi
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Liurong Fang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Fang Li
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, Saint Paul, Minnesota 55108
| | - Shaobo Xiao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Zhen F Fu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China.,Department of Pathology, College of Veterinary Medicine, University of Georgia, Athens, Georgia 30602
| | - Guiqing Peng
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China .,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China.,College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|