1
|
Park MN, Yeo SG, Park J, Jung Y, Hwang SM. Usefulness and Limitations of PFGE Diagnosis and Nucleotide Sequencing Method in the Analysis of Food Poisoning Pathogens Found in Cooking Employees. Int J Mol Sci 2024; 25:4123. [PMID: 38612932 PMCID: PMC11012705 DOI: 10.3390/ijms25074123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/26/2024] [Accepted: 04/01/2024] [Indexed: 04/14/2024] Open
Abstract
In the case of a food poisoning outbreak, it is essential to understand the relationship between cooking workers and food poisoning. Many biological diagnostic methods have recently been developed to detect food poisoning pathogens. Among these diagnostic tools, this study presents PCR-based pulsed-field gel electrophoresis and nucleotide sequencing diagnostic analysis results for diagnosing food poisoning outbreaks associated with cooking employees in Chungcheongnam-do, Republic of Korea. Pulsed-field gel electrophoresis was useful in identifying the food poisoning outbreaks caused by Staphylococcus aureus and Enteropathogenic Escherichia coli. In the case of Norovirus, nucleotide sequencing was used to identify the relationship between cooking workers and the food poisoning outbreak. However, it is difficult to determine whether cooking employees directly caused the food poisoning outbreaks based on these molecular biological diagnostic results alone. A system is needed to integrate epidemiological and diagnostic information to identify a direct correlation between the food poisoning outbreak and cooking employees.
Collapse
Affiliation(s)
- Mi-Na Park
- Graduate School of Public Health & Welfare, Konyang University, 158 Gwanjeodong-ro, Daejeon 35365, Republic of Korea;
- Chungcheongnam-do Institute of Health and Environment Research, 8 Hongyegongwon-ro, Hongseong 32254, Republic of Korea;
| | - Sang-Gu Yeo
- Korea Disease Control and Prevention Agency, Osong Health Technology Administration Complex, 2 Osongsaengmyeong-ro, Cheongju 28159, Republic of Korea;
| | - Junhyuk Park
- Chungcheongnam-do Institute of Health and Environment Research, 8 Hongyegongwon-ro, Hongseong 32254, Republic of Korea;
| | - Yoomi Jung
- Korea Armed Forces Nursing Academy, 90 Jaun-ro, Daejeon 34059, Republic of Korea;
| | - Se-Min Hwang
- Graduate School of Public Health & Welfare, Konyang University, 158 Gwanjeodong-ro, Daejeon 35365, Republic of Korea;
- Department of Preventive Medicine, Myunggok Medical Faculty, Medical Campus, Konyang University College of Medicine, 158 Gwanjeodong-ro, Daejeon 35365, Republic of Korea
- Myunggok Medical Research Center, Konyang University College of Medicine, 158 Gwanjeodong-ro, Daejeon 35365, Republic of Korea
| |
Collapse
|
2
|
Gao J, Xue L, Li Y, Zhang J, Dai J, Ye Q, Wu S, Gu Q, Zhang Y, Wei X, Wu Q. A systematic review and meta-analysis indicates a high risk of human noroviruses contamination in vegetable worldwide, with GI being the predominant genogroup. Int J Food Microbiol 2024; 413:110603. [PMID: 38306773 DOI: 10.1016/j.ijfoodmicro.2024.110603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/30/2023] [Accepted: 01/21/2024] [Indexed: 02/04/2024]
Abstract
Human noroviruses (HuNoVs) are the most predominant viral agents of acute gastroenteritis. Vegetables are important vehicles of HuNoVs transmission. This study aimed to assess the HuNoVs prevalence in vegetables. We searched the Web of Science, Excerpta Medica Database, PubMed, and Cochrane databases until June 1, 2023. A total of 27 studies were included for the meta-analysis. Statistical analysis was conducted using Stata 14.0 software. This analysis showed that the pooled HuNoVs prevalence in vegetables was 7 % (95 % confidence interval (CI): 3-13) worldwide. The continent with largest number of studies was Europe, and the highest number of samples was lettuce. As revealed by the results of the subgroup meta-analysis, the prevalence of GI genogroup was the highest (3 %, 95 % CI: 1-7). A higher prevalence was seen in vegetables from farms (18 %, 95 % CI: 5-37), while only 4 % (95 % CI: 1-8) in retail. The HuNoVs prevalence of ready-to-eat vegetables and non-ready-to-eat vegetables was 2 % (95 % CI: 0-8) and 9 % (95 % CI: 3-16), respectively. The prevalence by quantitative real time RT-PCR was 8 % (95 % CI: 3-15) compared to 3 % (95 % CI: 0-13) by conventional RT-PCR. Furthermore, the HuNoVs prevalence in vegetables was 6 % (95 % CI: 1-14) in ISO pretreatment method and 8 % (95 % CI: 1-19) in non-ISO method, respectively. This study is helpful in comprehensively understanding the prevalence of HuNoVs contamination in vegetables worldwide.
Collapse
Affiliation(s)
- Junshan Gao
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangzhou, Guangdong 510070, China
| | - Liang Xue
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangzhou, Guangdong 510070, China.
| | - Yijing Li
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangzhou, Guangdong 510070, China
| | - Jumei Zhang
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangzhou, Guangdong 510070, China
| | - Jingsha Dai
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangzhou, Guangdong 510070, China
| | - Qinghua Ye
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangzhou, Guangdong 510070, China
| | - Shi Wu
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangzhou, Guangdong 510070, China
| | - Qihui Gu
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangzhou, Guangdong 510070, China
| | - Youxiong Zhang
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangzhou, Guangdong 510070, China
| | - Xianhu Wei
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangzhou, Guangdong 510070, China
| | - Qingping Wu
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangzhou, Guangdong 510070, China.
| |
Collapse
|
3
|
Sun Y, Liang M, Zhao F, Su L. Research Progress on Biological Accumulation, Detection and Inactivation Technologies of Norovirus in Oysters. Foods 2023; 12:3891. [PMID: 37959010 PMCID: PMC10649127 DOI: 10.3390/foods12213891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/18/2023] [Accepted: 10/20/2023] [Indexed: 11/15/2023] Open
Abstract
Noroviruses (NoVs) are major foodborne pathogens that cause acute gastroenteritis. Oysters are significant carriers of this pathogen, and disease transmission from the consumption of NoVs-infected oysters occurs worldwide. The review discusses the mechanism of NoVs bioaccumulation in oysters, particularly the binding of histo-blood group antigen-like (HBGA-like) molecules to NoVs in oysters. The review explores the factors that influence NoVs bioaccumulation in oysters, including temperature, precipitation and water contamination. The review also discusses the detection methods of NoVs in live oysters and analyzes the inactivation effects of high hydrostatic pressure, irradiation treatment and plasma treatment on NoVs. These non-thermal processing treatments can remove NoVs efficiently while retaining the original flavor of oysters. However, further research is needed to reduce the cost of these technologies to achieve large-scale commercial applications. The review aims to provide novel insights to reduce the bioaccumulation of NoVs in oysters and serve as a reference for the development of new, rapid and effective methods for detecting and inactivating NoVs in live oysters.
Collapse
Affiliation(s)
- Yiqiang Sun
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China; (Y.S.); (M.L.)
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou 325035, China
| | - Meina Liang
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China; (Y.S.); (M.L.)
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou 325035, China
| | - Feng Zhao
- College of Biology and Food Engineering, Chongqing Three Gorges University, Chongqing 404100, China;
| | - Laijin Su
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China; (Y.S.); (M.L.)
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou 325035, China
| |
Collapse
|
4
|
A trans disciplinary and multi actor approach to develop high impact food safety messages to consumers: Time for a revision of the WHO - Five keys to safer food? Trends Food Sci Technol 2023. [DOI: 10.1016/j.tifs.2023.01.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
5
|
Stoppel SM, Duinker A, Khatri M, Lunestad BT, Myrmel M. Temperature Dependent Depuration of Norovirus GII and Tulane Virus from Oysters (Crassostrea gigas). FOOD AND ENVIRONMENTAL VIROLOGY 2023; 15:43-50. [PMID: 36656416 PMCID: PMC10006268 DOI: 10.1007/s12560-022-09547-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 12/29/2022] [Indexed: 06/17/2023]
Abstract
Raw oysters are considered a culinary delicacy but are frequently the culprit in food-borne norovirus (NoV) infections. As commercial depuration procedures are currently unable to efficiently eliminate NoV from oysters, an optimisation of the process should be considered. This study addresses the ability of elevated water temperatures to enhance the elimination of NoV and Tulane virus (TuV) from Pacific oysters (Crassostrea gigas). Both viruses were experimentally bioaccumulated in oysters, which were thereafter depurated at 12 °C and 17 °C for 4 weeks. Infectious TuV and viral RNA were monitored weekly for 28 days by TCID50 and (PMAxx-) RT-qPCR, respectively. TuV RNA was more persistent than NoV and decreased by < 0.5 log10 after 14 days, while NoV reductions were already > 1.0 log10 at this time. For RT-qPCR there was no detectable benefit of elevated water temperatures or PMAxx for either virus (p > 0.05). TuV TCID50 decreased steadily, and reductions were significantly different between the two temperatures (p < 0.001). This was most evident on days 14 and 21 when reductions at 17 °C were 1.3-1.7 log10 higher than at 12 °C. After 3 weeks, reductions > 3.0 log10 were observed at 17 °C, while at 12 °C reductions did not exceed 1.9 log10. The length of depuration also had an influence on virus numbers. TuV reductions increased from < 1.0 log10 after seven days to > 4.0 log10 after 4 weeks. This implies that an extension of the depuration period to more than seven days, possibly in combination with elevated water temperatures, may be beneficial for the inactivation and removal of viral pathogens.
Collapse
Affiliation(s)
- Sarah M Stoppel
- Section for Seafood Hazards, Institute of Marine Research, Bergen, Norway.
| | - Arne Duinker
- Section for Seafood Hazards, Institute of Marine Research, Bergen, Norway
| | - Mamata Khatri
- Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Ås, Norway
| | | | - Mette Myrmel
- Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Ås, Norway
| |
Collapse
|
6
|
Li Y, Xue L, Gao J, Cai W, Zhang Z, Meng L, Miao S, Hong X, Xu M, Wu Q, Zhang J. A systematic review and meta-analysis indicates a substantial burden of human noroviruses in shellfish worldwide, with GII.4 and GII.2 being the predominant genotypes. Food Microbiol 2023; 109:104140. [DOI: 10.1016/j.fm.2022.104140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 09/07/2022] [Accepted: 09/07/2022] [Indexed: 10/14/2022]
|
7
|
Yang M, Tong L, Wang S, Liu N, Zhao F, Sun Y, Sun G, Zhou D. Gut Microbiota and Transcriptomics Reveal the Effect of Human Norovirus Bioaccumulation on Oysters (Crassostrea gigas). Microbiol Spectr 2022; 10:e0016122. [PMID: 35867424 PMCID: PMC9431538 DOI: 10.1128/spectrum.00161-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 06/15/2022] [Indexed: 11/20/2022] Open
Abstract
Human norovirus (HuNoV) is a major foodborne pathogen that causes acute viral gastroenteritis, and oysters are one of the main carriers of HuNoV transmission. While progress has been made toward understanding the pattern of oyster-bioaccumulated HuNoV, the response of oysters to HuNoV bioaccumulation, including changes in gene expression and gut microbiota, is unclear. In this study, histo-blood group antigen (HBGA)-like molecule expression and gene regulation features and the HuNoV-microbiome interactions of oysters during HuNoV bioaccumulation were characterized. With the prolongation of bioaccumulation time, the HuNoV content and expression of type A HBGA-like molecules in oysters increased and stabilized. HuNoV also altered the expression of immunity- and glycosphingolipid biosynthesis-related genes. Prolonged bioaccumulation of HuNoV can reduce the abundance and change the composition of the oyster gut microbiota. In particular, with the extension of bioaccumulation time, the abundance of Blautia, Agathobacter, Faecalibacterium, Terrisporobacter, Bifidobacterium, Lactobacillus, and Ruminococcus decreased, while the abundance of Vibrio and Alphaproteobacteria increased. This study provides potential candidates for identifying functional genes involved in the bioaccumulation of HuNoV in oysters. More importantly, it provides the first description of the changes in gut microbiota during HuNoV bioaccumulation in oysters. IMPORTANCE The role of the oyster gut microbiota in HuNoV bioaccumulation is poorly understood. This study revealed, for the first time, the changes in gut microbiota and gene expression of oysters with HuNoV bioaccumulation. This study enriches the understanding of the impact of HuNoV bioaccumulation on oysters and provides a new direction for the study of the molecular mechanism of HuNoV bioaccumulation in oysters.
Collapse
Affiliation(s)
- Min Yang
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Laboratory for Marine Drugs and Bioproducts of Pilot National Laboratory for Marine Science and Technology, Qingdao, China
| | - Lihui Tong
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Laboratory for Marine Drugs and Bioproducts of Pilot National Laboratory for Marine Science and Technology, Qingdao, China
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Shanshan Wang
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Laboratory for Marine Drugs and Bioproducts of Pilot National Laboratory for Marine Science and Technology, Qingdao, China
| | - Nan Liu
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Laboratory for Marine Drugs and Bioproducts of Pilot National Laboratory for Marine Science and Technology, Qingdao, China
| | - Feng Zhao
- College of Biology and Food Engineering, Chongqing Three Gorges University, Chongqing, China
| | - Yong Sun
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Laboratory for Marine Drugs and Bioproducts of Pilot National Laboratory for Marine Science and Technology, Qingdao, China
| | - Guohui Sun
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Laboratory for Marine Drugs and Bioproducts of Pilot National Laboratory for Marine Science and Technology, Qingdao, China
| | - Deqing Zhou
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Laboratory for Marine Drugs and Bioproducts of Pilot National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
8
|
Hayashi T, Yamaoka Y, Ito A, Kamaishi T, Sugiyama R, Estes MK, Muramatsu M, Murakami K. Evaluation of Heat Inactivation of Human Norovirus in Freshwater Clams Using Human Intestinal Enteroids. Viruses 2022; 14:v14051014. [PMID: 35632754 PMCID: PMC9146323 DOI: 10.3390/v14051014] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 05/01/2022] [Accepted: 05/07/2022] [Indexed: 12/07/2022] Open
Abstract
Foodborne disease attributed to the consumption of shellfish contaminated with human norovirus (HuNoV) is one of many global health concerns. Our study aimed to determine the conditions of the heat-inactivation of HuNoV in freshwater clams (Corbicula japonica) using a recently developed HuNoV cultivation system employing stem-cell derived human intestinal enteroids (HIEs). We first measured the internal temperature of the clam tissue in a water bath during boiling at 90 °C and found that approximately 2 min are required for the tissue to reach 90 °C. Next, GII.4 HuNoV was spiked into the center of the clam tissue, followed by boiling at 90 °C for 1, 2, 3, or 4 min. The infectivity of HuNoV in the clam tissue homogenates was evaluated using HIEs. We demonstrated that HuNoV in unboiled clam tissue homogenates replicated in HIEs, whereas infectivity was lost in all boiled samples, indicating that heat treatment at 90 °C for 1 min inactivates HuNoV in freshwater clams in our current HIE culture system. To our knowledge, this is the first study to determine the thermal tolerability of HuNoV in shellfish using HIEs, and our results could be informative for developing strategies to inactivate HuNoV in shellfish.
Collapse
Affiliation(s)
- Tsuyoshi Hayashi
- Department of Virology II, National Institute of Infectious Diseases, Tokyo 208-0011, Japan; (T.H.); (Y.Y.); (R.S.); (M.M.)
| | - Yoko Yamaoka
- Department of Virology II, National Institute of Infectious Diseases, Tokyo 208-0011, Japan; (T.H.); (Y.Y.); (R.S.); (M.M.)
| | - Atsushi Ito
- Production Engineering Division, Aquaculture Research Department, Fisheries Technology Institute, Japan Fisheries Research and Education Agency, Hiroshima 722-0061, Japan;
| | - Takashi Kamaishi
- Pathology Division, Aquaculture Research Department, Fisheries Technology Institute, Japan Fisheries Research and Education Agency, Minamiise 516-0913, Japan;
| | - Ryuichi Sugiyama
- Department of Virology II, National Institute of Infectious Diseases, Tokyo 208-0011, Japan; (T.H.); (Y.Y.); (R.S.); (M.M.)
| | - Mary K. Estes
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA;
- Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Masamichi Muramatsu
- Department of Virology II, National Institute of Infectious Diseases, Tokyo 208-0011, Japan; (T.H.); (Y.Y.); (R.S.); (M.M.)
- Department of Infectious Disease Research, Institute of Biomedical Research and Innovation, Foundation for Biomedical Research and Innovation at Kobe, Kobe 650-0047, Japan
| | - Kosuke Murakami
- Department of Virology II, National Institute of Infectious Diseases, Tokyo 208-0011, Japan; (T.H.); (Y.Y.); (R.S.); (M.M.)
- Correspondence:
| |
Collapse
|
9
|
Zhao Z, Hossain MI, Jung S, Wang Z, Yeo D, Song M, Min A, Park S, Choi C. Survival of murine norovirus and hepatitis A virus in bottled drinking water, strawberries, and oysters. Food Control 2022. [DOI: 10.1016/j.foodcont.2021.108623] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
10
|
Ezzatpanah H, Gómez‐López VM, Koutchma T, Lavafpour F, Moerman F, Mohammadi M, Raheem D. New food safety challenges of viral contamination from a global perspective: Conventional, emerging, and novel methods of viral control. Compr Rev Food Sci Food Saf 2022; 21:904-941. [DOI: 10.1111/1541-4337.12909] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 12/13/2021] [Accepted: 12/16/2021] [Indexed: 12/11/2022]
Affiliation(s)
- Hamid Ezzatpanah
- Department of Food Science and Technology, Science and Research Branch Islamic Azad University Tehran Iran
| | | | - Tatiana Koutchma
- Guelph Research and Development Center Agriculture and Agri‐Food Canada Guelph Ontario Canada
| | | | - Frank Moerman
- Department of Chemistry Catholic University of Leuven ‐ KU Leuven Leuven Belgium
| | | | - Dele Raheem
- Arctic Centre (NIEM) University of Lapland Rovaniemi Finland
| |
Collapse
|
11
|
Savini F, Giacometti F, Tomasello F, Pollesel M, Piva S, Serraino A, De Cesare A. Assessment of the Impact on Human Health of the Presence of Norovirus in Bivalve Molluscs: What Data Do We Miss? Foods 2021; 10:2444. [PMID: 34681492 PMCID: PMC8535557 DOI: 10.3390/foods10102444] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/08/2021] [Accepted: 10/12/2021] [Indexed: 01/22/2023] Open
Abstract
In the latest One Health ECDC EFSA technical report, Norovirus in fish and fishery products have been listed as the agent/food pair causing the highest number of strong-evidence outbreaks in the EU in 2019. This review aims to identify data gaps that must be filled in order to increase knowledge on Norovirus in bivalve molluscs, perform a risk assessment and rank the key mitigation strategies for this biological hazard, which is relevant to public health. Virologic determinations are not included in any of the food safety and process hygiene microbiologic criteria reflected in the current European regulations. In addition, the Escherichia coli-based indices of acceptable faecal contamination for primary production, as well as the food safety criteria, do not appear sufficient to indicate the extent of Norovirus contamination. The qualitative risk assessment data collected in this review suggests that bivalve molluscs present a high risk to human health for Norovirus only when consumed raw or when insufficiently cooked. On the contrary, the risk can be considered negligible when they are cooked at a high temperature, while information is still scarce for non-thermal treatments.
Collapse
Affiliation(s)
| | - Federica Giacometti
- Department of Veterinary Medical Sciences, University of Bologna, Via Tolara di Sopra 50, 40064 Ozzano Emilia, Italy; (F.S.); (F.T.); (M.P.); (S.P.); (A.S.); (A.D.C.)
| | | | | | | | | | | |
Collapse
|
12
|
Occurrence of Human Enteric Viruses in Shellfish along the Production and Distribution Chain in Sicily, Italy. Foods 2021; 10:foods10061384. [PMID: 34203938 PMCID: PMC8232761 DOI: 10.3390/foods10061384] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/09/2021] [Accepted: 06/10/2021] [Indexed: 12/11/2022] Open
Abstract
Contamination of bivalve mollusks with human pathogenic viruses represents a recognized food safety risk. Thus, monitoring programs for shellfish quality along the entire food chain could help to finally preserve the health of consumers. The aim of the present study was to provide up-to-date data on the prevalence of enteric virus contamination along the shellfish production and distribution chain in Sicily. To this end, 162 batches of mollusks were collected between 2017 and 2019 from harvesting areas, depuration and dispatch centers (n = 63), restaurants (n = 6) and retail stores (n = 93) distributed all over the island. Samples were processed according to ISO 15216 standard method, and the presence of genogroup GI and GII norovirus (NoV), hepatitis A and E viruses (HAV, HEV), rotavirus and adenovirus was investigated by real-time reverse transcription polymerase chain reaction (real-time-RT PCR), nested (RT)-PCR and molecular genotyping. Our findings show that 5.56% of samples were contaminated with at least one NoV, HAV and/or HEV. Contaminated shellfish were sampled at production sites and retail stores and their origin was traced back to Spain and several municipalities in Italy. In conclusion, our study highlights the need to implement routine monitoring programs along the whole food chain as an effective measure to prevent foodborne transmission of enteric viruses.
Collapse
|
13
|
Gyawali P, Karpe AV, Hillyer KE, Nguyen TV, Hewitt J, Beale DJ. A multi-platform metabolomics approach to identify possible biomarkers for human faecal contamination in Greenshell™ mussels (Perna canaliculus). THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 771:145363. [PMID: 33736167 DOI: 10.1016/j.scitotenv.2021.145363] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 01/18/2021] [Accepted: 01/18/2021] [Indexed: 06/12/2023]
Abstract
Bivalve molluscs have the potential to bioaccumulate microbial pathogens including noroviruses from aquatic environments and as such, there is a need for a rapid and cheap in-situ method for their detection. Here, we characterise the tissue-specific response of New Zealand Greenshell™ mussels (Perna canaliculus) to faecal contamination from two different sources (municipal sewage and human faeces). This is done with the view to identify potential biomarkers that could be further developed into low cost, rapid and sensitive in-situ biosensors for human faecal contamination detection of mussels in growing areas. Tissue-specific metabolic profiles from gills, haemolymph and digestive glands were analysed using gas chromatography-mass spectrometry (GC-MS) and liquid chromatography-mass spectrometry (LC-MS). Clear differentiation of metabolic profiles was observed among treatments in each tissue type. Overall, energy pathways such as glycolysis, citrate cycle and oxidative phosphorylation were downregulated across the three mussel tissues studied following simulated contamination events. Conversely, considerable sterol upregulation in the gills was observed after exposure to contamination. Additionally, free pools of nucleotide phosphates and the antioxidant glutathione declined considerably post-exposure to contamination in gills. These results provide important insights into the tissue-specific metabolic effects of human faecal contamination in mussels. This study demonstrates the utility of metabolomics as a tool for identifying potential biomarkers in mussels.
Collapse
Affiliation(s)
- Pradip Gyawali
- Institute of Environmental Science and Research Ltd (ESR), Porirua 5240, New Zealand.
| | - Avinash V Karpe
- Land and Water, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Ecosciences Precinct, 41 Boggo Road, Qld 4102, Australia
| | - Katie E Hillyer
- Land and Water, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Ecosciences Precinct, 41 Boggo Road, Qld 4102, Australia
| | - Thao V Nguyen
- Aquaculture Biotechnology Research Group, School of Science, Auckland University of Technology, Auckland, New Zealand; Land and Water, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Ecosciences Precinct, 41 Boggo Road, Qld 4102, Australia
| | - Joanne Hewitt
- Institute of Environmental Science and Research Ltd (ESR), Porirua 5240, New Zealand
| | - David J Beale
- Land and Water, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Ecosciences Precinct, 41 Boggo Road, Qld 4102, Australia.
| |
Collapse
|
14
|
Farkas K, Green E, Rigby D, Cross P, Tyrrel S, Malham SK, Jones DL. Investigating awareness, fear and control associated with norovirus and other pathogens and pollutants using best-worst scaling. Sci Rep 2021; 11:11194. [PMID: 34045602 PMCID: PMC8160009 DOI: 10.1038/s41598-021-90704-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 05/10/2021] [Indexed: 02/04/2023] Open
Abstract
Pollutants found in the water and air environment represent an ever-growing threat to human health. Contact with some air-, water- and foodborne pathogens (e.g. norovirus) results in gastrointestinal diseases and outbreaks. For future risk mitigation, we aimed to measure people's awareness of waterborne and foodborne norovirus relative to other environment-associated pollutants (e.g. pesticides, bioaerosols, antibiotic resistant bacteria) and well-known risks (e.g. diabetes, dementia, terrorist attack). We used an online survey, which included a best-worst scaling component to elicit personal levels of control and fear prompted by norovirus relative to 15 other risks. There was a negative correlation between levels of fear vs. control for all 16 measured risks. Perceived infection control levels were higher amongst women compared to men and correlated with age and the level of qualification in both groups. Participants who had sought advice regarding the symptoms caused by norovirus appeared to have more control over the risks. Norovirus is associated with high levels of fear, however, the levels of control over it is low compared to other foodborne illnesses, e.g. Salmonella. Addressing this deficit in the public's understanding of how to control exposure to the pathogen in an important health need.
Collapse
Affiliation(s)
- Kata Farkas
- grid.7362.00000000118820937School of Natural Sciences, Bangor University, Deiniol Road, Bangor, Gwynedd, LL57 2UW UK ,grid.7362.00000000118820937School of Ocean Sciences, Bangor University, Menai Bridge, Anglesey, LL53 5AB UK ,Marine Centre Wales, Menai Bridge, Anglesey, LL59 5AB UK
| | - Emma Green
- grid.7362.00000000118820937School of Natural Sciences, Bangor University, Deiniol Road, Bangor, Gwynedd, LL57 2UW UK
| | - Dan Rigby
- grid.5379.80000000121662407Department of Economics, University of Manchester, Oxford Road, Manchester, M13 9PL UK
| | - Paul Cross
- grid.7362.00000000118820937School of Natural Sciences, Bangor University, Deiniol Road, Bangor, Gwynedd, LL57 2UW UK
| | - Sean Tyrrel
- grid.12026.370000 0001 0679 2190School of Water, Energy and Environment, Cranfield University, Cranfield, MK43 0AL UK
| | - Shelagh K. Malham
- grid.7362.00000000118820937School of Ocean Sciences, Bangor University, Menai Bridge, Anglesey, LL53 5AB UK
| | - David L. Jones
- grid.7362.00000000118820937School of Natural Sciences, Bangor University, Deiniol Road, Bangor, Gwynedd, LL57 2UW UK ,grid.1012.20000 0004 1936 7910UWA Oceans Institute, The University of Western Australia, Perth, WA 6009 Australia
| |
Collapse
|
15
|
Zhang H, Liu D, Zhang Z, Hewitt J, Li X, Hou P, Wang D, Wu Q. Surveillance of human norovirus in oysters collected from production area in Shandong Province, China during 2017–2018. Food Control 2021. [DOI: 10.1016/j.foodcont.2020.107649] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
16
|
Fuentes C, Pérez-Rodríguez FJ, Sabrià A, Beguiristain N, Pintó RM, Guix S, Bosch A. Inactivation of Hepatitis A Virus and Human Norovirus in Clams Subjected to Heat Treatment. Front Microbiol 2021; 11:578328. [PMID: 33510715 PMCID: PMC7835484 DOI: 10.3389/fmicb.2020.578328] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 12/17/2020] [Indexed: 02/01/2023] Open
Abstract
Bivalve mollusk contamination by enteric viruses, especially human noroviruses (HuNoV) and hepatitis A virus (HAV), is a problem with health and economic implications. The aim of the study was the evaluation of the effect of heat treatment in clams (Tawera gayi) experimentally contaminated with HuNoV using a PMA-viability RTqPCR assay to minimize measurement of non-infectious viruses, and used HAV as a model to estimate infectivity loss. Spiked clams were immersed in water at 90°C to ensure that internal meat temperature was maintained above 90°C for at least 5 min. The treatment resulted in >3.89 ± 0.24 log10 TCID50/g reduction of infectious HAV, confirming inactivation. For HuNoV, RTqPCR assays showed log10 reductions of 2.96 ± 0.79 and 2.56 ± 0.56, for GI and GII, respectively, and the use of PMA resulted in an additional log10 reduction for GII, providing a better correlation with risk reduction. In the absence of a cell culture system which could be used to determine HuNoV infectivity reduction, a performance criteria based on PMA-RTqPCR log reduction could be used to evaluate food product safety. According to data from this study, heat treatments of clams which cause reductions >3.5 log10 for GII as measured by PMA-RTqPCR assay may be regarded as an acceptable inactivation treatment, and could be set as a performance criterion to test the effectiveness of other time-temperature inactivation processes.
Collapse
Affiliation(s)
- Cristina Fuentes
- Enteric Virus Laboratory, Department of Genetics, Microbiology and Statistics, University of Barcelona, Barcelona, Spain
- Nutrition and Food Safety Research Institute (INSA⋅UB), University of Barcelona, Barcelona, Spain
| | - Francisco J. Pérez-Rodríguez
- Enteric Virus Laboratory, Department of Genetics, Microbiology and Statistics, University of Barcelona, Barcelona, Spain
- Nutrition and Food Safety Research Institute (INSA⋅UB), University of Barcelona, Barcelona, Spain
| | - Aurora Sabrià
- Enteric Virus Laboratory, Department of Genetics, Microbiology and Statistics, University of Barcelona, Barcelona, Spain
- Nutrition and Food Safety Research Institute (INSA⋅UB), University of Barcelona, Barcelona, Spain
| | - Nerea Beguiristain
- Enteric Virus Laboratory, Department of Genetics, Microbiology and Statistics, University of Barcelona, Barcelona, Spain
- Nutrition and Food Safety Research Institute (INSA⋅UB), University of Barcelona, Barcelona, Spain
| | - Rosa M. Pintó
- Enteric Virus Laboratory, Department of Genetics, Microbiology and Statistics, University of Barcelona, Barcelona, Spain
- Nutrition and Food Safety Research Institute (INSA⋅UB), University of Barcelona, Barcelona, Spain
| | - Susana Guix
- Enteric Virus Laboratory, Department of Genetics, Microbiology and Statistics, University of Barcelona, Barcelona, Spain
- Nutrition and Food Safety Research Institute (INSA⋅UB), University of Barcelona, Barcelona, Spain
| | - Albert Bosch
- Enteric Virus Laboratory, Department of Genetics, Microbiology and Statistics, University of Barcelona, Barcelona, Spain
- Nutrition and Food Safety Research Institute (INSA⋅UB), University of Barcelona, Barcelona, Spain
| |
Collapse
|
17
|
Liu D, Zhang Z, Li S, Wu Q, Tian P, Zhang Z, Wang D. Fingerprinting of human noroviruses co-infections in a possible foodborne outbreak by metagenomics. Int J Food Microbiol 2020; 333:108787. [PMID: 32702583 DOI: 10.1016/j.ijfoodmicro.2020.108787] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 07/03/2020] [Accepted: 07/06/2020] [Indexed: 01/03/2023]
Abstract
Human noroviruses (HuNoVs) are the primary non-bacterial pathogens causing acute gastroenteritis worldwide. Here we reported a co-infection of HuNoVs with different genotypes during an outbreak of gastroenteritis in travelers. The aim was to trace the source and transmission patterns of the infections using next-generation sequencing (NGS). An investigation was conducted on a cross-border travel group who came back to China from Thailand for symptoms of gastroenteritis. Anal swabs were collected from 23 people and samples were analyzed using RT-qPCR. A total of 11 samples tested positive for HuNoVs. All samples tested negative for bacterial pathogens in the surveillance list. Positive samples for HuNoVs were further analyzed using NGS. Seven out of 11 positive samples were sequenced and 16 viral genome sequences for 10 different strains of HuNoVs were obtained. We demonstrated that the outbreak was associated with co-infection of multiple genotypes of HuNoVs and the source of infections was probably contaminated water or food. Besides, four different HuNoVs genotypes (GI.5[P12], GIX.1[GII·P15], GI.7[P7] and GII.8[P8]) were identified in one patient. Co-infection with both genogroup GI and GII, and co-infection with two different P types ([P10] and [P13]) of genotype GI.3 were identified in different patients. Findings from this study show that individuals can be simultaneously infected with multiple strains of HuNoVs and NGS can help investigating these issues. Further, this study shows that food and water are potential vehicles for transmission of multiple foodborne viruses.
Collapse
Affiliation(s)
- Danlei Liu
- Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China; State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangzhou, China
| | - Zilei Zhang
- Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China; State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangzhou, China
| | - Shenwei Li
- Shanghai International Travel Healthcare Center, Shanghai Customs District P. R. China, Shanghai, China
| | - Qingping Wu
- Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China; State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangzhou, China
| | - Peng Tian
- Produce Safety and Microbiology Research Unit, Western Regional Research Center, Agricultural Research Service, United States Department of Agriculture, Albany, CA 94706, USA
| | - Zilong Zhang
- Shanghai International Travel Healthcare Center, Shanghai Customs District P. R. China, Shanghai, China.
| | - Dapeng Wang
- Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
18
|
Chen J, Wu X, Sánchez G, Randazzo W. Viability RT-qPCR to detect potentially infectious enteric viruses on heat-processed berries. Food Control 2020. [DOI: 10.1016/j.foodcont.2019.106818] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
19
|
Anfruns-Estrada E, Bottaro M, Pintó RM, Guix S, Bosch A. Effectiveness of Consumers Washing with Sanitizers to Reduce Human Norovirus on Mixed Salad. Foods 2019; 8:E637. [PMID: 31817024 PMCID: PMC6963976 DOI: 10.3390/foods8120637] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 11/25/2019] [Accepted: 11/29/2019] [Indexed: 12/13/2022] Open
Abstract
Human norovirus (HuNoV) is a foremost cause of domestically acquired foodborne acute gastroenteritis and outbreaks. Despite industrial efforts to control HuNoV contamination of foods, its prevalence in foodstuffs at retail is significant. HuNoV infections are often associated with the consumption of contaminated produce, including ready-to-eat (RTE) salads. Decontamination of produce by washing with disinfectants is a consumer habit which could significantly contribute to mitigate the risk of infection. The aim of our study was to measure the effectiveness of chemical sanitizers in inactivating genogroup I and II HuNoV strains on mixed salads using a propidium monoazide (PMAxx)-viability RTqPCR assay. Addition of sodium hypochlorite, peracetic acid, or chlorine dioxide significantly enhanced viral removal as compared with water alone. Peracetic acid provided the highest effectiveness, with log10 reductions on virus levels of 3.66 ± 0.40 and 3.33 ± 0.19 for genogroup I and II, respectively. Chlorine dioxide showed lower disinfection efficiency. Our results provide information useful to the food industry and final consumers for improving the microbiological safety of fresh products in relation to foodborne viruses.
Collapse
Affiliation(s)
- Eduard Anfruns-Estrada
- Enteric Virus Laboratory, Department of Genetics, Microbiology and Statistics, University of Barcelona, 08028 Barcelona, Spain; (E.A.-E.); (M.B.); (R.M.P.); (A.B.)
- Nutrition and Food Safety Research Institute (INSA·UB), University of Barcelona, Santa Coloma de, 08921 Gramenet, Spain
| | - Marilisa Bottaro
- Enteric Virus Laboratory, Department of Genetics, Microbiology and Statistics, University of Barcelona, 08028 Barcelona, Spain; (E.A.-E.); (M.B.); (R.M.P.); (A.B.)
- Department of Veterinary Medicine, University of Bari Aldo Moro, 70010 Bari, Italy
| | - Rosa M. Pintó
- Enteric Virus Laboratory, Department of Genetics, Microbiology and Statistics, University of Barcelona, 08028 Barcelona, Spain; (E.A.-E.); (M.B.); (R.M.P.); (A.B.)
- Nutrition and Food Safety Research Institute (INSA·UB), University of Barcelona, Santa Coloma de, 08921 Gramenet, Spain
| | - Susana Guix
- Enteric Virus Laboratory, Department of Genetics, Microbiology and Statistics, University of Barcelona, 08028 Barcelona, Spain; (E.A.-E.); (M.B.); (R.M.P.); (A.B.)
- Nutrition and Food Safety Research Institute (INSA·UB), University of Barcelona, Santa Coloma de, 08921 Gramenet, Spain
| | - Albert Bosch
- Enteric Virus Laboratory, Department of Genetics, Microbiology and Statistics, University of Barcelona, 08028 Barcelona, Spain; (E.A.-E.); (M.B.); (R.M.P.); (A.B.)
- Nutrition and Food Safety Research Institute (INSA·UB), University of Barcelona, Santa Coloma de, 08921 Gramenet, Spain
| |
Collapse
|