1
|
Tellez-Carrasquilla S, Salazar-Ospina L, Jiménez JN. High activity and specificity of bacteriophage cocktails against carbapenem-resistant Klebsiella pneumoniae belonging to the high-risk clones CG258 and ST307. Front Microbiol 2024; 15:1502593. [PMID: 39717270 PMCID: PMC11663894 DOI: 10.3389/fmicb.2024.1502593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 11/25/2024] [Indexed: 12/25/2024] Open
Abstract
Introduction The widespread clinical and environmental dissemination of successful clones of carbapenem-resistant Klebsiella pneumoniae (CRKP) represents a serious global public health threat. In this context, lytic bacteriophages have emerged as a promising alternative for controlling these pathogens. This study describes the biological, structural, and genomic characteristics of lytic bacteriophages against the high-risk CRKP clones CG258 and ST307 and describes their performance in combination. Methods An experimental study was carried out. Bacteriophages were isolated from hospital wastewater and from wastewater treatment plants (WWTP). Bacteriophages were isolated using the double layer agar technique and their characterization included host range (individual and cocktail), plating efficiency (EOP), infection or bacterial killing curve, one-step curve, bacteriophage stability at pH and temperature conditions, transmission electron microscopy (TEM) and whole genome sequencing. Results After purification, five active bacteriophages against CRKP were obtained, three bacteriophages (FKP3, FKP4 and FKP14) had targeted activities against CG258 CRKP and two (FKP10 and FKP12) against ST307 isolates. Seven cocktails were prepared, of which Cocktail 2, made up of the bacteriophages FKP3, FKP10, and FKP14, showed the best activity against 85.7% (n = 36/42) of CRKP isolates belonging to both clones, CG258 (80.8%; n = 21/26) and ST307 (93.8%, n = 15/16). The efficiency of the plating (EOP), infection curve, and one-step growth curve showed that the cocktail phages efficiently infected other CRKP isolates (EOP ≥ 0.5), controlled bacterial growth up to 73.5%, and had short latency periods, respectively, (5-10 min). In addition, they were stable at temperatures between 4°C and 50°C and pH between 4 and 10. All bacteriophages belonged to the Caudoviricetes class, and no genes associated with virulence factors or antibiotic resistance were detected. Conclusion These findings showed bacteriophages and phage cocktails with high specificity against CRKP belonging to the successful clones CG258 and ST307 with promising characteristics, making them an alternative for controlling these clones in different environmental or health settings, biocontrol agents, or disinfectants in industry and in the field of diagnosis.
Collapse
Affiliation(s)
| | | | - J. Natalia Jiménez
- Grupo de Investigación en Microbiología Básica y Aplicada (MICROBA), Escuela de Microbiología, Universidad de Antioquia, Medellín, Colombia
| |
Collapse
|
2
|
Kou X, Yang X, Zheng R. Challenges and opportunities of phage therapy for Klebsiella pneumoniae infections. Appl Environ Microbiol 2024; 90:e0135324. [PMID: 39345202 PMCID: PMC11497816 DOI: 10.1128/aem.01353-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2024] Open
Abstract
Traditional antibiotics have been effective in many cases. However, the rise in multidrug-resistant bacteria has diminished their therapeutic efficacy, signaling the dawn of an era beyond antibiotics. The challenge of multidrug resistance in Klebsiella pneumoniae is particularly critical, with increasing global mortality and resistance rates. Therefore, the development of alternative therapies to antibiotics is urgently needed. Phages, which are natural predators of bacteria, have inherent advantages. However, comprehensive information on K. pneumoniae phages is lacking in current literature. This review aims to analyze and summarize relevant studies, focusing on the present state of phage therapy for K. pneumoniae infections. This includes an examination of treatment methodologies, associated challenges, strategies, new phage technologies, clinical trial safety and efficacy, regulatory issues, and future directions for phage therapy development. Enhancing phage technology is crucial for addressing the evolving threat of multidrug-resistant K. pneumoniae.
Collapse
Affiliation(s)
- Xin Kou
- The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
- Department of Clinical Laboratory, The First People’s Hospital of Yunnan Province, Kunming, Yunnan, China
- The Affliated Hospital of College of Medical, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Xiaoyu Yang
- Department of Clinical Laboratory, The First People’s Hospital of Yunnan Province, Kunming, Yunnan, China
- The Affliated Hospital of College of Medical, Kunming University of Science and Technology, Kunming, Yunnan, China
- Regenerative Medicine Research Center, The First People’s Hospital of Yunnan Province, Kunming, Yunnan, China
| | - Rui Zheng
- Department of Clinical Laboratory, The First People’s Hospital of Yunnan Province, Kunming, Yunnan, China
- The Affliated Hospital of College of Medical, Kunming University of Science and Technology, Kunming, Yunnan, China
| |
Collapse
|
3
|
Pal N, Sharma P, Kumawat M, Singh S, Verma V, Tiwari RR, Sarma DK, Nagpal R, Kumar M. Phage therapy: an alternative treatment modality for MDR bacterial infections. Infect Dis (Lond) 2024; 56:785-817. [PMID: 39017931 DOI: 10.1080/23744235.2024.2379492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 07/07/2024] [Accepted: 07/08/2024] [Indexed: 07/18/2024] Open
Abstract
The increasing global incidence of multidrug-resistant (MDR) bacterial infections threatens public health and compromises various aspects of modern medicine. Recognising the urgency of this issue, the World Health Organisation has prioritised the development of novel antimicrobials to combat ESKAPEE pathogens. Comprising Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, Enterobacter spp. and Escherichia coli, such pathogens represent a spectrum of high to critical drug resistance, accounting for a significant proportion of hospital-acquired infections worldwide. In response to the waning efficacy of antibiotics against these resilient pathogens, phage therapy (PT) has emerged as a promising therapeutic strategy. This review provides a comprehensive summary of clinical research on PT and explores the translational journey of phages from laboratory settings to clinical applications. It examines recent advancements in pre-clinical and clinical developments, highlighting the potential of phages and their proteins, alone or in combination with antibiotics. Furthermore, this review underlines the importance of establishing safe and approved routes of phage administration to patients. In conclusion, the evolving landscape of phage therapy offers a beacon of hope in the fight against MDR bacterial infections, emphasising the imperative for continued research, innovation and regulatory diligence to realise its full potential in clinical practice.
Collapse
Affiliation(s)
- Namrata Pal
- Department of Microbiology, ICMR-National Institute for Research in Environmental Health, Bhopal, Madhya Pradesh, India
- Department of Microbiology, Barkatullah University, Bhopal, Madhya Pradesh, India
| | - Poonam Sharma
- Department of Microbiology, ICMR-National Institute for Research in Environmental Health, Bhopal, Madhya Pradesh, India
| | - Manoj Kumawat
- Department of Microbiology, ICMR-National Institute for Research in Environmental Health, Bhopal, Madhya Pradesh, India
| | - Samradhi Singh
- Department of Microbiology, ICMR-National Institute for Research in Environmental Health, Bhopal, Madhya Pradesh, India
| | - Vinod Verma
- Stem Cell Research Centre, Department of Hematology, Sanjay Gandhi Post-Graduate Institute of Medical Sciences, Lucknow, Uttar Pradesh, India
| | - Rajnarayan R Tiwari
- Department of Microbiology, ICMR-National Institute for Research in Environmental Health, Bhopal, Madhya Pradesh, India
| | - Devojit Kumar Sarma
- Department of Microbiology, ICMR-National Institute for Research in Environmental Health, Bhopal, Madhya Pradesh, India
| | - Ravinder Nagpal
- Department of Nutrition and Integrative Physiology, College of Health and Human Sciences, Florida State University, Tallahassee, FL, USA
| | - Manoj Kumar
- Department of Microbiology, ICMR-National Institute for Research in Environmental Health, Bhopal, Madhya Pradesh, India
| |
Collapse
|
4
|
Natarajan SP, Teh SH, Lin LC, Lin NT. In Vitro and In Vivo Assessments of Newly Isolated N4-like Bacteriophage against ST45 K62 Capsular-Type Carbapenem-Resistant Klebsiella pneumoniae: vB_kpnP_KPYAP-1. Int J Mol Sci 2024; 25:9595. [PMID: 39273543 PMCID: PMC11395603 DOI: 10.3390/ijms25179595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/26/2024] [Accepted: 08/31/2024] [Indexed: 09/15/2024] Open
Abstract
The rise of carbapenem-resistant Klebsiella pneumoniae (CRKP) presents a significant global challenge in clinical and healthcare settings, severely limiting treatment options. This study aimed to utilize a bacteriophage as an alternative therapy against carbapenem-resistant K. pneumoniae. A novel lytic N4-like Klebsiella phage, vB_kpnP_KPYAP-1 (KPYAP-1), was isolated from sewage. It demonstrated efficacy against the K62 serotype polysaccharide capsule of blaOXA-48-producing K. pneumoniae. KPYAP-1 forms small, clear plaques, has a latent period of 20 min, and reaches a growth plateau at 35 min, with a burst size of 473 plaque-forming units (PFUs) per infected cell. Phylogenetic analysis places KPYAP-1 in the Schitoviridae family, Enquatrovirinae subfamily, and Kaypoctavirus genus. KPYAP-1 employs an N4-like direct terminal repeat mechanism for genome packaging and encodes a large virion-encapsulated RNA polymerase. It lacks integrase or repressor genes, antibiotic resistance genes, bacterial virulence factors, and toxins, ensuring its safety for therapeutic use. Comparative genome analysis revealed that the KPYAP-1 genome is most similar to the KP8 genome, yet differs in tail fiber protein, indicating variations in host recognition. In a zebrafish infection model, KPYAP-1 significantly improved the survival rate of infected fish by 92% at a multiplicity of infection (MOI) of 10, demonstrating its potential for in vivo treatment. These results highlight KPYAP-1 as a promising candidate for developing phage-based therapies targeting carbapenemase-producing K. pneumoniae.
Collapse
Affiliation(s)
- Shanmuga Priya Natarajan
- Master Program in Biomedical Sciences, School of Medicine, Tzu Chi University, No. 701, Sec. 3, Zhongyang Rd., Hualien 97004, Taiwan
| | - Soon-Hian Teh
- Division of Infectious Diseases, Department of Internal Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, No. 707, Sec. 3, Zhongyang Rd., Hualien 97004, Taiwan
| | - Ling-Chun Lin
- Master Program in Biomedical Sciences, School of Medicine, Tzu Chi University, No. 701, Sec. 3, Zhongyang Rd., Hualien 97004, Taiwan
| | - Nien-Tsung Lin
- Master Program in Biomedical Sciences, School of Medicine, Tzu Chi University, No. 701, Sec. 3, Zhongyang Rd., Hualien 97004, Taiwan
| |
Collapse
|
5
|
Yu H, Xu Y, Imani S, Zhao Z, Ullah S, Wang Q. Navigating ESKAPE Pathogens: Considerations and Caveats for Animal Infection Models Development. ACS Infect Dis 2024; 10:2336-2355. [PMID: 38866389 PMCID: PMC11249778 DOI: 10.1021/acsinfecdis.4c00007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 05/19/2024] [Accepted: 05/29/2024] [Indexed: 06/14/2024]
Abstract
The misuse of antibiotics has led to the global spread of drug-resistant bacteria, especially multi-drug-resistant (MDR) ESKAPE pathogens (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species). These opportunistic bacteria pose a significant threat, in particular within hospitals, where they cause nosocomial infections, leading to substantial morbidity and mortality. To comprehensively explore ESKAPE pathogenesis, virulence, host immune response, diagnostics, and therapeutics, researchers increasingly rely on necessitate suitable animal infection models. However, no single model can fully replicate all aspects of infectious diseases. Notably when studying opportunistic pathogens in immunocompetent hosts, rapid clearance by the host immune system can limit the expression of characteristic disease symptoms. In this study, we examine the critical role of animal infection models in understanding ESKAPE pathogens, addressing limitations and research gaps. We discuss applications and highlight key considerations for effective models. Thoughtful decisions on disease replication, parameter monitoring, and data collection are crucial for model reliability. By meticulously replicating human diseases and addressing limitations, researchers maximize the potential of animal infection models. This aids in targeted therapeutic development, bridges knowledge gaps, and helps combat MDR ESKAPE pathogens, safeguarding public health.
Collapse
Affiliation(s)
- Haojie Yu
- Key
Laboratory of Artificial Organs and Computational Medicine in Zhejiang
Province, Key Laboratory of Pollution Exposure and Health Intervention
of Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou 310015, Zhejiang China
- Stomatology
Hospital, School of Stomatology, Zhejiang University School of Medicine,
Zhejiang Provincial Clinical Research Center for Oral Diseases, Key
Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310006, China
| | - Yongchang Xu
- Key
Laboratory of Aging and Cancer Biology of Zhejiang Province, School
of Basic Medical Sciences, Hangzhou Normal
University, Hangzhou 311121, China
| | - Saber Imani
- Shulan
International Medical College, Zhejiang
Shuren University, Hangzhou 310015, Zhejiang China
| | - Zhuo Zhao
- Department
of Computer Science and Engineering, University
of Notre Dame, Notre
Dame, Indiana 46556, United States
| | - Saif Ullah
- Department
of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico 87131, United States
| | - Qingjing Wang
- Key
Laboratory of Artificial Organs and Computational Medicine in Zhejiang
Province, Key Laboratory of Pollution Exposure and Health Intervention
of Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou 310015, Zhejiang China
| |
Collapse
|
6
|
Mirza KA, Nietzsche S, Makarewicz O, Pletz MW, Thieme L. Bacteriophage-mediated decolonization of Klebsiella pneumoniae in a novel Galleria mellonella gut colonization model with Enterobacteriaceae. Sci Rep 2024; 14:318. [PMID: 38172281 PMCID: PMC10764950 DOI: 10.1038/s41598-023-50823-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 12/26/2023] [Indexed: 01/05/2024] Open
Abstract
Galleria mellonella larvae have emerged as an invertebrate model for investigating bacterial pathogenesis and potential therapies, addressing ethical concerns related to mammalian models. This model has the advantage of having a simple gut microbiome, which is suitable for gut colonization studies. Intestinal colonization by Enterobacteriaceae significantly contributes to the spread of antibiotic resistance. This study aimed to establish a novel Enterobacteriaceae gut colonization larval model and assess its suitability for evaluating distinct antimicrobial efficacies. Larvae were force-fed sequentially with bacterial doses of K. pneumoniae and E. coli at 0, 24, and 48 h, with survival monitoring at 24 h intervals. Bacterial counts were assessed after 48 h and 120 h of force-feeding. Successfully colonized larvae were subjected to one-time force feeding of a bacteriophage cocktail (107 PFU/larvae) or MIC-based meropenem and ciprofloxacin. The colonized bacterial load was quantified by CFU count. Three doses of 106 CFU/larvae resulted in stable gut colonization, independent of the K. pneumoniae or E. coli strain. Compared with the control, force-feeding of the bacteriophage reduced the colonization of the strain Kp 419614 by 5 log10 CFU/larvae, while antibiotic treatment led to a 3 log10 CFU/larval reduction. This novel G. mellonella model provides a valuable alternative for gut colonization studies, facilitating proof-of-concept investigations and potentially reducing or replacing follow-up experiments in vertebrate models.
Collapse
Affiliation(s)
- Kamran A Mirza
- Jena University Hospital, Institute of Infectious Diseases and Infection Control, Friedrich-Schiller-University Jena, Am Klinikum 1, 07747, Jena, Germany.
- Jena University Hospital, Leibniz Center for Photonics in Infection Research, Friedrich Schiller University Jena, 07747, Jena, Germany.
| | - Sandor Nietzsche
- Center for Electron Microscope, Jena University Hospital, Ziegelmühlenweg 1, 07743, Jena, Germany
| | - Oliwia Makarewicz
- Jena University Hospital, Institute of Infectious Diseases and Infection Control, Friedrich-Schiller-University Jena, Am Klinikum 1, 07747, Jena, Germany
- Jena University Hospital, Leibniz Center for Photonics in Infection Research, Friedrich Schiller University Jena, 07747, Jena, Germany
| | - Mathias W Pletz
- Jena University Hospital, Institute of Infectious Diseases and Infection Control, Friedrich-Schiller-University Jena, Am Klinikum 1, 07747, Jena, Germany
| | - Lara Thieme
- Jena University Hospital, Institute of Infectious Diseases and Infection Control, Friedrich-Schiller-University Jena, Am Klinikum 1, 07747, Jena, Germany
- Jena University Hospital, Leibniz Center for Photonics in Infection Research, Friedrich Schiller University Jena, 07747, Jena, Germany
| |
Collapse
|
7
|
Han P, Pu M, Li Y, Fan H, Tong Y. Characterization of bacteriophage BUCT631 lytic for K1 Klebsiella pneumoniae and its therapeutic efficacy in Galleria mellonella larvae. Virol Sin 2023; 38:801-812. [PMID: 37419417 PMCID: PMC10590696 DOI: 10.1016/j.virs.2023.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/09/2023] Open
Abstract
Severe infections caused by multidrug-resistant Klebsiella pneumoniae (K. pneumoniae) highlight the need for new therapeutics with activity against this pathogen. Phage therapy is an alternative treatment approach for multidrug-resistant K. pneumoniae infections. Here, we report a novel bacteriophage (phage) BUCT631 that can specifically lyse capsule-type K1 K. pneumoniae. Physiological characterization revealed that phage BUCT631 could rapidly adsorb to the surface of K. pneumoniae and form an obvious halo ring, and it had relatively favorable thermal stability (4-50 °C) and pH tolerance (pH = 4-12). In addition, the optimal multiplicity of infection (MOI) of phage BUCT631 was 0.01, and the burst size was approximately 303 PFU/cell. Genomic analysis showed that phage BUCT631 has double-stranded DNA (total length of 44,812 bp) with a G + C content of 54.1%, and the genome contains 57 open reading frames (ORFs) and no virulence or antibiotic resistance related genes. Based on phylogenetic analysis, phage BUCT631 could be assigned to a new species in the genus Drulisvirus of the subfamily Slopekvirinae. In addition, phage BUCT631 could quickly inhibit the growth of K. pneumoniae within 2 h in vitro and significantly elevated the survival rate of K. pneumoniae infected Galleria mellonella larvae from 10% to 90% in vivo. These studies suggest that phage BUCT631 has promising potential for development as a safe alternative for control and treatment of multidrug-resistant K. pneumoniae infection.
Collapse
Affiliation(s)
- Pengjun Han
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Mingfang Pu
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Yahao Li
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Huahao Fan
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China.
| | - Yigang Tong
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China; Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China.
| |
Collapse
|
8
|
Tang M, Huang Z, Zhang X, Kong J, Zhou B, Han Y, Zhang Y, Chen L, Zhou T. Phage resistance formation and fitness costs of hypervirulent Klebsiella pneumoniae mediated by K2 capsule-specific phage and the corresponding mechanisms. Front Microbiol 2023; 14:1156292. [PMID: 37538841 PMCID: PMC10394836 DOI: 10.3389/fmicb.2023.1156292] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 07/04/2023] [Indexed: 08/05/2023] Open
Abstract
Introduction Phage is promising for the treatment of hypervirulent Klebsiella pneumoniae (hvKP) infections. Although phage resistance seems inevitable, we found that there still was optimization space in phage therapy for hvKP infection. Methods The clinical isolate K. pneumoniae FK1979 was used to recover the lysis phage ΦFK1979 from hospital sewage. Phage-resistant bacteria were obtained on LB agar and used to isolate phages from sewage. The plaque assay, transmission electron microscopy (TEM), multiplicity of infection test, one-step growth curve assay, and genome analysis were performed to characterize the phages. Colony morphology, precipitation test and scanning electron microscope were used to characterize the bacteria. The absorption test, spot test and efficiency of plating (EOP) assay were used to identify the sensitivity of bacteria to phages. Whole genome sequencing (WGS) was used to identify gene mutations of phage-resistant bacteria. The gene expression levels were detected by RT-qPCR. Genes knockout and complementation of the mutant genes were performed. The change of capsules was detected by capsule quantification and TEM. The growth kinetics, serum resistance, biofilm formation, adhesion and invasion to A549 and RAW 264.7 cells, as well as G. mellonella and mice infection models, were used to evaluate the fitness and virulence of bacteria. Results and discussion Here, we demonstrated that K2 capsule type sequence type 86 hvKP FK1979, one of the main pandemic lineages of hvKP with thick capsule, rapidly developed resistance to a K2-specific lysis phage ΦFK1979 which was well-studied in this work to possess polysaccharide depolymerase. The phage-resistant mutants showed a marked decrease in capsule expression. WGS revealed single nucleotide polymorphism (SNP) in genes encoding RfaH, galU, sugar glycosyltransferase, and polysaccharide deacetylase family protein in the mutants. RfaH and galU were further identified as being required for capsule production and phage sensitivity. Expressions of genes involved in the biosynthesis or regulation of capsule and/or lipopolysaccharide significantly decreased in the mutants. Despite the rapid and frequent development of phage resistance being a disadvantage, the attenuation of virulence and fitness in vitro and in vivo indicated that phage-resistant mutants of hvKP were more susceptible to the immunity system. Interestingly, the newly isolated phages targeting mutants changed significantly in their plaque and virus particle morphology. Their genomes were much larger than and significantly different from that of ΦFK1979. They possessed much more functional proteins and strikingly broader host spectrums than ΦFK1979. Our study suggests that K2-specific phage has the potential to function as an antivirulence agent, or a part of phage cocktails combined with phages targeting phage-resistant bacteria, against hvKP-relevant infections.
Collapse
Affiliation(s)
- Miran Tang
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University and Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zeyu Huang
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University and Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiaodong Zhang
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University and Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jingchun Kong
- Department of Medical Lab Science, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Beibei Zhou
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University and Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yijia Han
- Department of Medical Lab Science, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yi Zhang
- Department of Medical Lab Science, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Lijiang Chen
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University and Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Tieli Zhou
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University and Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
9
|
Elek CKA, Brown TL, Le Viet T, Evans R, Baker DJ, Telatin A, Tiwari SK, Al-Khanaq H, Thilliez G, Kingsley RA, Hall LJ, Webber MA, Adriaenssens EM. A hybrid and poly-polish workflow for the complete and accurate assembly of phage genomes: a case study of ten przondoviruses. Microb Genom 2023; 9:mgen001065. [PMID: 37463032 PMCID: PMC10438801 DOI: 10.1099/mgen.0.001065] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 06/17/2023] [Indexed: 07/21/2023] Open
Abstract
Bacteriophages (phages) within the genus Przondovirus are T7-like podoviruses belonging to the subfamily Studiervirinae, within the family Autographiviridae, and have a highly conserved genome organisation. The genomes of these phages range from 37 to 42 kb in size, encode 50-60 genes and are characterised by the presence of direct terminal repeats (DTRs) flanking the linear chromosome. These DTRs are often deleted during short-read-only and hybrid assemblies. Moreover, long-read-only assemblies are often littered with sequencing and/or assembly errors and require additional curation. Here, we present the isolation and characterisation of ten novel przondoviruses targeting Klebsiella spp. We describe HYPPA, a HYbrid and Poly-polish Phage Assembly workflow, which utilises long-read assemblies in combination with short-read sequencing to resolve phage DTRs and correcting errors, negating the need for laborious primer walking and Sanger sequencing validation. Our assembly workflow utilised Oxford Nanopore Technologies for long-read sequencing for its accessibility, making it the more relevant long-read sequencing technology at this time, and Illumina DNA Prep for short-read sequencing, representing the most commonly used technologies globally. Our data demonstrate the importance of careful curation of phage assemblies before publication, and prior to using them for comparative genomics.
Collapse
Affiliation(s)
- Claire K. A. Elek
- Quadram Institute Bioscience, Rosalind Franklin Road, Norwich Research Park, Norwich, UK
- University of East Anglia, Norwich Research Park, Norwich, UK
| | - Teagan L. Brown
- Quadram Institute Bioscience, Rosalind Franklin Road, Norwich Research Park, Norwich, UK
| | - Thanh Le Viet
- Quadram Institute Bioscience, Rosalind Franklin Road, Norwich Research Park, Norwich, UK
| | - Rhiannon Evans
- Quadram Institute Bioscience, Rosalind Franklin Road, Norwich Research Park, Norwich, UK
| | - David J. Baker
- Quadram Institute Bioscience, Rosalind Franklin Road, Norwich Research Park, Norwich, UK
| | - Andrea Telatin
- Quadram Institute Bioscience, Rosalind Franklin Road, Norwich Research Park, Norwich, UK
| | - Sumeet K. Tiwari
- Quadram Institute Bioscience, Rosalind Franklin Road, Norwich Research Park, Norwich, UK
| | - Haider Al-Khanaq
- Quadram Institute Bioscience, Rosalind Franklin Road, Norwich Research Park, Norwich, UK
| | - Gaëtan Thilliez
- Quadram Institute Bioscience, Rosalind Franklin Road, Norwich Research Park, Norwich, UK
| | - Robert A. Kingsley
- Quadram Institute Bioscience, Rosalind Franklin Road, Norwich Research Park, Norwich, UK
- University of East Anglia, Norwich Research Park, Norwich, UK
| | - Lindsay J. Hall
- Quadram Institute Bioscience, Rosalind Franklin Road, Norwich Research Park, Norwich, UK
- University of East Anglia, Norwich Research Park, Norwich, UK
- Chair of Intestinal Microbiome, ZIEL—Institute for Food and Health, School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Mark A. Webber
- Quadram Institute Bioscience, Rosalind Franklin Road, Norwich Research Park, Norwich, UK
- University of East Anglia, Norwich Research Park, Norwich, UK
| | | |
Collapse
|
10
|
Tisalema-Guanopatín E, Cabezas-Mera F, Nolivos-Rodríguez K, Fierro I, Pazmiño L, Garzon-Chavez D, Debut A, Vizuete K, Reyes JA. New Bacteriophages Members of the Ackermannviridae Family Specific for Klebsiella pneumoniae ST258. PHAGE (NEW ROCHELLE, N.Y.) 2023; 4:99-107. [PMID: 37350993 PMCID: PMC10282792 DOI: 10.1089/phage.2022.0039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/24/2023]
Abstract
Background Carbapenem-resistant Klebsiella pneumoniae, particularly isolates classified as sequence-type 258 (ST258), are multidrug-resistant strains that are strongly associated with poor-prognosis nosocomial infections, as current therapeutic options are limited and ineffective. In recent years, phage therapy has emerged as a promising treatment option for these scenarios. Methodology and Results We report the isolation and characterization of three new phages against Klebsiella pneumoniae ST258 strains recovered from Machángara river wastewater. These new members of the Ackermannviridae family showed stability over a wide temperature and pH range and burst sizes ranging from 6 to 44 plaque-forming units per bacteria. Their genomes were about 157 kilobases, with an average guanine-cytosine content of 46.4% and showed presence of several transfer RNAs, which also allowed us to predict in silico a lytic replicative cycle due to the presence of endolysins and lysozymes. Conclusion Three lytic phages of Ackermannviridae family were recovered against Klebsiella pneumoniae ST258 strains from sewage; however, further characterization is needed for future consideration as therapeutic alternatives.
Collapse
Affiliation(s)
- Estefanía Tisalema-Guanopatín
- Facultad de Ciencias Químicas, Universidad Central del Ecuador (UCE), Ciudadela Universitaria Avenida América, Quito, Pichincha, Ecuador
- Faculty of Engineering and Applied Sciences, Universidad Internacional SEK, Quito, Ecuador
| | - Fausto Cabezas-Mera
- Instituto de Microbiología, Colegio de Ciencias Biológicas y Ambientales (COCIBA), Universidad San Francisco de Quito (USFQ), Diego de Robles y Vía Interoceánica, Quito, Ecuador
| | - Karla Nolivos-Rodríguez
- Facultad de Ciencias Químicas, Universidad Central del Ecuador (UCE), Ciudadela Universitaria Avenida América, Quito, Pichincha, Ecuador
| | - Isabel Fierro
- Facultad de Ciencias Químicas, Universidad Central del Ecuador (UCE), Ciudadela Universitaria Avenida América, Quito, Pichincha, Ecuador
| | - Lourdes Pazmiño
- Facultad de Ciencias Químicas, Universidad Central del Ecuador (UCE), Ciudadela Universitaria Avenida América, Quito, Pichincha, Ecuador
| | - Daniel Garzon-Chavez
- Universidad San Francisco de Quito USFQ, Colegio de Ciencias de la Salud (COCSA), Diego de Robles y Vía Interoceánica, Quito, Ecuador
| | - Alexis Debut
- Centro de Nanociencia y Nanotecnología (CENCINAT), Universidad de las Fuerzas Armadas ESPE, Sangolquí, Ecuador
| | - Karla Vizuete
- Centro de Nanociencia y Nanotecnología (CENCINAT), Universidad de las Fuerzas Armadas ESPE, Sangolquí, Ecuador
| | - Jorge Aníbal Reyes
- Facultad de Ciencias Químicas, Universidad Central del Ecuador (UCE), Ciudadela Universitaria Avenida América, Quito, Pichincha, Ecuador
- Departamento de Microbiología, Hospital del IESS Quito Sur, Avenida Moraspungo, Quito, Ecuador
| |
Collapse
|
11
|
Wu JW, Wang JT, Lin TL, Liu YZ, Wu LT, Pan YJ. Identification of three capsule depolymerases in a bacteriophage infecting Klebsiella pneumoniae capsular types K7, K20, and K27 and therapeutic application. J Biomed Sci 2023; 30:31. [PMID: 37210493 DOI: 10.1186/s12929-023-00928-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 05/12/2023] [Indexed: 05/22/2023] Open
Abstract
BACKGROUND Klebsiella pneumoniae capsular types K1, K2, K5, K20, K54, and K57 are prevalent hypervirulent types associated with community infections, and worrisomely, hypervirulent strains that acquired drug resistance have been found. In the search for alternative therapeutics, studies have been conducted on phages that infect K. pneumoniae K1, K2, K5, and K57-type strains and their phage-encoded depolymerases. However, phages targeting K. pneumoniae K20-type strains and capsule depolymerases capable of digesting K20-type capsules have rarely been reported. In this study, we characterized a phage that can infect K. pneumoniae K20-type strains, phage vB_KpnM-20. METHODS A phage was isolated from sewage water in Taipei, Taiwan, its genome was analyzed, and its predicted capsule depolymerases were expressed and purified. The host specificity and capsule-digesting activity of the capsule depolymerases were determined. The therapeutic effect of the depolymerase targeting K. pneumoniae K20-type strains was analyzed in a mouse infection model. RESULTS The isolated Klebsiella phage, vB_KpnM-20, infects K. pneumoniae K7, K20, and K27-type strains. Three capsule depolymerases, K7dep, K20dep, and K27dep, encoded by the phage were specific to K7, K20, and K27-type capsules, respectively. K20dep also recognized Escherichia coli K30-type capsule, which is highly similar to K. pneumoniae K20-type. The survival of K. pneumoniae K20-type-infected mice was increased following administration of K20dep. CONCLUSIONS The potential of capsule depolymerase K20dep for the treatment of K. pneumoniae infections was revealed using an in vivo infection model. In addition, K7dep, K20dep, and K27dep capsule depolymerases could be used for K. pneumoniae capsular typing.
Collapse
Affiliation(s)
- Jia-Wen Wu
- Graduate Institute of Biomedical Sciences, College of Medicine, China Medical University, Taichung, Taiwan
- Department of Microbiology and Immunology, School of Medicine, College of Medicine, China Medical University, No. 91 Hsueh-Shih Road, Taichung, Taiwan
| | - Jin-Town Wang
- Department of Microbiology, National Taiwan University College of Medicine, Taipei, Taiwan
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Tzu-Lung Lin
- Department of Medical Biotechnology and Laboratory Science, Chang Gung University, Taoyuan, Taiwan
| | - Ya-Zhu Liu
- Department of Microbiology and Immunology, School of Medicine, College of Medicine, China Medical University, No. 91 Hsueh-Shih Road, Taichung, Taiwan
| | - Lii-Tzu Wu
- Department of Microbiology and Immunology, School of Medicine, College of Medicine, China Medical University, No. 91 Hsueh-Shih Road, Taichung, Taiwan
| | - Yi-Jiun Pan
- Department of Microbiology and Immunology, School of Medicine, College of Medicine, China Medical University, No. 91 Hsueh-Shih Road, Taichung, Taiwan.
| |
Collapse
|
12
|
Mohammadi M, Saffari M, Siadat SD. Phage therapy of antibiotic-resistant strains of Klebsiella pneumoniae, opportunities and challenges from the past to the future. Folia Microbiol (Praha) 2023; 68:357-368. [PMID: 37036571 DOI: 10.1007/s12223-023-01046-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 03/12/2023] [Indexed: 04/11/2023]
Abstract
Klebsiella spp. is a commensal gram-negative bacterium and a member of the human microbiota. It is the leading cause of various hospital-acquired infections. The occurrence of multi-drug drug resistance and carbapenemase-producing strains of Klebsiella pneumoniae producing weighty contaminations is growing, and Klebsiella oxytoca is an arising bacterium. Alternative approaches to tackle contaminations led by these microorganisms are necessary as strains enhance opposing to last-stage antibiotics in the way that Colistin. The lytic bacteriophages are viruses that infect and rapidly eradicate bacterial cells and are strain-specific to their hosts. They and their proteins are immediately deliberate as opportunities or adjuncts to antibiotic therapy. There are several reports in vitro and in vivo form that proved the potential use of lytic phages to combat superbug stains of K. pneumoniae. Various reports dedicated that the phage area can be returned to the elimination of multi-drug resistance and carbapenemase resistance isolates of K. pneumoniae. This review compiles our current information on phages of Klebsiella spp. and highlights technological and biological issues related to the evolution of phage-based therapies targeting these bacterial hosts.
Collapse
Affiliation(s)
- Mehrdad Mohammadi
- Department of Microbiology and Immunology, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran.
| | - Mahmood Saffari
- Department of Microbiology and Immunology, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Seyed Davar Siadat
- Tuberculosis and Pulmonary Research Department, Pasteur Institute of Iran, Tehran, Iran
- Microbiology Research Center (MRC), Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
13
|
Impact Assessment of vB_KpnP_K1-ULIP33 Bacteriophage on the Human Gut Microbiota Using a Dynamic In Vitro Model. Viruses 2023; 15:v15030719. [PMID: 36992428 PMCID: PMC10057081 DOI: 10.3390/v15030719] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 03/02/2023] [Accepted: 03/08/2023] [Indexed: 03/12/2023] Open
Abstract
New control methods are needed to counter antimicrobial resistances and the use of bacteriophages as an alternative treatment seems promising. To that end, the effect of the phage vB_KpnP_K1-ULIP33, whose host is the hypervirulent Klebsiella pneumoniae SA12 (ST23 and capsular type K1), was assessed on intestinal microbiota, using an in vitro model: the SHIME® system (Simulator of the Human Intestinal Microbial Ecosystem). After stabilization of the system, the phage was inoculated for 7 days and its persistence in the different colons was studied until its disappearance from the system. The concentration of short chain fatty acids in the colons showed good colonization of the bioreactors by the microbiota and no significant effect related to the phage treatment. Diversity (α and β), the relative abundance of bacteria, and qPCR analysis targeting different genera of interest showed no significant variation following phage administration. Even if further in vitro studies are needed to assess the efficacy of this phage against its bacterial host within the human intestinal ecosystem, the phage ULIP33 exerted no significant change on the global colonic microbiota.
Collapse
|
14
|
Feng J, Li F, Sun L, Dong L, Gao L, Wang H, Yan L, Wu C. Characterization and genome analysis of phage vB_KpnS_SXFY507 against Klebsiella pneumoniae and efficacy assessment in Galleria mellonella larvae. Front Microbiol 2023; 14:1081715. [PMID: 36793879 PMCID: PMC9922705 DOI: 10.3389/fmicb.2023.1081715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 01/16/2023] [Indexed: 01/31/2023] Open
Abstract
Carbapenem-resistant Klebsiella pneumoniae is one of the primary bacterial pathogens that pose a significant threat to global public health because of the lack of available therapeutic options. Phage therapy shows promise as a potential alternative to current antimicrobial chemotherapies. In this study, we isolated a new Siphoviridae phage vB_KpnS_SXFY507 against KPC-producing K. pneumoniae from hospital sewage. It had a short latent period of 20 min and a large burst size of 246 phages/cell. The host range of phage vB_KpnS_SXFY507 was relatively broad. It has a wide range of pH tolerance and high thermal stability. The genome of phage vB_KpnS_SXFY507 was 53,122 bp in length with a G + C content of 49.1%. A total of 81 open-reading frames (ORFs) and no virulence or antibiotic resistance related genes were involved in the phage vB_KpnS_SXFY507 genome. Phage vB_KpnS_SXFY507 showed significant antibacterial activity in vitro. The survival rate of Galleria mellonella larvae inoculated with K. pneumoniae SXFY507 was 20%. The survival rate of K. pneumonia-infected G. mellonella larvae was increased from 20 to 60% within 72 h upon treatment with phage vB_KpnS_SXFY507. In conclusion, these findings indicate that phage vB_KpnS_SXFY507 has the potential to be used as an antimicrobial agent for the control of K. pneumoniae.
Collapse
Affiliation(s)
- Jiao Feng
- Institute of Biomedical Sciences, The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education of China, The Key Laboratory of Medical Molecular Cell Biology of Shanxi Province, Shanxi University, Taiyuan, China,*Correspondence: Jiao Feng, ✉
| | - Fei Li
- Center for Clinical Laboratory, The Affiliated Taian City Central Hospital of Qingdao University, Taian, China,College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Li Sun
- Institute of Biomedical Sciences, The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education of China, The Key Laboratory of Medical Molecular Cell Biology of Shanxi Province, Shanxi University, Taiyuan, China
| | - Lina Dong
- Core Laboratory, Shanxi Provincial People’s Hospital (Fifth Hospital) of Shanxi Medical University, Taiyuan, China
| | - Liting Gao
- Institute of Biomedical Sciences, The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education of China, The Key Laboratory of Medical Molecular Cell Biology of Shanxi Province, Shanxi University, Taiyuan, China
| | - Han Wang
- Medical Imaging Center, The Affiliated Taian City Central Hospital of Qingdao University, Taian, China
| | - Liyong Yan
- Hospital Office, The Affiliated Taian City Central Hospital of Qingdao University, Taian, China,Liyong Yan, ✉
| | - Changxin Wu
- Institute of Biomedical Sciences, The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education of China, The Key Laboratory of Medical Molecular Cell Biology of Shanxi Province, Shanxi University, Taiyuan, China,Changxin Wu, ✉
| |
Collapse
|
15
|
Characteristics of Environmental Klebsiella pneumoniae and Klebsiella oxytoca Bacteriophages and Their Therapeutic Applications. Pharmaceutics 2023; 15:pharmaceutics15020434. [PMID: 36839755 PMCID: PMC9960720 DOI: 10.3390/pharmaceutics15020434] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/23/2023] [Accepted: 01/23/2023] [Indexed: 01/31/2023] Open
Abstract
In recent years, multidrug-resistant (MDR) strains of Klebsiella pneumoniae have spread globally, being responsible for the occurrence and severity of nosocomial infections. The NDM-1-kp, VIM-1 carbapenemase-producing isolates as well as extended-spectrum beta lactamase-producing (ESBL) isolates along with Klebsiella oxytoca strains have become emerging pathogens. Due to the growing problem of antibiotic resistance, bacteriophage therapy may be a potential alternative to combat such multidrug-resistant Klebsiella strains. Here, we present the results of a long-term study on the isolation and biology of bacteriophages active against K. pneumoniae, as well as K. oxytoca strains. We evaluated biological properties, morphology, host specificity, lytic spectrum and sensitivity of these phages to chemical agents along with their life cycle parameters such as adsorption, latent period, and burst size. Phages designated by us, vB_KpnM-52N (Kpn52N) and VB_KpnM-53N (Kpn53N), demonstrated relatively broad lytic spectra among tested Klebsiella strains, high burst size, adsorption rates and stability, which makes them promising candidates for therapeutic purposes. We also examined selected Klebsiella phages from our historical collection. Notably, one phage isolated nearly 60 years ago was successfully used in purulent cerebrospinal meningitis in a new-born and has maintained lytic activity to this day. Genomic sequences of selected phages were determined and analyzed. The phages of the sequenced genomes belong to the Slopekvirus and Jiaodavirus genus, a group of phages related to T4 at the family level. They share several features of T4 making them suitable for antibacterial therapies: the obligatorily lytic lifestyle, a lack of homologs of known virulence or antibiotic resistance genes, and a battery of enzymes degrading host DNA at infection.
Collapse
|
16
|
Martins WMBS, Li M, Sands K, Lenzi MH, Portal E, Mathias J, Dantas PP, Migliavacca R, Hunter JR, Medeiros EA, Gales AC, Toleman MA. Effective phage cocktail to combat the rising incidence of extensively drug-resistant Klebsiella pneumoniae sequence type 16. Emerg Microbes Infect 2022; 11:1015-1023. [PMID: 35259067 PMCID: PMC9004492 DOI: 10.1080/22221751.2022.2051752] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 03/06/2022] [Indexed: 11/18/2022]
Abstract
Bacteriophages are the most abundant organisms on Earth. As there are few effective treatment options against some pathogens, the interest in the bacteriophage control of multi-drug-resistant bacterial pathogens is escalating, especially for Klebsiella pneumoniae. This study aimed to develop a phage-based solution to the rising incidence of extensively drug-resistant clinical Klebsiella pneumoniae sequence type (ST16) infections starting from a set of phages recently characterized against this lineage. A phage-cocktail (Katrice-16) composed of eight lytic phages was characterized for potential use in humans. In vitro and in vivo broth inhibition and Galleria mellonella rescue assays were used to demonstrate the efficacy of this approach using a collection of 56 strains of K. pneumoniae ST16, with distinct genetic backgrounds that were collected from clinical infections from four disparate nations. Additionally, Katrice-16 anti-biofilm activity, synergism with meropenem, and activity in human body fluids were also assessed. Katrice-16 was highly active in vitro against our K. pneumoniae ST16 collection (AUC% median = 86.48%; Q1 = 83.8%; Q2 = 96.85%; Q3 = 98.85%). It additionally demonstrated excellent in vivo activity in G. mellonella rescue assays, even with larvae infected by isolates that exhibited moderate in vitro inhibition. We measured significant anti-biofilm activity over 12 h (p = .0113) and synergic activity with meropenem. In addition, we also demonstrate that Katrice-16 maintained high activity in human body fluids. Our results indicate that our cocktail will likely be an effective solution for human infections with this increasingly prevalent and often highly resistant bacterial clone.
Collapse
Affiliation(s)
- Willames M. B. S. Martins
- Department of Medical Microbiology, Division of Infection and Immunity, Cardiff University, Cardiff, UK
- Division of Infectious Diseases, Department of Internal Medicine, Escola Paulista de Medicina/Universidade Federal de São Paulo - UNIFESP, São Paulo, Brazil
| | - Mei Li
- Department of Medical Microbiology, Division of Infection and Immunity, Cardiff University, Cardiff, UK
| | - Kirsty Sands
- Department of Medical Microbiology, Division of Infection and Immunity, Cardiff University, Cardiff, UK
- Department of Zoology, University of Oxford, Oxford, UK
| | - Michael H. Lenzi
- Division of Infectious Diseases, Department of Internal Medicine, Escola Paulista de Medicina/Universidade Federal de São Paulo - UNIFESP, São Paulo, Brazil
| | - Edward Portal
- Department of Medical Microbiology, Division of Infection and Immunity, Cardiff University, Cardiff, UK
| | - Jordan Mathias
- Department of Medical Microbiology, Division of Infection and Immunity, Cardiff University, Cardiff, UK
| | - Priscila P. Dantas
- Division of Infection Control and Hospital Epidemiology, Hospital São Paulo, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Roberta Migliavacca
- Department of Clinical-Surgical, Diagnostic and Pediatric Sciences, Unit of Microbiology and Clinical Microbiology, University of Pavia, Pavia, Italy
| | - James R. Hunter
- Division of Infectious Diseases, Department of Internal Medicine, Escola Paulista de Medicina/Universidade Federal de São Paulo - UNIFESP, São Paulo, Brazil
| | - Eduardo A. Medeiros
- Division of Infection Control and Hospital Epidemiology, Hospital São Paulo, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Ana C. Gales
- Division of Infectious Diseases, Department of Internal Medicine, Escola Paulista de Medicina/Universidade Federal de São Paulo - UNIFESP, São Paulo, Brazil
| | - Mark A. Toleman
- Department of Medical Microbiology, Division of Infection and Immunity, Cardiff University, Cardiff, UK
| |
Collapse
|
17
|
Chang RYK, Nang SC, Chan HK, Li J. Novel antimicrobial agents for combating antibiotic-resistant bacteria. Adv Drug Deliv Rev 2022; 187:114378. [PMID: 35671882 DOI: 10.1016/j.addr.2022.114378] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 05/26/2022] [Accepted: 05/26/2022] [Indexed: 12/16/2022]
Abstract
Antibiotic therapy has become increasingly ineffective against bacterial infections due to the rise of resistance. In particular, ESKAPE pathogens (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species) have caused life-threatening infections in humans and represent a major global health threat due to a high degree of antibiotic resistance. To respond to this urgent call, novel strategies are urgently needed, such as bacteriophages (or phages), phage-encoded enzymes, immunomodulators and monoclonal antibodies. This review critically analyses these promising antimicrobial therapies for the treatment of multidrug-resistant bacterial infections. Recent advances in these novel therapeutic strategies are discussed, focusing on preclinical and clinical investigations, as well as combinatorial approaches. In this 'Bad Bugs, No Drugs' era, novel therapeutic strategies can play a key role in treating deadly infections and help extend the lifetime of antibiotics.
Collapse
|
18
|
In Vitro and In Vivo Assessments of Two Newly Isolated Bacteriophages against an ST13 Urinary Tract Infection Klebsiella pneumoniae. Viruses 2022; 14:v14051079. [PMID: 35632820 PMCID: PMC9144312 DOI: 10.3390/v14051079] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/09/2022] [Accepted: 05/13/2022] [Indexed: 12/11/2022] Open
Abstract
Antibiotic resistance represents a major public health concern requiring new alternatives including phage therapy. Klebsiella pneumoniae belongs to the ESKAPE bacteria and can cause urinary tract infections (UTIs). The aims of this study were to isolate and characterize new bacteriophages against a K. pneumoniae strain isolated from UTIs and to assess their efficacy in vitro and in vivo in a Galleria (G.) mellonella larvae model. For this purpose, two bacteriophages were newly isolated against an ST13 K. pneumoniae strain isolated from a UTI and identified as K3 capsular types by wzi gene PCR. Genomic analysis showed that these bacteriophages, named vB_KpnP_K3-ULINTkp1 and vB_KpnP_K3-ULINTkp2, belong to the Drulisvirus genus. Bacteriophage vB_KpnP_K3-ULINTkp1 had the narrowest host spectrum (targeting only K3), while vB_KpnP_K3-ULINTkp2 also infected other Klebsiella types. Short adsorption times and latent periods were observed for both bacteriophages. In vivo experiments showed their ability to replicate in G. mellonella larvae and to decrease host bacterial titers. Moreover, both bacteriophages improved the survival of the infected larvae. In conclusion, these two bacteriophages had different in vitro properties and showed in vivo efficacy in a G. mellonella model with a better efficiency for vB_KpnP_K3-ULINTkp2.
Collapse
|
19
|
Ménard G, Rouillon A, Cattoir V, Donnio PY. Galleria mellonella as a Suitable Model of Bacterial Infection: Past, Present and Future. Front Cell Infect Microbiol 2022; 11:782733. [PMID: 35004350 PMCID: PMC8727906 DOI: 10.3389/fcimb.2021.782733] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 12/01/2021] [Indexed: 12/16/2022] Open
Abstract
The increasing interest for Galleria mellonella larvae as an infection model is evidenced by the number of papers reporting its use, which increases exponentially since the early 2010s. This popularity was initially linked to limitation of conventional animal models due to financial, technical and ethical aspects. In comparison, alternative models (e.g. models using Caenorhabditis elegans, Drosophila melanogaster or G. mellonella) were cheap, simple to use and not limited by ethical regulation. Since then, similar results have been established with G. mellonella model comparatively to vertebrates, and it is more and more often used as a robust model per se, not only as an alternative to the murine model. This review attempts to summarize the current knowledge supporting the development of this model, both on immunological and microbiological aspects. For that, we focus on investigation of virulence and new therapies for the most important pathogenic bacteria. We also discuss points out directions for standardization, as well as recent advances and new perspectives for monitoring host-pathogen interactions.
Collapse
Affiliation(s)
- Guillaume Ménard
- Univ Rennes, CHU Rennes, INSERM, Bacterial Regulatory RNAs and Medicine (BRM), service de Bactériologie Hygiène-Hospitalière (SB2H), UMR_S 1230, Rennes, France
| | - Astrid Rouillon
- Univ Rennes, INSERM, Bacterial Regulatory RNAs and Medicine (BRM), UMR_S 1230, Rennes, France
| | - Vincent Cattoir
- Univ Rennes, CHU Rennes, INSERM, Bacterial Regulatory RNAs and Medicine (BRM), service de Bactériologie Hygiène-Hospitalière (SB2H), UMR_S 1230, Rennes, France
| | - Pierre-Yves Donnio
- Univ Rennes, CHU Rennes, INSERM, Bacterial Regulatory RNAs and Medicine (BRM), service de Bactériologie Hygiène-Hospitalière (SB2H), UMR_S 1230, Rennes, France
| |
Collapse
|
20
|
Antoine C, Laforêt F, Blasdel B, Fall A, Duprez JN, Mainil J, Delcenserie V, Thiry D. In Vitro Characterization and In Vivo Efficacy Assessment in Galleria mellonella Larvae of Newly Isolated Bacteriophages against Escherichia coli K1. Viruses 2021; 13:2005. [PMID: 34696434 PMCID: PMC8541614 DOI: 10.3390/v13102005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/16/2021] [Accepted: 09/21/2021] [Indexed: 01/04/2023] Open
Abstract
Extra-intestinal Escherichia coli express several virulence factors that increase their ability to colonize and survive in different localizations. The K1 capsular type is involved in several infections, including meningitis, urinary tract, and bloodstream infections. The aims of this work were to isolate, characterize, and assess the in vivo efficacy of phages targeting avian pathogenic E. coli (APEC) O18:K1, which shares many similarities with the human strains responsible for neonatal meningitis. Eleven phages were isolated against APEC O18:K1, and four of them presenting a narrow spectrum targeting E. coli K1 strains were further studied. The newly isolated phages vB_EcoS_K1-ULINTec2 were similar to the Siphoviridae family, and vB_EcoP_K1-ULINTec4, vB_EcoP_K1-ULINTec6, and vB_EcoP_K1-ULINTec7 to the Autographiviridae family. They are capsular type (K1) dependent and present several advantages characteristic of lytic phages, such as a short adsorption time and latent period. vB_EcoP_K1-ULINTec7 is able to target both K1 and K5 strains. This study shows that these phages replicate efficiently, both in vitro and in vivo in the Galleria mellonella model. Phage treatment increases the larvae survival rates, even though none of the phages were able to eliminate the bacterial load.
Collapse
Affiliation(s)
- Céline Antoine
- Bacteriology Laboratory, Department of Infectious and Parasitic Diseases, FARAH and Faculty of Veterinary Medicine, University of Liège, 4000 Liège, Belgium; (C.A.); (F.L.); (J.-N.D.); (J.M.)
- Food Science Department, FARAH and Faculty of Veterinary Medicine, ULiège, 4000 Liège, Belgium;
| | - Fanny Laforêt
- Bacteriology Laboratory, Department of Infectious and Parasitic Diseases, FARAH and Faculty of Veterinary Medicine, University of Liège, 4000 Liège, Belgium; (C.A.); (F.L.); (J.-N.D.); (J.M.)
- Food Science Department, FARAH and Faculty of Veterinary Medicine, ULiège, 4000 Liège, Belgium;
| | - Bob Blasdel
- Vésale Bioscience, Vésale Pharmaceutica, 5310 Noville-sur-Mehaigne, Belgium;
| | - Abdoulaye Fall
- Genalyse Partner SA, En Hayeneux 62, 4040 Herstal, Belgium;
| | - Jean-Noël Duprez
- Bacteriology Laboratory, Department of Infectious and Parasitic Diseases, FARAH and Faculty of Veterinary Medicine, University of Liège, 4000 Liège, Belgium; (C.A.); (F.L.); (J.-N.D.); (J.M.)
| | - Jacques Mainil
- Bacteriology Laboratory, Department of Infectious and Parasitic Diseases, FARAH and Faculty of Veterinary Medicine, University of Liège, 4000 Liège, Belgium; (C.A.); (F.L.); (J.-N.D.); (J.M.)
| | - Véronique Delcenserie
- Food Science Department, FARAH and Faculty of Veterinary Medicine, ULiège, 4000 Liège, Belgium;
| | - Damien Thiry
- Bacteriology Laboratory, Department of Infectious and Parasitic Diseases, FARAH and Faculty of Veterinary Medicine, University of Liège, 4000 Liège, Belgium; (C.A.); (F.L.); (J.-N.D.); (J.M.)
| |
Collapse
|
21
|
Pereira MF, Rossi CC, da Silva GC, Rosa JN, Bazzolli DMS. Galleria mellonella as an infection model: an in-depth look at why it works and practical considerations for successful application. Pathog Dis 2021; 78:5909969. [PMID: 32960263 DOI: 10.1093/femspd/ftaa056] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 09/18/2020] [Indexed: 12/14/2022] Open
Abstract
The larva of the greater wax moth Galleria mellonella is an increasingly popular model for assessing the virulence of bacterial pathogens and the effectiveness of antimicrobial agents. In this review, we discuss details of the components of the G. mellonella larval immune system that underpin its use as an alternative infection model, and provide an updated overview of the state of the art of research with G. mellonella infection models to study bacterial virulence, and in the evaluation of antimicrobial efficacy. Emphasis is given to virulence studies with relevant human and veterinary pathogens, especially Escherichia coli and bacteria of the ESKAPE group. In addition, we make practical recommendations for larval rearing and testing, and overcoming potential limitations of the use of the model, which facilitate intra- and interlaboratory reproducibility.
Collapse
Affiliation(s)
- Monalessa Fábia Pereira
- Laboratório de Bioquímica e Microbiologia, Departamento de Ciências Biológicas, Universidade do Estado de Minas Gerais, 36800-000, Carangola, MG, Brazil
| | - Ciro César Rossi
- Laboratório de Microbiologia Molecular, Departamento de Microbiologia Médica, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, 21941-901, Rio de Janeiro, RJ, Brazil
| | - Giarlã Cunha da Silva
- Laboratório de Genética Molecular de Bactérias, Instituto de Biotecnologia Aplicada à Agropecuária-BIOAGRO, Departamento de Microbiologia, Universidade Federal de Viçosa, 36570-900, Viçosa, MG, Brazil
| | - Jéssica Nogueira Rosa
- Laboratório de Genética Molecular de Bactérias, Instituto de Biotecnologia Aplicada à Agropecuária-BIOAGRO, Departamento de Microbiologia, Universidade Federal de Viçosa, 36570-900, Viçosa, MG, Brazil
| | - Denise Mara Soares Bazzolli
- Laboratório de Genética Molecular de Bactérias, Instituto de Biotecnologia Aplicada à Agropecuária-BIOAGRO, Departamento de Microbiologia, Universidade Federal de Viçosa, 36570-900, Viçosa, MG, Brazil
| |
Collapse
|
22
|
Gorodnichev RB, Volozhantsev NV, Krasilnikova VM, Bodoev IN, Kornienko MA, Kuptsov NS, Popova AV, Makarenko GI, Manolov AI, Slukin PV, Bespiatykh DA, Verevkin VV, Denisenko EA, Kulikov EE, Veselovsky VA, Malakhova MV, Dyatlov IA, Ilina EN, Shitikov EA. Novel Klebsiella pneumoniae K23-Specific Bacteriophages From Different Families: Similarity of Depolymerases and Their Therapeutic Potential. Front Microbiol 2021; 12:669618. [PMID: 34434173 PMCID: PMC8381472 DOI: 10.3389/fmicb.2021.669618] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 07/14/2021] [Indexed: 12/25/2022] Open
Abstract
Antibiotic resistance is a major public health concern in many countries worldwide. The rapid spread of multidrug-resistant (MDR) bacteria is the main driving force for the development of novel non-antibiotic antimicrobials as a therapeutic alternative. Here, we isolated and characterized three virulent bacteriophages that specifically infect and lyse MDR Klebsiella pneumoniae with K23 capsule type. The phages belonged to the Autographiviridae (vB_KpnP_Dlv622) and Myoviridae (vB_KpnM_Seu621, KpS8) families and contained highly similar receptor-binding proteins (RBPs) with polysaccharide depolymerase enzymatic activity. Based on phylogenetic analysis, a similar pattern was also noted for five other groups of depolymerases, specific against capsule types K1, K30/K69, K57, K63, and KN2. The resulting recombinant depolymerases Dep622 (phage vB_KpnP_Dlv622) and DepS8 (phage KpS8) demonstrated narrow specificity against K. pneumoniae with capsule type K23 and were able to protect Galleria mellonella larvae in a model infection with a K. pneumoniae multidrug-resistant strain. These findings expand our knowledge of the diversity of phage depolymerases and provide further evidence that bacteriophages and phage polysaccharide depolymerases represent a promising tool for antimicrobial therapy.
Collapse
Affiliation(s)
- Roman B. Gorodnichev
- Department of Molecular Biology and Genetics, Federal Research and Clinical Center of Physical-Chemical Medicine, Moscow, Russia
| | - Nikolay V. Volozhantsev
- Department of Molecular Microbiology, State Research Center for Applied Microbiology and Biotechnology, Moscow, Russia
| | - Valentina M. Krasilnikova
- Department of Molecular Microbiology, State Research Center for Applied Microbiology and Biotechnology, Moscow, Russia
| | - Ivan N. Bodoev
- Department of Molecular Biology and Genetics, Federal Research and Clinical Center of Physical-Chemical Medicine, Moscow, Russia
| | - Maria A. Kornienko
- Department of Molecular Biology and Genetics, Federal Research and Clinical Center of Physical-Chemical Medicine, Moscow, Russia
| | - Nikita S. Kuptsov
- Department of Molecular Biology and Genetics, Federal Research and Clinical Center of Physical-Chemical Medicine, Moscow, Russia
| | - Anastasia V. Popova
- Department of Molecular Microbiology, State Research Center for Applied Microbiology and Biotechnology, Moscow, Russia
| | - Galina I. Makarenko
- Department of Molecular Biology and Genetics, Federal Research and Clinical Center of Physical-Chemical Medicine, Moscow, Russia
| | - Alexander I. Manolov
- Department of Molecular Biology and Genetics, Federal Research and Clinical Center of Physical-Chemical Medicine, Moscow, Russia
| | - Pavel V. Slukin
- Department of Molecular Microbiology, State Research Center for Applied Microbiology and Biotechnology, Moscow, Russia
| | - Dmitry A. Bespiatykh
- Department of Molecular Biology and Genetics, Federal Research and Clinical Center of Physical-Chemical Medicine, Moscow, Russia
| | - Vladimir V. Verevkin
- Department of Molecular Microbiology, State Research Center for Applied Microbiology and Biotechnology, Moscow, Russia
| | - Egor A. Denisenko
- Department of Molecular Microbiology, State Research Center for Applied Microbiology and Biotechnology, Moscow, Russia
| | - Eugene E. Kulikov
- Research Center of Biotechnology of the Russian Academy of Sciences, Winogradsky Institute of Microbiology, Moscow, Russia
| | - Vladimir A. Veselovsky
- Department of Molecular Biology and Genetics, Federal Research and Clinical Center of Physical-Chemical Medicine, Moscow, Russia
| | - Maja V. Malakhova
- Department of Molecular Biology and Genetics, Federal Research and Clinical Center of Physical-Chemical Medicine, Moscow, Russia
| | - Ivan A. Dyatlov
- Department of Molecular Microbiology, State Research Center for Applied Microbiology and Biotechnology, Moscow, Russia
| | - Elena N. Ilina
- Department of Molecular Biology and Genetics, Federal Research and Clinical Center of Physical-Chemical Medicine, Moscow, Russia
| | - Egor A. Shitikov
- Department of Molecular Biology and Genetics, Federal Research and Clinical Center of Physical-Chemical Medicine, Moscow, Russia
| |
Collapse
|
23
|
Advances in Bacteriophage Therapy against Relevant MultiDrug-Resistant Pathogens. Antibiotics (Basel) 2021; 10:antibiotics10060672. [PMID: 34199889 PMCID: PMC8226639 DOI: 10.3390/antibiotics10060672] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 05/28/2021] [Accepted: 06/02/2021] [Indexed: 02/07/2023] Open
Abstract
The increase of multiresistance in bacteria and the shortage of new antibiotics in the market is becoming a major public health concern. The World Health Organization (WHO) has declared critical priority to develop new antimicrobials against three types of bacteria: carbapenem-resistant A. baumannii, carbapenem-resistant P. aeruginosa and carbapenem-resistant and ESBL-producing Enterobacteriaceae. Phage therapy is a promising alternative therapy with renewed research in Western countries. This field includes studies in vitro, in vivo, clinical trials and clinical cases of patients receiving phages as the last resource after failure of standard treatments due to multidrug resistance. Importantly, this alternative treatment has been shown to be more effective when administered in combination with antibiotics, including infections with biofilm formation. This review summarizes the most recent studies of this strategy in animal models, case reports and clinical trials to deal with infections caused by resistant A. baumannii, K. pneumoniae, E. coli, and P. aeruginosa strains, as well as discusses the main limitations of phage therapy.
Collapse
|
24
|
Antoine C, Laforêt F, Blasdel B, Glonti T, Kutter E, Pirnay JP, Mainil J, Delcenserie V, Thiry D. Efficacy assessment of PEV2 phage on Galleria mellonella larvae infected with a Pseudomonas aeruginosa dog otitis isolate. Res Vet Sci 2021; 136:598-601. [PMID: 33895568 DOI: 10.1016/j.rvsc.2021.04.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 03/29/2021] [Accepted: 04/12/2021] [Indexed: 12/21/2022]
Abstract
Pseudomonas (P.) aeruginosa is the most frequently isolated Gram-negative bacteria in dog otitis. Antimicrobial resistance is particularly prevalent in P. aeruginosa and phage therapy represents a promising alternative therapeutic strategy. The aim of this study was to assess the efficacy of the PEV2 phage against a clinical P. aeruginosa isolate from a canine otitis using a Galleria (G.) mellonella larvae model. The genomic DNA of PAV237 P. aeruginosa isolate was sequenced and analysed. In a first main experiment, the efficacy of PEV2 phage against PAV237 was assessed at different multiplicities of infection (MOI) (50,000, 5000, 500, 50) by analyzing the larvae survival rate during 4 days. In a second experiment, the bacterial and phage titer evolutions were assessed depending on two MOIs (50,000, 5000). No significant survival increase was observed with PEV2 therapy in the infected larvae groups. The generated Kaplan-Meier curves showed that the rate of alive larvae was significantly higher in the non-infected larvae compared to the infected-treated ones irrespective of phage MOIs. An increase of the phage titer was observed at 24 and 48 h post-inoculation (HPI) with both MOIs and the P. aeruginosa titers were lower with MOI 50,000 and 5000 compared to the infectivity control at 24 and 48 HPI. Even if an ineffectiveness of the PEV2 phage was observed on the larvae survival, PEV2 is active against P. aeruginosa in this model and PEV2 replication is correlated with a lower bacterial proliferation in the phage treated larvae.
Collapse
Affiliation(s)
- C Antoine
- Bacteriology, Department of Infectious and Parasitic Diseases, FARAH and Faculty of Veterinary Medicine, ULiège, 4000 Liège, Belgium; Food Science Department, FARAH and Faculty of Veterinary Medicine, ULiège, 4000 Liège, Belgium
| | - F Laforêt
- Bacteriology, Department of Infectious and Parasitic Diseases, FARAH and Faculty of Veterinary Medicine, ULiège, 4000 Liège, Belgium; Food Science Department, FARAH and Faculty of Veterinary Medicine, ULiège, 4000 Liège, Belgium
| | - B Blasdel
- Vésale Bioscience, Vésale Pharmaceutica, 5310, Noville sur Mehaigne, Belgium
| | - T Glonti
- Laboratory for Molecular and Cellular Technology (LabMCT), Queen Astrid Military Hospital, Neder-over-Heembeek, Belgium
| | - E Kutter
- Evergreen Phage Lab, The Evergreen State College, Olympia, WA, USA
| | - J P Pirnay
- Laboratory for Molecular and Cellular Technology (LabMCT), Queen Astrid Military Hospital, Neder-over-Heembeek, Belgium
| | - J Mainil
- Bacteriology, Department of Infectious and Parasitic Diseases, FARAH and Faculty of Veterinary Medicine, ULiège, 4000 Liège, Belgium
| | - V Delcenserie
- Food Science Department, FARAH and Faculty of Veterinary Medicine, ULiège, 4000 Liège, Belgium
| | - D Thiry
- Bacteriology, Department of Infectious and Parasitic Diseases, FARAH and Faculty of Veterinary Medicine, ULiège, 4000 Liège, Belgium.
| |
Collapse
|
25
|
Cieślik M, Bagińska N, Górski A, Jończyk-Matysiak E. Animal Models in the Evaluation of the Effectiveness of Phage Therapy for Infections Caused by Gram-Negative Bacteria from the ESKAPE Group and the Reliability of Its Use in Humans. Microorganisms 2021; 9:206. [PMID: 33498243 PMCID: PMC7909267 DOI: 10.3390/microorganisms9020206] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/12/2021] [Accepted: 01/16/2021] [Indexed: 12/12/2022] Open
Abstract
The authors emphasize how extremely important it is to highlight the role played by animal models in an attempt to determine possible phage interactions with the organism into which it was introduced as well as to determine the safety and effectiveness of phage therapy in vivo taking into account the individual conditions of a given organism and its physiology. Animal models in which phages are used make it possible, among other things, to evaluate the effective therapeutic dose and to choose the possible route of phage administration depending on the type of infection developed. These results cannot be applied in detail to the human body, but the knowledge gained from animal experiments is invaluable and very helpful. We would like to highlight how useful animal models may be for the possible effectiveness evaluation of phage therapy in the case of infections caused by gram-negative bacteria from the ESKAPE (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, Enterobacter species) group of pathogens. In this review, we focus specifically on the data from the last few years.
Collapse
Affiliation(s)
- Martyna Cieślik
- Bacteriophage Laboratory, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland; (M.C.); (N.B.); (A.G.)
| | - Natalia Bagińska
- Bacteriophage Laboratory, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland; (M.C.); (N.B.); (A.G.)
| | - Andrzej Górski
- Bacteriophage Laboratory, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland; (M.C.); (N.B.); (A.G.)
- Phage Therapy Unit, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland
| | - Ewa Jończyk-Matysiak
- Bacteriophage Laboratory, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland; (M.C.); (N.B.); (A.G.)
| |
Collapse
|
26
|
Vrancianu CO, Gheorghe I, Dobre EG, Barbu IC, Cristian RE, Popa M, Lee SH, Limban C, Vlad IM, Chifiriuc MC. Emerging Strategies to Combat β-Lactamase Producing ESKAPE Pathogens. Int J Mol Sci 2020; 21:E8527. [PMID: 33198306 PMCID: PMC7697847 DOI: 10.3390/ijms21228527] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 11/09/2020] [Accepted: 11/10/2020] [Indexed: 02/06/2023] Open
Abstract
Since the discovery of penicillin by Alexander Fleming in 1929 as a therapeutic agent against staphylococci, β-lactam antibiotics (BLAs) remained the most successful antibiotic classes against the majority of bacterial strains, reaching a percentage of 65% of all medical prescriptions. Unfortunately, the emergence and diversification of β-lactamases pose indefinite health issues, limiting the clinical effectiveness of all current BLAs. One solution is to develop β-lactamase inhibitors (BLIs) capable of restoring the activity of β-lactam drugs. In this review, we will briefly present the older and new BLAs classes, their mechanisms of action, and an update of the BLIs capable of restoring the activity of β-lactam drugs against ESKAPE (Enterococcus spp., Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter spp.) pathogens. Subsequently, we will discuss several promising alternative approaches such as bacteriophages, antimicrobial peptides, nanoparticles, CRISPR (clustered regularly interspaced short palindromic repeats) cas technology, or vaccination developed to limit antimicrobial resistance in this endless fight against Gram-negative pathogens.
Collapse
Affiliation(s)
- Corneliu Ovidiu Vrancianu
- Microbiology Immunology Department and The Research Institute of the University of Bucharest, Faculty of Biology, University of Bucharest, 020956 Bucharest, Romania; (C.O.V.); (E.-G.D.); (I.C.B.); (M.P.); (M.C.C.)
| | - Irina Gheorghe
- Microbiology Immunology Department and The Research Institute of the University of Bucharest, Faculty of Biology, University of Bucharest, 020956 Bucharest, Romania; (C.O.V.); (E.-G.D.); (I.C.B.); (M.P.); (M.C.C.)
| | - Elena-Georgiana Dobre
- Microbiology Immunology Department and The Research Institute of the University of Bucharest, Faculty of Biology, University of Bucharest, 020956 Bucharest, Romania; (C.O.V.); (E.-G.D.); (I.C.B.); (M.P.); (M.C.C.)
| | - Ilda Czobor Barbu
- Microbiology Immunology Department and The Research Institute of the University of Bucharest, Faculty of Biology, University of Bucharest, 020956 Bucharest, Romania; (C.O.V.); (E.-G.D.); (I.C.B.); (M.P.); (M.C.C.)
| | - Roxana Elena Cristian
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 020956 Bucharest, Romania;
| | - Marcela Popa
- Microbiology Immunology Department and The Research Institute of the University of Bucharest, Faculty of Biology, University of Bucharest, 020956 Bucharest, Romania; (C.O.V.); (E.-G.D.); (I.C.B.); (M.P.); (M.C.C.)
| | - Sang Hee Lee
- Department of Biological Sciences, Myongji University, 03674 Myongjiro, Yongin 449-728, Gyeonggido, Korea;
- National Leading Research Laboratory, Department of Biological Sciences, Myongji University, 116 Myongjiro, Yongin 17058, Gyeonggido, Korea
| | - Carmen Limban
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, Traian Vuia no.6, 020956 Bucharest, Romania; (C.L.); (I.M.V.)
| | - Ilinca Margareta Vlad
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, Traian Vuia no.6, 020956 Bucharest, Romania; (C.L.); (I.M.V.)
| | - Mariana Carmen Chifiriuc
- Microbiology Immunology Department and The Research Institute of the University of Bucharest, Faculty of Biology, University of Bucharest, 020956 Bucharest, Romania; (C.O.V.); (E.-G.D.); (I.C.B.); (M.P.); (M.C.C.)
- Academy of Romanian Scientists, 030167 Bucharest, Romania
| |
Collapse
|
27
|
Multidrug-Resistant Hypervirulent Klebsiella pneumoniae Found Persisting Silently in Infant Gut Microbiota. Int J Microbiol 2020; 2020:4054393. [PMID: 33163077 PMCID: PMC7604597 DOI: 10.1155/2020/4054393] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 09/30/2020] [Indexed: 01/03/2023] Open
Abstract
Since the spread of multidrug-resistant Klebsiella pneumoniae (MDRKP) strains is considered as a challenge for patients with weakened or suppressed immunity, the emergence of isolates carrying determinants of hypervirulent phenotypes in addition may become a serious problem even for healthy individuals. The aim of this study is an investigation of the nonoutbreak K. pneumoniae emergence occurred in early 2017 at a maternity hospital of Kazan, Russia. Ten bacterial isolates demonstrating multiple drug resistance phenotypes were collected from eight healthy full-term breastfed neonates, observed at the maternity hospital of Kazan, Russia. All the infants and their mothers were dismissed without symptoms or complaints, in a satisfactory condition. Whole-genome shotgun (WGS) sequencing was performed with the purpose to track down a possible spread source(s) and obtain detailed information about resistance determinants and pathogenic potential of the collected isolates. Microdilution tests have confirmed production of extended-spectrum β-lactamases (ESBL) and their resistance to aminoglycoside, β-lactam, fluoroquinolone, sulfonamide, nitrofurantoin, trimethoprim, and fosfomycin antibiotics and Klebsiella phage. The WGS analysis has revealed the genes that are resistant to aminoglycosides, fluoroquinolones, macrolides, sulfonamides, chloramphenicols, tetracyclines, and trimethoprim and ESBL determinants. The pangenome analysis had split the isolates into two phylogenetic clades. The first group, a more heterogeneous clade, was represented by 5 isolates with 4 different in silico multilocus sequence types (MLSTs). The second group contained 5 isolates from infants born vaginally with the single MLST ST23, positive for genes corresponding to hypervirulent phenotypes: yersiniabactin, aerobactin, salmochelin, colibactin, hypermucoid determinants, and specific alleles of K- and O-antigens. The source of the MDRKP spread was not defined. Infected infants have shown no developed disease symptoms.
Collapse
|
28
|
Piatek M, Sheehan G, Kavanagh K. UtilisingGalleria mellonella larvae for studying in vivo activity of conventional and novel antimicrobial agents. Pathog Dis 2020; 78:5917982. [DOI: 10.1093/femspd/ftaa059] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 10/02/2020] [Indexed: 12/15/2022] Open
Abstract
ABSTRACTThe immune response of insects displays many structural and functional similarities to the innate immune response of mammals. As a result of these conserved features, insects may be used for evaluating microbial virulence or for testing the in vivo efficacy and toxicity of antimicrobial compounds and results show strong similarities to those from mammals. Galleria mellonella larvae are widely used in this capacity and have the advantage of being easy to use, inexpensive to purchase and house, and being free from the ethical and legal restrictions that relate to the use of mammals in these tests. Galleria mellonella larvae may be used to assess the in vivo toxicity and efficacy of novel antimicrobial compounds. A wide range of antibacterial and antifungal therapies have been evaluated in G. mellonella larvae and results have informed subsequent experiments in mammals. While insect larvae are a convenient and reproducible model to use, care must be taken in their use to ensure accuracy of results. The objective of this review is to provide a comprehensive account of the use of G. mellonella larvae for assessing the in vivo toxicity and efficacy of a wide range of antibacterial and antifungal agents.
Collapse
Affiliation(s)
- Magdalena Piatek
- SSPC Pharma Research Centre, Department of Biology, Maynooth University, Co. Kildare W23 F2H6, Ireland
| | - Gerard Sheehan
- Institute of Microbiology and Infection, University of Birmingham, Birmingham B15 2TT, UK
| | - Kevin Kavanagh
- SSPC Pharma Research Centre, Department of Biology, Maynooth University, Co. Kildare W23 F2H6, Ireland
| |
Collapse
|
29
|
Ngassam-Tchamba C, Duprez JN, Fergestad M, De Visscher A, L'Abee-Lund T, De Vliegher S, Wasteson Y, Touzain F, Blanchard Y, Lavigne R, Chanishvili N, Cassart D, Mainil J, Thiry D. In vitro and in vivo assessment of phage therapy against Staphylococcus aureus causing bovine mastitis. J Glob Antimicrob Resist 2020; 22:762-770. [PMID: 32645442 DOI: 10.1016/j.jgar.2020.06.020] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Revised: 04/01/2020] [Accepted: 06/04/2020] [Indexed: 10/23/2022] Open
Abstract
OBJECTIVE The aim of this study was to assess the efficacy of lytic bacteriophages on Staphylococcus aureus causing bovine mastitis, by in vitro and in vivo assays using Galleria mellonella and murine mastitis models. METHODS Between May and December 2016, ten S. aureus (five methicillin-resistant and five methicillin-sensitive) isolates were isolated from milk samples of cattle with mastitis in Belgium and Norway. The isolates were assessed in vitro for their susceptibility to four lytic bacteriophages (Romulus, Remus, ISP and DSM105264) and subsequently in vivo in G. mellonella larvae and in murine mastitis model. RESULTS Romulus, Remus and ISP showed a lytic activity against the S. aureus isolates in vitro. A larvae survival rate below 50% was observed at 4 days post-inoculation (DPI) in the groups infected with a methicillin-sensitive S. aureus isolate and treated with these three phages in vivo. An incomplete recovery of the mouse mastitis was observed at 48h post-inoculation (HPI) in the groups infected and treated with the ISP phage in vivo. CONCLUSIONS: The observations are much more pronounced statistically between the infected- phosphate buffered saline (PBS)-treated and infected-phage-treated groups in G. mellonella and the murine mastitis model demonstrating an effect of the phages against S. aureus associated with bovine mastitis.
Collapse
Affiliation(s)
- C Ngassam-Tchamba
- Bacteriology, Department of Infectious and Parasitic Diseases, Faculty of Veterinary Medicine and Institute for Fundamental and Applied Research in Animals and Health (FARAH), University of Liège, Quartier Vallée 2, Avenue Cureghem 6, B-4000 Liège, Belgium
| | - J N Duprez
- Bacteriology, Department of Infectious and Parasitic Diseases, Faculty of Veterinary Medicine and Institute for Fundamental and Applied Research in Animals and Health (FARAH), University of Liège, Quartier Vallée 2, Avenue Cureghem 6, B-4000 Liège, Belgium
| | - M Fergestad
- Department of Food Safety and Infection Biology, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, P.O. Box 5003, 1432 Ås, Norway
| | - A De Visscher
- M-team & Mastitis and Milk Quality Research Unit, Department of Reproduction, Obstetrics and Herd Health, Faculty of Veterinary Medicine, Ghent University, B-9820 Merelbeke, Belgium
| | - T L'Abee-Lund
- Department of Food Safety and Infection Biology, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, P.O. Box 5003, 1432 Ås, Norway
| | - S De Vliegher
- M-team & Mastitis and Milk Quality Research Unit, Department of Reproduction, Obstetrics and Herd Health, Faculty of Veterinary Medicine, Ghent University, B-9820 Merelbeke, Belgium
| | - Y Wasteson
- Department of Food Safety and Infection Biology, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, P.O. Box 5003, 1432 Ås, Norway
| | - F Touzain
- Viral Genetics and Bio-security Unit, ANSES, Ploufragan-Plouzané laboratory, Rue des Fusillés, 22 440 Ploufragan, France
| | - Y Blanchard
- Viral Genetics and Bio-security Unit, ANSES, Ploufragan-Plouzané laboratory, Rue des Fusillés, 22 440 Ploufragan, France
| | - R Lavigne
- Laboratory of Gene Technology, Department of Biosystems, KU Leuven, 3001 Heverlee, Belgium
| | - N Chanishvili
- R & D Department, Eliava Institute of Bacteriophages, 3 Levan Gotua St, T'bilisi, Georgia
| | - D Cassart
- Department of Morphology and Pathology, Faculty of Veterinary Medicine and Institute for Fundamental and Applied Research in Animals and Health (FARAH), University of Liège, Quartier Vallée 2, Avenue Cureghem 6, B-4000 Liège, Belgium
| | - J Mainil
- Bacteriology, Department of Infectious and Parasitic Diseases, Faculty of Veterinary Medicine and Institute for Fundamental and Applied Research in Animals and Health (FARAH), University of Liège, Quartier Vallée 2, Avenue Cureghem 6, B-4000 Liège, Belgium
| | - D Thiry
- Bacteriology, Department of Infectious and Parasitic Diseases, Faculty of Veterinary Medicine and Institute for Fundamental and Applied Research in Animals and Health (FARAH), University of Liège, Quartier Vallée 2, Avenue Cureghem 6, B-4000 Liège, Belgium.
| |
Collapse
|
30
|
Venturini C, Ben Zakour NL, Bowring B, Morales S, Cole R, Kovach Z, Branston S, Kettle E, Thomson N, Iredell JR. Fine capsule variation affects bacteriophage susceptibility in Klebsiella pneumoniae ST258. FASEB J 2020; 34:10801-10817. [PMID: 32598522 DOI: 10.1096/fj.201902735r] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 05/27/2020] [Accepted: 06/04/2020] [Indexed: 12/22/2022]
Abstract
Multidrug resistant (MDR) carbapenemase-producing (CP) Klebsiella pneumoniae, belonging to clonal group CG258, is capable of causing severe disease in humans and is classified as an urgent threat by health agencies worldwide. Bacteriophages are being actively explored as therapeutic alternatives to antibiotics. In an effort to define a robust experimental approach for effective selection of lytic viruses for therapy, we have fully characterized the genomes of 18 Kumoniae target strains and tested them against novel lytic bacteriophages (n = 65). The genomes of K pneumoniae carrying blaNDM and blaKPC were sequenced and CG258 isolates selected for bacteriophage susceptibility testing. The local K pneumoniae CG258 population was dominated by sequence type ST258 clade 1 (86%) with variations in capsular locus (cps) and prophage content. CG258-specific bacteriophages primarily targeted the capsule, but successful infection is also likely blocked in some by immunity conferred by existing prophages. Five tailed bacteriophages against K pneumoniae ST258 clade 1 were selected for further characterization. Our findings show that effective control of K pneumoniae CG258 with bacteriophage will require mixes of diverse lytic viruses targeting relevant cps variants and allowing for variable prophage content. These insights will facilitate identification and selection of therapeutic bacteriophage candidates against this serious pathogen.
Collapse
Affiliation(s)
- Carola Venturini
- Centre for Infectious Diseases and Microbiology, The Westmead Institute for Medical Research (WIMR), Westmead, NSW, Australia.,School of Medicine, Sydney Medical School, University of Sydney, NSW, Australia
| | - Nouri L Ben Zakour
- Centre for Infectious Diseases and Microbiology, The Westmead Institute for Medical Research (WIMR), Westmead, NSW, Australia.,School of Medicine, Sydney Medical School, University of Sydney, NSW, Australia
| | - Bethany Bowring
- Centre for Infectious Diseases and Microbiology, The Westmead Institute for Medical Research (WIMR), Westmead, NSW, Australia
| | | | - Robert Cole
- AmpliPhi Australia Pty Ltd, Brookvale, NSW, Australia
| | | | | | - Emma Kettle
- Westmead Research Hub Electron Microscope Core Facility, The Westmead Institute for Medical Research, Westmead, NSW, Australia
| | - Nicholas Thomson
- The Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK.,The London School of Hygiene and Tropical Medicine, London, UK
| | - Jonathan R Iredell
- Centre for Infectious Diseases and Microbiology, The Westmead Institute for Medical Research (WIMR), Westmead, NSW, Australia.,School of Medicine, Sydney Medical School, University of Sydney, NSW, Australia.,Westmead Hospital, Western Sydney Local Health District (WSLHD), Sydney, NSW, Australia
| |
Collapse
|
31
|
Caflisch KM, Suh GA, Patel R. Biological challenges of phage therapy and proposed solutions: a literature review. Expert Rev Anti Infect Ther 2019; 17:1011-1041. [PMID: 31735090 DOI: 10.1080/14787210.2019.1694905] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Introduction: In light of the emergence of antibiotic-resistant bacteria, phage (bacteriophage) therapy has been recognized as a potential alternative or addition to antibiotics in Western medicine for use in humans.Areas covered: This review assessed the scientific literature on phage therapy published between 1 January 2007 and 21 October 2019, with a focus on the successes and challenges of this prospective therapeutic.Expert opinion: Efficacy has been shown in animal models and experimental findings suggest promise for the safety of human phagotherapy. Significant challenges remain to be addressed prior to the standardization of phage therapy in the West, including the development of phage-resistant bacteria; the pharmacokinetic complexities of phage; and any potential human immune response incited by phagotherapy.
Collapse
Affiliation(s)
- Katherine M Caflisch
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA
| | - Gina A Suh
- Division of Infectious Diseases, Department of Medicine, Mayo Clinic, Rochester, MN, USA
| | - Robin Patel
- Division of Infectious Diseases, Department of Medicine, Mayo Clinic, Rochester, MN, USA.,Division of Clinical Microbiology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
32
|
Brüssow H. Hurdles for Phage Therapy to Become a Reality-An Editorial Comment. Viruses 2019; 11:v11060557. [PMID: 31212885 PMCID: PMC6631134 DOI: 10.3390/v11060557] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 06/09/2019] [Indexed: 12/17/2022] Open
Affiliation(s)
- Harald Brüssow
- KU Leuven, Group of Gene Technology, 3001 Leuven, Belgium.
| |
Collapse
|