1
|
Turner EA, Clark SD, Peña-García VH, Christofferson RC. Investigating the Effects of Microclimate on Arboviral Kinetics in Aedes aegypti. Pathogens 2024; 13:1105. [PMID: 39770364 PMCID: PMC11728849 DOI: 10.3390/pathogens13121105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 12/02/2024] [Accepted: 12/09/2024] [Indexed: 01/16/2025] Open
Abstract
Aedes aegypti are indoor-dwelling vectors of many arboviruses, including Zika (ZIKV) and chikungunya (CHIKV). The dynamics of these viruses within the mosquito are known to be temperature-dependent, and models that address risk and predictions of the transmission efficiency and patterns typically use meteorological temperature data. These data do not differentiate the temperatures experienced by mosquitoes in different microclimates, such as indoor vs. outdoor. Using temperature data collected from Neiva Colombia, we investigated the impact of two microclimate temperature profiles on ZIKV and CHIKV infection dynamics in Ae. aegypti. We found that the vector mortality was not significantly impacted by the difference in temperature profiles. Further, we found that the infection and dissemination rates were largely unaffected, with only ZIKV experiencing a significant increase in infection at outdoor temperatures at 21 days post-infection (dpi). Further, there was a significant increase in viral titers in the abdomens of ZIKV-infected mosquitoes at 21 dpi. With CHIKV, there was a significant titer difference in the abdomens of mosquitoes at both 7 and 14 dpi. While there were differences in vector infection kinetics that were not statistically significant, we developed a simple stochastic SEIR-SEI model to determine if the observed differences might translate to notable differences in simulated outbreaks. With ZIKV, while the probability of secondary transmission was high (>90%) under both microenvironmental scenarios, there was often only one secondary case. However, CHIKV differences between microenvironments were more prominent. With over 90% probability of secondary transmission, at indoor conditions, the peak of transmission was higher (over 850 cases) compared to the outdoor conditions (<350 cases). Further, the time-to-peak for indoor was 130 days compared to 217 days for outdoor scenarios. Further investigations into microenvironmental conditions, including temperature, may be key to increasing our understanding of the nuances of CHIKV and ZIKV vectorial capacity, epidemiology, and risk assessment, especially as it affects other aspects of transmission, such as biting rate. Overall, it is critical to understand the variability of how extrinsic factors affect transmission systems, and these data add to the growing catalog of knowledge of how temperature affects arboviral systems.
Collapse
Affiliation(s)
- Erik A Turner
- Department of Pathobiological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Samantha D Clark
- Department of Pathobiological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Víctor Hugo Peña-García
- Department of Biology, Stanford University, Stanford, CA 94305, USA
- School of Medicine, Stanford University, Stanford, CA 94305, USA
| | | |
Collapse
|
2
|
Zhang Y, Wang M, Huang M, Zhao J. Innovative strategies and challenges mosquito-borne disease control amidst climate change. Front Microbiol 2024; 15:1488106. [PMID: 39564491 PMCID: PMC11573536 DOI: 10.3389/fmicb.2024.1488106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 09/30/2024] [Indexed: 11/21/2024] Open
Abstract
The revival of the transmission dynamics of mosquito-borne diseases grants striking challenges to public health intensified by climate change worldwide. This inclusive review article examines multidimensional strategies and challenges linked to climate change and the epidemiology of mosquito-borne diseases such as malaria, dengue, Zika, chikungunya, and yellow fever. It delves into how the biology, pathogenic dynamics, and vector distribution of mosquitoes are influenced by continuously rising temperatures, modified rainfall patterns, and extreme climatic conditions. We also highlighted the high likelihood of malaria in Africa, dengue in Southeast Asia, and blowout of Aedes in North America and Europe. Modern predictive tools and developments in surveillance, including molecular gears, Geographic Information Systems (GIS), and remote sensing have boosted our capacity to predict epidemics. Integrated data management techniques and models based on climatic conditions provide a valuable understanding of public health planning. Based on recent data and expert ideas, the objective of this review is to provide a thoughtful understanding of existing landscape and upcoming directions in the control of mosquito-borne diseases regarding changing climate. This review determines emerging challenges and innovative vector control strategies in the changing climatic conditions to ensure public health.
Collapse
Affiliation(s)
- Yuan Zhang
- Ningbo Research Institute of Ecological and Environmental Sciences, Ningbo, China
| | - Minhao Wang
- Department of Chemistry, University of Liverpool, Liverpool, United Kingdom
| | - Mingliu Huang
- Chou Io Insect Museum, Ningbo Yinzhou Cultural Relics Protection and Management Center, Ningbo, China
| | - Jinyi Zhao
- Botnar Research Centre, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
3
|
Mertens JE. The Influence of Climate Change on Vector-Borne Diseases in a Wilderness Medicine Context. Wilderness Environ Med 2024:10806032241283704. [PMID: 39399895 DOI: 10.1177/10806032241283704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
The imminent climate crisis has been labeled as the biggest health threat humanity must deal with. Vector-borne disease distribution and transmission as well as the population at risk are influenced to a great degree by environmental and climactic factors affecting both the vectors themselves and the causative pathogens. Paired with an increase in worldwide travel, urbanization, and globalization, along with population displacements and migration, elucidating the effects of anthropogenic climate change on these illnesses is therefore of the essence to stave off potential negative sequelae. Outcomes on different vector-borne diseases will be diverse, but for many of them, these developments will result in a distribution shift or expansion with the possibility of (re-)introduction of vector and pathogen species in previously nonendemic areas. The consequence will be a growing likelihood for novel human, vector, and pathogen interactions with an increased risk for infection, morbidity, and mortality. Wilderness medicine professionals commonly work in close relationship to the natural environment and therefore will experience these alterations most strongly in their practice. Hence, this article attempts to bring awareness to the subject at hand in a wilderness medicine context, with a focus on malaria, the most burdensome of arthropod-borne diseases. For prevention of the potentially dire consequences on human health induced by climate change, concerted and intensified efforts to reduce the burning of fossil fuels and thus greenhouse gas emissions will be imperative on a global scale.
Collapse
Affiliation(s)
- Jonas E Mertens
- Institute for Infection Research and Vaccine Development (IIRVD), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
4
|
Branda F, Giovanetti M, Ceccarelli G, Ciccozzi M, Scarpa F. ArboItaly: Leveraging open data for enhanced arbovirus surveillance in Italy. Front Pharmacol 2024; 15:1459408. [PMID: 39376616 PMCID: PMC11456481 DOI: 10.3389/fphar.2024.1459408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 09/11/2024] [Indexed: 10/09/2024] Open
Affiliation(s)
- Francesco Branda
- Unit of Medical Statistics and Molecular Epidemiology, Università Campus Bio-Medico di Roma, Rome, Italy
| | - Marta Giovanetti
- Department of Sciences and Technologies for Sustainable Development and One Health, Università Campus Bio-Medico di Roma, Rome, Italy
- Instituto Rene Rachou, Fundação Oswaldo Cruz, Belo Horizonte, Brazil
- Climate Amplified Diseases and Epidemics (CLIMADE), Brasilia, Brazil
| | - Giancarlo Ceccarelli
- Department of Public Health and Infectious Diseases, University Hospital Policlinico Umberto I, Sapienza University of Rome, Rome, Italy
| | - Massimo Ciccozzi
- Unit of Medical Statistics and Molecular Epidemiology, Università Campus Bio-Medico di Roma, Rome, Italy
| | - Fabio Scarpa
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| |
Collapse
|
5
|
Fay RL, Cruz-Loya M, Keyel AC, Price DC, Zink SD, Mordecai EA, Ciota AT. Population-specific thermal responses contribute to regional variability in arbovirus transmission with changing climates. iScience 2024; 27:109934. [PMID: 38799579 PMCID: PMC11126822 DOI: 10.1016/j.isci.2024.109934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 12/05/2023] [Accepted: 05/05/2024] [Indexed: 05/29/2024] Open
Abstract
Temperature is increasing globally, and vector-borne diseases are particularly responsive to such increases. While it is known that temperature influences mosquito life history traits, transmission models have not historically considered population-specific effects of temperature. We assessed the interaction between Culex pipiens population and temperature in New York State (NYS) and utilized novel empirical data to inform predictive models of West Nile virus (WNV) transmission. Genetically and regionally distinct populations from NYS were reared at various temperatures, and life history traits were monitored and used to inform trait-based models. Variation in Cx. pipiens life history traits and population-dependent thermal responses account for a predicted 2.9°C difference in peak transmission that is reflected in regional differences in WNV prevalence. We additionally identified genetic signatures that may contribute to distinct thermal responses. Together, these data demonstrate how population variation contributes to significant geographic variability in arbovirus transmission with changing climates.
Collapse
Affiliation(s)
- Rachel L. Fay
- Department of Biomedical Sciences, State University of New York at Albany School of Public Health, Rensselaer, NY, USA
- The Arbovirus Laboratory, Wadsworth Center, New York State Department of Health, Slingerlands, NY, USA
| | | | - Alexander C. Keyel
- The Arbovirus Laboratory, Wadsworth Center, New York State Department of Health, Slingerlands, NY, USA
| | - Dana C. Price
- Department of Entomology, Rutgers University, New Brunswick, NJ, USA
| | - Steve D. Zink
- The Arbovirus Laboratory, Wadsworth Center, New York State Department of Health, Slingerlands, NY, USA
| | | | - Alexander T. Ciota
- Department of Biomedical Sciences, State University of New York at Albany School of Public Health, Rensselaer, NY, USA
- The Arbovirus Laboratory, Wadsworth Center, New York State Department of Health, Slingerlands, NY, USA
| |
Collapse
|
6
|
Gao T, Li M, Liu H, Fu S, Wang H, Liang G. Genome and evolution of Tibet orbivirus, TIBOV (genus Orbivirus, family Reoviridae). Front Cell Infect Microbiol 2024; 14:1327780. [PMID: 38505291 PMCID: PMC10950067 DOI: 10.3389/fcimb.2024.1327780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 02/16/2024] [Indexed: 03/21/2024] Open
Abstract
Tibet orbivirus (TIBOV) was first isolated from Anopheles maculatus mosquitoes in Xizang, China, in 2009. In recent years, more TIBOV strains have been isolated in several provinces across China, Japan, East Asia, and Nepal, South Asia. Furthermore, TIBOVs have also been isolated from Culex mosquitoes, and several midge species. Additionally, TIBOV neutralizing antibodies have been detected in serum specimens from several mammals, including cattle, sheep, and pigs. All of the evidence suggests that the geographical distribution of TIBOVs has significantly expanded in recent years, with an increased number of vector species involved in its transmission. Moreover, the virus demonstrated infectivity towards a variety of animals. Although TIBOV is considered an emerging orbivirus, detailed reports on its genome and molecular evolution are currently lacking. Thus, this study performed the whole-genome nucleotide sequencing of three TIBOV isolates from mosquitoes and midges collected in China in 2009, 2011, and 2019. Furthermore, the genome and molecular genetic evolution of TIBOVs isolated from different countries, periods, and hosts (mosquitoes, midges, and cattle) was systematically analyzed. The results revealed no molecular specificity among TIBOVs isolated from different countries, periods, and vectors. Meanwhile, the time-scaled phylogenetic analysis demonstrated that the most recent common ancestor (TMRCA) of TIBOV appeared approximately 797 years ago (95% HPD: 16-2347) and subsequently differentiated at least three times, resulting in three distinct genotypes. The evolutionary rate of TIBOVs was about 2.12 × 10-3 nucleotide substitutions per site per year (s/s/y) (95% HPD: 3.07 × 10-5, 9.63 × 10-3), which is similar to that of the bluetongue virus (BTV), also in the Orbivirus genus. Structural analyses of the viral proteins revealed that the three-dimensional structures of the outer capsid proteins of TIBOV and BTV were similar. These results suggest that TIBOV is a newly discovered and rapidly evolving virus transmitted by various blood-sucking insects. Given the potential public health burden of this virus and its high infectious rate in a wide range of animals, it is significant to strengthen research on the genetic variation of TIBOVs in blood-feeding insects and mammals in the natural environment and the infection status in animals.
Collapse
Affiliation(s)
- Tingting Gao
- Shandong Provincial Research Center for Bioinformatic Engineering and Technique, School of Life Sciences and Medicine, Shandong University of Technology, Zibo, China
| | - Minghua Li
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Hong Liu
- Shandong Provincial Research Center for Bioinformatic Engineering and Technique, School of Life Sciences and Medicine, Shandong University of Technology, Zibo, China
| | - Shihong Fu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Huanyu Wang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Guodong Liang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| |
Collapse
|
7
|
Terradas G, Manzano-Alvarez J, Vanalli C, Werling K, Cattadori IM, Rasgon JL. Temperature affects viral kinetics and vectorial capacity of Aedes aegypti mosquitoes co-infected with Mayaro and Dengue viruses. Parasit Vectors 2024; 17:73. [PMID: 38374048 PMCID: PMC10877814 DOI: 10.1186/s13071-023-06109-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 12/20/2023] [Indexed: 02/21/2024] Open
Abstract
BACKGROUND Increasing global temperatures and unpredictable climatic extremes have contributed to the spread of vector-borne diseases. The mosquito Aedes aegypti is the main vector of multiple arboviruses that negatively impact human health, mostly in low socioeconomic areas of the world. Co-circulation and co-infection of these viruses in humans have been increasingly reported; however, how vectors contribute to this alarming trend remains unclear. METHODS Here, we examine single and co-infection of Mayaro virus (D strain, Alphavirus) and dengue virus (serotype 2, Flavivirus) in Ae. aegypti adults and cell lines at two constant temperatures, moderate (27 °C) and hot (32 °C), to quantify vector competence and the effect of temperature on infection, dissemination and transmission, including on the degree of interaction between the two viruses. RESULTS Both viruses were primarily affected by temperature but there was a partial interaction with co-infection. Dengue virus quickly replicates in adult mosquitoes with a tendency for higher titers in co-infected mosquitoes at both temperatures, and mosquito mortality was more severe at higher temperatures in all conditions. For dengue, and to a lesser extent Mayaro, vector competence and vectorial capacity were higher at hotter temperature in co- vs. single infections and was more evident at earlier time points (7 vs. 14 days post infection) for Mayaro. The temperature-dependent phenotype was confirmed in vitro by faster cellular infection and initial replication at higher temperatures for dengue but not for Mayaro virus. CONCLUSIONS Our study suggests that contrasting kinetics of the two viruses could be related to their intrinsic thermal requirements, where alphaviruses thrive better at lower temperatures compared to flaviviruses. However, more studies are necessary to clarify the role of co-infection at different temperature regimes, including under more natural temperature settings.
Collapse
Affiliation(s)
- Gerard Terradas
- Department of Entomology, The Pennsylvania State University, University Park, PA, USA
- Center for Infectious Disease Dynamics, The Pennsylvania State University, University Park, PA, USA
- Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, USA
| | - Jaime Manzano-Alvarez
- Department of Entomology, The Pennsylvania State University, University Park, PA, USA
- Center for Infectious Disease Dynamics, The Pennsylvania State University, University Park, PA, USA
- Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, USA
| | - Chiara Vanalli
- Department of Biology, The Pennsylvania State University, University Park, PA, USA
- Center for Infectious Disease Dynamics, The Pennsylvania State University, University Park, PA, USA
- Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, USA
| | - Kristine Werling
- Department of Entomology, The Pennsylvania State University, University Park, PA, USA
| | - Isabella M Cattadori
- Department of Biology, The Pennsylvania State University, University Park, PA, USA.
- Center for Infectious Disease Dynamics, The Pennsylvania State University, University Park, PA, USA.
- Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, USA.
| | - Jason L Rasgon
- Department of Entomology, The Pennsylvania State University, University Park, PA, USA.
- Center for Infectious Disease Dynamics, The Pennsylvania State University, University Park, PA, USA.
- Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, USA.
| |
Collapse
|
8
|
Christofferson RC, Turner EA, Peña-García VH. Identifying Knowledge Gaps through the Systematic Review of Temperature-Driven Variability in the Competence of Aedes aegypti and Ae. albopictus for Chikungunya Virus. Pathogens 2023; 12:1368. [PMID: 38003832 PMCID: PMC10675276 DOI: 10.3390/pathogens12111368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/10/2023] [Accepted: 11/13/2023] [Indexed: 11/26/2023] Open
Abstract
Temperature is a well-known effector of several transmission factors of mosquito-borne viruses, including within mosquito dynamics. These dynamics are often characterized by vector competence and the extrinsic incubation period (EIP). Vector competence is the intrinsic ability of a mosquito population to become infected with and transmit a virus, while EIP is the time it takes for the virus to reach the salivary glands and be expectorated following an infectious bloodmeal. Temperatures outside the optimal range act on life traits, decreasing transmission potential, while increasing temperature within the optimal range correlates to increasing vector competence and a decreased EIP. These relatively well-studied effects of other Aedes borne viruses (dengue and Zika) are used to make predictions about transmission efficiency, including the challenges presented by urban heat islands and climate change. However, the knowledge of temperature and chikungunya (CHIKV) dynamics within its two primary vectors-Ae. aegypti and Ae. albopictus-remains less characterized, even though CHIKV remains a virus of public-health importance. Here, we review the literature and summarize the state of the literature on CHIKV and temperature dependence of vector competence and EIP and use these data to demonstrate how the remaining knowledge gap might confound the ability to adequately predict and, thus, prepare for future outbreaks.
Collapse
Affiliation(s)
| | - Erik A. Turner
- School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA;
| | | |
Collapse
|
9
|
Servadio JL, Convertino M, Fiecas M, Muñoz‐Zanzi C. Weekly Forecasting of Yellow Fever Occurrence and Incidence via Eco-Meteorological Dynamics. GEOHEALTH 2023; 7:e2023GH000870. [PMID: 37885914 PMCID: PMC10599710 DOI: 10.1029/2023gh000870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 08/31/2023] [Accepted: 10/11/2023] [Indexed: 10/28/2023]
Abstract
Yellow Fever (YF), a mosquito-borne disease, requires ongoing surveillance and prevention due to its persistence and ability to cause major epidemics, including one that began in Brazil in 2016. Forecasting based on factors influencing YF risk can improve efficiency in prevention. This study aimed to produce weekly forecasts of YF occurrence and incidence in Brazil using weekly meteorological and ecohydrological conditions. Occurrence was forecast as the probability of observing any cases, and incidence was forecast to represent morbidity if YF occurs. We fit gamma hurdle models, selecting predictors from several meteorological and ecohydrological factors, based on forecast accuracy defined by receiver operator characteristic curves and mean absolute error. We fit separate models for data before and after the start of the 2016 outbreak, forecasting occurrence and incidence for all municipalities of Brazil weekly. Different predictor sets were found to produce most accurate forecasts in each time period, and forecast accuracy was high for both time periods. Temperature, precipitation, and previous YF burden were most influential predictors among models. Minimum, maximum, mean, and range of weekly temperature, precipitation, and humidity contributed to forecasts, with optimal lag times of 2, 6, and 7 weeks depending on time period. Results from this study show the use of environmental predictors in providing regular forecasts of YF burden and producing nationwide forecasts. Weekly forecasts, which can be produced using the forecast model developed in this study, are beneficial for informing immediate preparedness measures.
Collapse
Affiliation(s)
- Joseph L. Servadio
- Department of BiologyCenter for Infectious Disease DynamicsPennsylvania State UniversityUniversity ParkPAUSA
- Division of Environmental Health SciencesSchool of Public HealthUniversity of MinnesotaMinneapolisMNUSA
| | | | - Mark Fiecas
- Division of BiostatisticsSchool of Public HealthUniversity of MinnesotaMinneapolisMNUSA
| | - Claudia Muñoz‐Zanzi
- Division of Environmental Health SciencesSchool of Public HealthUniversity of MinnesotaMinneapolisMNUSA
| |
Collapse
|
10
|
Schilling M, McCracken F, Folly AJ, Johnson N, Lawson B, Seilern-Moy K, Fowkes S, Cunningham A, Spiro S. Usutu virus detected in wild bird outside Greater London. Vet Rec 2023; 193:247-248. [PMID: 37737366 DOI: 10.1002/vetr.3490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/23/2023]
Affiliation(s)
| | | | | | | | - Becki Lawson
- Institute of Zoology, Zoological Society of London, Regent's Park, London, NW1 4RY
| | | | - Sarah Fowkes
- Institute of Zoology, Zoological Society of London, Regent's Park, London, NW1 4RY
| | - Andrew Cunningham
- Institute of Zoology, Zoological Society of London, Regent's Park, London, NW1 4RY
| | - Simon Spiro
- Wildlife Health Services, Zoological Society of London, Regent's Park, London, NW1 4RY
| |
Collapse
|
11
|
Kouroupis D, Charisi K, Pyrpasopoulou A. The Ongoing Epidemic of West Nile Virus in Greece: The Contribution of Biological Vectors and Reservoirs and the Importance of Climate and Socioeconomic Factors Revisited. Trop Med Infect Dis 2023; 8:453. [PMID: 37755914 PMCID: PMC10536956 DOI: 10.3390/tropicalmed8090453] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/17/2023] [Accepted: 09/17/2023] [Indexed: 09/28/2023] Open
Abstract
Emerging infectious diseases have inflicted a significant health and socioeconomic burden upon the global population and governments worldwide. West Nile virus, a zoonotic, mosquito-borne flavivirus, was originally isolated in 1937 from a febrile patient in the West Nile Province of Uganda. It remained confined mainly to Africa, the Middle East, and parts of Europe and Australia until 1999, circulating in an enzootic mosquito-bird transmission cycle. Since the beginning of the 21st century, a new, neurotropic, more virulent strain was isolated from human outbreaks initially occurring in North America and later expanding to South and South-eastern Europe. Since 2010, when the first epidemic was recorded in Greece, annual incidence has fluctuated significantly. A variety of environmental, biological and socioeconomic factors have been globally addressed as potential regulators of the anticipated intensity of the annual incidence rate; circulation within the zoonotic reservoirs, recruitment and adaptation of new potent arthropod vectors, average winter and summer temperatures, precipitation during the early summer months, and socioeconomic factors, such as the emergence and progression of urbanization and the development of densely populated areas in association with insufficient health policy measures. This paper presents a review of the biological and socioenvironmental factors influencing the dynamics of the epidemics of West Nile virus (WNV) cases in Greece, one of the highest-ranked European countries in terms of annual incidence. To date, WNV remains an unpredictable opponent as is also the case with other emerging infectious diseases, forcing the National Health systems to develop response strategies, control the number of infections, and shorten the duration of the epidemics, thus minimizing the impact on human and material resources.
Collapse
Affiliation(s)
- Dimitrios Kouroupis
- 2nd Propedeutic Department of Internal Medicine, Hippokration Hospital, Konstantinoupoleos 49, 54642 Thessaloniki, Greece;
| | - Konstantina Charisi
- Infectious Diseases Unit, Hippokration Hospital, Konstantinoupoleos 49, 54642 Thessaloniki, Greece;
| | - Athina Pyrpasopoulou
- 2nd Propedeutic Department of Internal Medicine, Hippokration Hospital, Konstantinoupoleos 49, 54642 Thessaloniki, Greece;
- Infectious Diseases Unit, Hippokration Hospital, Konstantinoupoleos 49, 54642 Thessaloniki, Greece;
| |
Collapse
|
12
|
van Bree JW, Visser I, Duyvestyn JM, Aguilar-Bretones M, Marshall EM, van Hemert MJ, Pijlman GP, van Nierop GP, Kikkert M, Rockx BH, Miesen P, Fros JJ. Novel approaches for the rapid development of rationally designed arbovirus vaccines. One Health 2023; 16:100565. [PMID: 37363258 PMCID: PMC10288159 DOI: 10.1016/j.onehlt.2023.100565] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 05/09/2023] [Accepted: 05/12/2023] [Indexed: 06/28/2023] Open
Abstract
Vector-borne diseases, including those transmitted by mosquitoes, account for more than 17% of infectious diseases worldwide. This number is expected to rise with an increased spread of vector mosquitoes and viruses due to climate change and man-made alterations to ecosystems. Among the most common, medically relevant mosquito-borne infections are those caused by arthropod-borne viruses (arboviruses), especially members of the genera Flavivirus and Alphavirus. Arbovirus infections can cause severe disease in humans, livestock and wildlife. Severe consequences from infections include congenital malformations as well as arthritogenic, haemorrhagic or neuroinvasive disease. Inactivated or live-attenuated vaccines (LAVs) are available for a small number of arboviruses; however there are no licensed vaccines for the majority of these infections. Here we discuss recent developments in pan-arbovirus LAV approaches, from site-directed attenuation strategies targeting conserved determinants of virulence to universal strategies that utilize genome-wide re-coding of viral genomes. In addition to these approaches, we discuss novel strategies targeting mosquito saliva proteins that play an important role in virus transmission and pathogenesis in vertebrate hosts. For rapid pre-clinical evaluations of novel arbovirus vaccine candidates, representative in vitro and in vivo experimental systems are required to assess the desired specific immune responses. Here we discuss promising models to study attenuation of neuroinvasion, neurovirulence and virus transmission, as well as antibody induction and potential for cross-reactivity. Investigating broadly applicable vaccination strategies to target the direct interface of the vertebrate host, the mosquito vector and the viral pathogen is a prime example of a One Health strategy to tackle human and animal diseases.
Collapse
Affiliation(s)
- Joyce W.M. van Bree
- Laboratory of Virology, Wageningen University & Research, Wageningen, the Netherlands
| | - Imke Visser
- Department of Viroscience, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Jo M. Duyvestyn
- Department of Medical Microbiology, Leiden University Medical Centre, Leiden, the Netherlands
| | | | - Eleanor M. Marshall
- Department of Viroscience, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Martijn J. van Hemert
- Department of Medical Microbiology, Leiden University Medical Centre, Leiden, the Netherlands
| | - Gorben P. Pijlman
- Laboratory of Virology, Wageningen University & Research, Wageningen, the Netherlands
| | | | - Marjolein Kikkert
- Department of Medical Microbiology, Leiden University Medical Centre, Leiden, the Netherlands
| | - Barry H.G. Rockx
- Department of Viroscience, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Pascal Miesen
- Department of Medical Microbiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, P.O. Box 9101, 6500, HB, Nijmegen, the Netherlands
| | - Jelke J. Fros
- Laboratory of Virology, Wageningen University & Research, Wageningen, the Netherlands
| |
Collapse
|
13
|
Terradas G, Manzano-Alvarez J, Vanalli C, Werling K, Cattadori IM, Rasgon JL. Temperature affects viral kinetics and vectorial capacity of Aedes aegypti mosquitoes co-infected with Mayaro and Dengue viruses. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.17.541186. [PMID: 37292724 PMCID: PMC10245717 DOI: 10.1101/2023.05.17.541186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Increasing global temperatures and unpredictable climatic extremes have contributed to the spread of vector-borne diseases. The mosquito Aedes aegypti is the main vector of multiple arboviruses that negatively impact human health, mostly in low socioeconomic areas of the world. Co-circulation and co-infection of these viruses in humans have been increasingly reported; however, how vectors contribute to this alarming trend remains unclear. Here, we examine single and co-infection of Mayaro virus (-D strain, Alphavirus) and dengue virus (serotype 2, Flavivirus) in Ae. aegypti adults and cell lines at two constant temperatures, moderate (27°C) and hot (32°C), to quantify vector competence and the effect of temperature on infection, dissemination and transmission, including on the degree of interaction between the two viruses. Both viruses were primarily affected by temperature but there was a partial interaction with co-infection. Dengue virus quickly replicates in adult mosquitoes, with a tendency for higher titers in co-infected mosquitoes at both temperatures and mosquito mortality was more severe at higher temperatures in all conditions. For dengue, and to a lesser extent Mayaro, vector competence and vectorial capacity were higher at hotter temperature in co- vs single infections and was more evident at earlier timepoints (7 vs 14 days post infection). The temperature-dependent phenotype was confirmed in vitro by faster cellular infection and initial replication at higher temperatures for dengue but not for Mayaro virus. Our study suggests that contrasting kinetics of the two viruses could be related to their intrinsic thermal requirements, where alphaviruses thrive better at lower temperatures compared to flaviviruses, but further studies are necessary to clarify the role of co-infection at different and variable temperature regimes.
Collapse
Affiliation(s)
- Gerard Terradas
- Department of Entomology, The Pennsylvania State University, University Park, Pennsylvania, USA
- Center for Infectious Disease Dynamics, The Pennsylvania State University, University Park, Pennsylvania, USA
- Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Jaime Manzano-Alvarez
- Department of Entomology, The Pennsylvania State University, University Park, Pennsylvania, USA
- Center for Infectious Disease Dynamics, The Pennsylvania State University, University Park, Pennsylvania, USA
- Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Chiara Vanalli
- Department of Biology, The Pennsylvania State University, University Park, Pennsylvania, USA
- Center for Infectious Disease Dynamics, The Pennsylvania State University, University Park, Pennsylvania, USA
- Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Kristine Werling
- Department of Entomology, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Isabella M Cattadori
- Department of Biology, The Pennsylvania State University, University Park, Pennsylvania, USA
- Center for Infectious Disease Dynamics, The Pennsylvania State University, University Park, Pennsylvania, USA
- Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Jason L Rasgon
- Department of Entomology, The Pennsylvania State University, University Park, Pennsylvania, USA
- Center for Infectious Disease Dynamics, The Pennsylvania State University, University Park, Pennsylvania, USA
- Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania, USA
| |
Collapse
|
14
|
Fernández-Sánchez SY, Cerón-Carrasco JP, Risco C, Fernández de Castro I. Antiviral Activity of Acetylsalicylic Acid against Bunyamwera Virus in Cell Culture. Viruses 2023; 15:v15040948. [PMID: 37112928 PMCID: PMC10141918 DOI: 10.3390/v15040948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/05/2023] [Accepted: 04/06/2023] [Indexed: 04/29/2023] Open
Abstract
The Bunyavirales order is a large group of RNA viruses that includes important pathogens for humans, animals and plants. With high-throughput screening of clinically tested compounds we have looked for potential inhibitors of the endonuclease domain of a bunyavirus RNA polymerase. From a list of fifteen top candidates, five compounds were selected and their antiviral properties studied with Bunyamwera virus (BUNV), a prototypic bunyavirus widely used for studies about the biology of this group of viruses and to test antivirals. Four compounds (silibinin A, myricetin, L-phenylalanine and p-aminohippuric acid) showed no antiviral activity in BUNV-infected Vero cells. On the contrary, acetylsalicylic acid (ASA) efficiently inhibited BUNV infection with a half maximal inhibitory concentration (IC50) of 2.02 mM. In cell culture supernatants, ASA reduced viral titer up to three logarithmic units. A significant dose-dependent reduction of the expression levels of Gc and N viral proteins was also measured. Immunofluorescence and confocal microscopy showed that ASA protects the Golgi complex from the characteristic BUNV-induced fragmentation in Vero cells. Electron microscopy showed that ASA inhibits the assembly of Golgi-associated BUNV spherules that are the replication organelles of bunyaviruses. As a consequence, the assembly of new viral particles is also significantly reduced. Considering its availability and low cost, the potential usability of ASA to treat bunyavirus infections deserves further investigation.
Collapse
Affiliation(s)
| | - José P Cerón-Carrasco
- Centro Universitario de la Defensa, Universidad Politécnica de Cartagena, C/Coronel López Peña s/n, Base Aérea de San Javier, Santiago de la Ribera, 30720 Murcia, Spain
| | - Cristina Risco
- Cell Structure Laboratory, Centro Nacional de Biotecnología, CSIC, Campus de Cantoblanco, 28049 Madrid, Spain
| | - Isabel Fernández de Castro
- Cell Structure Laboratory, Centro Nacional de Biotecnología, CSIC, Campus de Cantoblanco, 28049 Madrid, Spain
| |
Collapse
|
15
|
Seok S, Raz CD, Miller JH, Malcolm AN, Eason MD, Romero-Weaver AL, Giordano BV, Jacobsen CM, Wang X, Akbari OS, Raban R, Mathias DK, Caragata EP, Vorsino AE, Chiu JC, Lee Y. Arboviral disease outbreaks, Aedes mosquitoes, and vector control efforts in the Pacific. FRONTIERS IN TROPICAL DISEASES 2023. [DOI: 10.3389/fitd.2023.1035273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Recurring outbreaks of mosquito-borne diseases, like dengue, in the Pacific region represent a major biosecurity risk to neighboring continents through potential introductions of disease-causing pathogens. Aedes mosquitoes, highly prevalent in this region, are extremely invasive and the predominant vectors of multiple viruses including causing dengue, chikungunya, and Zika. Due to the absence of vaccines for most of these diseases, Aedes control remains a high priority for public health. Currently, international organizations put their efforts into improving mosquito surveillance programs in the Pacific region. Also, a novel biocontrol method using Wolbachia has been tried in the Pacific region to control Aedes mosquito populations. A comprehensive understanding of mosquito biology is needed to assess the risk that mosquitoes might be introduced to neighboring islands in the region and how this might impact arboviral virus transmission. As such, we present a comprehensive review of arboviral disease outbreak records as well as Aedes mosquito biology research findings relevant to the Pacific region collected from both non-scientific and scientific sources.
Collapse
|
16
|
Neira M, Erguler K, Ahmady-Birgani H, Al-Hmoud ND, Fears R, Gogos C, Hobbhahn N, Koliou M, Kostrikis LG, Lelieveld J, Majeed A, Paz S, Rudich Y, Saad-Hussein A, Shaheen M, Tobias A, Christophides G. Climate change and human health in the Eastern Mediterranean and Middle East: Literature review, research priorities and policy suggestions. ENVIRONMENTAL RESEARCH 2023; 216:114537. [PMID: 36273599 PMCID: PMC9729515 DOI: 10.1016/j.envres.2022.114537] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/29/2022] [Accepted: 10/06/2022] [Indexed: 05/17/2023]
Abstract
Human health is linked to climatic factors in complex ways, and climate change can have profound direct and indirect impacts on the health status of any given region. Susceptibility to climate change is modulated by biological, ecological and socio-political factors such as age, gender, geographic location, socio-economic status, occupation, health status and housing conditions, among other. In the Eastern Mediterranean and Middle East (EMME), climatic factors known to affect human health include extreme heat, water shortages and air pollution. Furthermore, the epidemiology of vector-borne diseases (VBDs) and the health consequences of population displacement are also influenced by climate change in this region. To inform future policies for adaptation and mitigation measures, and based on an extensive review of the available knowledge, we recommend several research priorities for the region. These include the generation of more empirical evidence on exposure-response functions involving climate change and specific health outcomes, the development of appropriate methodologies to evaluate the physical and psychological effects of climate change on vulnerable populations, determining how climate change alters the ecological determinants of human health, improving our understanding of the effects of long-term exposure to heat stress and air pollution, and evaluating the interactions between adaptation and mitigation strategies. Because national boundaries do not limit most climate-related factors expected to impact human health, we propose that adaptation/mitigation policies must have a regional scope, and therefore require collaborative efforts among EMME nations. Policy suggestions include a decisive region-wide decarbonisation, the integration of environmentally driven morbidity and mortality data throughout the region, advancing the development and widespread use of affordable technologies for the production and management of drinking water by non-traditional means, the development of comprehensive strategies to improve the health status of displaced populations, and fostering regional networks for monitoring and controlling the spread of infectious diseases and disease vectors.
Collapse
Affiliation(s)
- Marco Neira
- Climate and Atmosphere Research Center (CARE-C), The Cyprus Institute, Nicosia, Cyprus.
| | - Kamil Erguler
- Climate and Atmosphere Research Center (CARE-C), The Cyprus Institute, Nicosia, Cyprus
| | | | | | - Robin Fears
- European Academies Science Advisory Council (EASAC), Halle (Saale), Germany
| | | | - Nina Hobbhahn
- European Academies Science Advisory Council (EASAC), Halle (Saale), Germany
| | - Maria Koliou
- University of Cyprus Medical School, Nicosia, Cyprus
| | - Leondios G Kostrikis
- Department of Biological Sciences, University of Cyprus, Nicosia, Cyprus; Cyprus Academy of Sciences, Letters, and Arts, Nicosia, Cyprus
| | - Jos Lelieveld
- Climate and Atmosphere Research Center (CARE-C), The Cyprus Institute, Nicosia, Cyprus; Max Planck Institute for Chemistry, Mainz, Germany
| | - Azeem Majeed
- Department of Primary Care & Public Health, Imperial College London, London, United Kingdom
| | - Shlomit Paz
- Department of Geography and Environmental Studies, University of Haifa, Haifa, Israel
| | - Yinon Rudich
- Department of Earth and Planetary Sciences, The Weismann Institute of Science, Rehovot, Israel
| | - Amal Saad-Hussein
- Environment and Climate Change Research Institute, National Research Centre, Cairo, Egypt
| | - Mohammed Shaheen
- Damour for Community Development - Research Department, Palestine
| | - Aurelio Tobias
- Institute of Environmental Assessment and Water Research (IDAEA), Spanish Council for Scientific Research (CSIC), Barcelona, Spain
| | - George Christophides
- Climate and Atmosphere Research Center (CARE-C), The Cyprus Institute, Nicosia, Cyprus; Department of Life Sciences, Imperial College London, London, United Kingdom.
| |
Collapse
|
17
|
Duval P, Valiente Moro C, Aschan-Leygonie C. How do attitudes shape protective practices against the Asian tiger mosquito in community gardens in a nonendemic country? Parasit Vectors 2022; 15:439. [PMID: 36419069 PMCID: PMC9682734 DOI: 10.1186/s13071-022-05520-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 09/28/2022] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND The Asian tiger mosquito Aedes albopictus is responsible for the transmission of many arboviruses worldwide and is well adapted to thrive in urban environments. In mainland France, a nonendemic area, this mosquito is responsible for several autochthonous and imported cases of chikungunya and dengue each year. Better management and prevention of mosquito-borne disease transmission in nonendemic areas is thus of global concern. In this context, the aim of this study was to provide a better understanding of mosquito-human interactions as well as human behavior and beliefs in regard to this mosquito species in urban areas. METHODS We focused on people who participate in community gardens, which are increasingly popular initiatives in metropolitan France and are conducive to the development of tiger mosquitoes. To evaluate community gardeners' knowledge and practices in relation to mosquito management and control, we conducted a knowledge, attitude, and practice (KAP) survey. RESULTS In contrast to previous KAP studies, we showed that attitudes, more than knowledge, influence the practices of community gardeners in relation to mosquitoes. Interestingly, all gardeners who participated in the survey were concerned about the Asian tiger mosquito and were motivated to incorporate mosquito control methods in their gardens. Moreover, mosquitoes were perceived as nuisances rather than disease vector species. A change in community gardeners' perceptions could facilitate more appropriate behavior to control this species. CONCLUSIONS This survey reveals the lack of knowledge and awareness of good practices for the efficient control of the Asian tiger mosquito in green urban areas.
Collapse
Affiliation(s)
- Pénélope Duval
- grid.7849.20000 0001 2150 7757UMR 5557 Ecologie Microbienne, Univ Lyon, Université Claude Bernard Lyon 1, CNRS, INRAE, VetAgro Sup, Bâtiment Dubois 43 Boulevard du 11 Novembre 1918, 69622 Villeurbanne, France
| | - Claire Valiente Moro
- grid.7849.20000 0001 2150 7757UMR 5557 Ecologie Microbienne, Univ Lyon, Université Claude Bernard Lyon 1, CNRS, INRAE, VetAgro Sup, Bâtiment Dubois 43 Boulevard du 11 Novembre 1918, 69622 Villeurbanne, France
| | - Christina Aschan-Leygonie
- grid.72960.3a0000 0001 2188 0906UMR 5600 CNRS Environnement Ville Société, University of Lyon, Université Lumière Lyon 2, 69007 Lyon, France
| |
Collapse
|
18
|
Ma J, Guo Y, Gao J, Tang H, Xu K, Liu Q, Xu L. Climate Change Drives the Transmission and Spread of Vector-Borne Diseases: An Ecological Perspective. BIOLOGY 2022; 11:1628. [PMID: 36358329 PMCID: PMC9687606 DOI: 10.3390/biology11111628] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 10/31/2022] [Accepted: 11/04/2022] [Indexed: 07/30/2023]
Abstract
Climate change affects ecosystems and human health in multiple dimensions. With the acceleration of climate change, climate-sensitive vector-borne diseases (VBDs) pose an increasing threat to public health. This paper summaries 10 publications on the impacts of climate change on ecosystems and human health; then it synthesizes the other existing literature to more broadly explain how climate change drives the transmission and spread of VBDs through an ecological perspective. We highlight the multi-dimensional nature of climate change, its interaction with other factors, and the impact of the COVID-19 pandemic on transmission and spread of VBDs, specifically including: (1) the generally nonlinear relationship of local climate (temperature, precipitation and wind) and VBD transmission, with temperature especially exhibiting an n-shape relation; (2) the time-lagged effect of regional climate phenomena (the El Niño-Southern Oscillation and North Atlantic Oscillation) on VBD transmission; (3) the u-shaped effect of extreme climate (heat waves, cold waves, floods, and droughts) on VBD spread; (4) how interactions between non-climatic (land use and human mobility) and climatic factors increase VBD transmission and spread; and (5) that the impact of the COVID-19 pandemic on climate change is debatable, and its impact on VBDs remains uncertain. By exploring the influence of climate change and non-climatic factors on VBD transmission and spread, this paper provides scientific understanding and guidance for their effective prevention and control.
Collapse
Affiliation(s)
- Jian Ma
- Vanke School of Public Health, Tsinghua University, Beijing 100084, China
- Institute for Healthy China, Tsinghua University, Beijing 100084, China
| | - Yongman Guo
- Vanke School of Public Health, Tsinghua University, Beijing 100084, China
- Institute for Healthy China, Tsinghua University, Beijing 100084, China
| | - Jing Gao
- Vanke School of Public Health, Tsinghua University, Beijing 100084, China
- Respiratory Medicine Unit, Department of Medicine & Centre for Molecular Medicine, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Hanxing Tang
- Vanke School of Public Health, Tsinghua University, Beijing 100084, China
- Institute for Healthy China, Tsinghua University, Beijing 100084, China
| | - Keqiang Xu
- Clinical Pharmacy Center, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Qiyong Liu
- State Key Laboratory of Infectious Diseases Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Lei Xu
- Vanke School of Public Health, Tsinghua University, Beijing 100084, China
- Institute for Healthy China, Tsinghua University, Beijing 100084, China
| |
Collapse
|
19
|
Lemieux A, Colby GA, Poulain AJ, Aris-Brosou S. Viral spillover risk increases with climate change in High Arctic lake sediments. Proc Biol Sci 2022; 289:20221073. [PMID: 36259208 PMCID: PMC9579761 DOI: 10.1098/rspb.2022.1073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The host spectrum of viruses is quite diverse, as they can sustainedly infect a few species to several phyla. When confronted with a new host, a virus may even infect it and transmit sustainably in this new host, a process called ‘viral spillover’. However, the risk of such events is difficult to quantify. As climate change is rapidly transforming environments, it is becoming critical to quantify the potential for spillovers. To address this issue, we resorted to a metagenomics approach and focused on two environments, soil and lake sediments from Lake Hazen, the largest High Arctic freshwater lake in the world. We used DNA and RNA sequencing to reconstruct the lake’s virosphere in both its sediments and soils, as well as its range of eukaryotic hosts. We then estimated the spillover risk by measuring the congruence between the viral and the eukaryotic host phylogenetic trees, and show that spillover risk increases with runoff from glacier melt, a proxy for climate change. Should climate change also shift species range of potential viral vectors and reservoirs northwards, the High Arctic could become fertile ground for emerging pandemics.
Collapse
Affiliation(s)
- Audrée Lemieux
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - Graham A. Colby
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| | | | - Stéphane Aris-Brosou
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
- Department of Mathematics and Statistics, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
20
|
Abstract
West Nile virus (WNV) is a mosquito-borne flavivirus with a global distribution that is maintained in an enzootic cycle between Culex species mosquitoes and avian hosts. Human infection, which occurs as a result of spillover from this cycle, is generally subclinical or results in a self-limiting febrile illness. Central nervous system infection occurs in a minority of infections and can lead to long-term neurological complications and, rarely, death. WNV is the most prevalent arthropod-borne virus in the United States. Climate change can influence several aspects of WNV transmission including the vector, amplifying host, and virus. Climate change is broadly predicted to increase WNV distribution and risk across the globe, yet there will likely be significant regional variability and limitations to this effect. Increases in temperature can accelerate mosquito and pathogen development, drive increases in vector competence for WNV, and also alter mosquito life history traits including longevity, blood feeding behavior and fecundity. Precipitation, humidity and drought also impact WNV transmissibility. Alteration in avian distribution, diversity and phenology resulting from climate variation add additional complexity to these relationships. Here, we review WNV epidemiology, transmission, disease and genetics in the context of laboratory studies, field investigations, and infectious disease models under climate change. We summarize how mosquito genetics, microbial interactions, host dynamics, viral strain, population size, land use and climate account for distinct relationships that drive WNV activity and discuss how these dynamic and evolving interactions could shape WNV transmission and disease under climate change.
Collapse
Affiliation(s)
- Rachel L Fay
- The Arbovirus Laboratory, Wadsworth Center, New York State Department of Health, Slingerlands, NY, United States; Department of Biomedical Sciences, State University of New York at Albany School of Public Health, Rensselaer, NY, United States
| | - Alexander C Keyel
- The Arbovirus Laboratory, Wadsworth Center, New York State Department of Health, Slingerlands, NY, United States; Department of Atmospheric and Environmental Sciences, State University of New York at Albany, Albany, NY, United States
| | - Alexander T Ciota
- The Arbovirus Laboratory, Wadsworth Center, New York State Department of Health, Slingerlands, NY, United States; Department of Biomedical Sciences, State University of New York at Albany School of Public Health, Rensselaer, NY, United States.
| |
Collapse
|
21
|
Hime NJ, Wickens M, Doggett SL, Rahman K, Toi C, Webb C, Vyas A, Lachireddy K. Weather extremes associated with increased Ross River virus and Barmah Forest virus notifications in NSW: learnings for public health response. Aust N Z J Public Health 2022; 46:842-849. [DOI: 10.1111/1753-6405.13283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 05/01/2022] [Accepted: 06/01/2022] [Indexed: 11/30/2022] Open
Affiliation(s)
- Neil J. Hime
- Environmental Health Branch, Health Protection NSW NSW Health St Leonards New South Wales
- Discipline of Public Health, the School of Public Health, the Faculty of Medicine and Health The University of Sydney New South Wales
| | - Meredith Wickens
- Communicable Diseases Branch, Health Protection NSW NSW Health St Leonards New South Wales
| | - Stephen L. Doggett
- Department of Medical Entomology, NSW Health Pathology‐Institute of Clinical Pathology and Medical Research Westmead Hospital Westmead New South Wales
| | - Kazi Rahman
- North Coast Public Health Unit, Mid North Coast and Northern NSW Local Health Districts NSW Health Lismore New South Wales
| | - Cheryl Toi
- Department of Medical Entomology, NSW Health Pathology‐Institute of Clinical Pathology and Medical Research Westmead Hospital Westmead New South Wales
| | - Cameron Webb
- Discipline of Public Health, the School of Public Health, the Faculty of Medicine and Health The University of Sydney New South Wales
- Department of Medical Entomology, NSW Health Pathology‐Institute of Clinical Pathology and Medical Research Westmead Hospital Westmead New South Wales
| | - Aditya Vyas
- Environmental Health Branch, Health Protection NSW NSW Health St Leonards New South Wales
| | - Kishen Lachireddy
- Environmental Health Branch, Health Protection NSW NSW Health St Leonards New South Wales
| |
Collapse
|
22
|
Damtew YT, Tong M, Varghese BM, Hansen A, Liu J, Dear K, Zhang Y, Morgan G, Driscoll T, Capon T, Bi P. Associations between temperature and Ross river virus infection: A systematic review and meta-analysis of epidemiological evidence. Acta Trop 2022; 231:106454. [PMID: 35405101 DOI: 10.1016/j.actatropica.2022.106454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/30/2022] [Accepted: 03/31/2022] [Indexed: 11/01/2022]
Abstract
Ross River virus (RRV) infection is one of the emerging and prevalent arboviral diseases in Australia and the Pacific Islands. Although many studies have been conducted to establish the relationship between temperature and RRV infection, there has been no comprehensive review of the association so far. In this study, we performed a systematic review and meta-analysis to assess the effect of temperature on RRV transmission. We searched PubMed, Scopus, Embase, and Web of Science with additional lateral searches from references. The quality and strength of evidence from the included studies were evaluated following the Navigation Guide framework. We have qualitatively synthesized the evidence and conducted a meta-analysis to pool the relative risks (RRs) of RRV infection per 1 °C increase in temperature. Subgroup analyses were performed by climate zones, temperature metrics, and lag periods. A total of 17 studies met the inclusion criteria, of which six were included in the meta-analysis The meta-analysis revealed that the overall RR for the association between temperature and the risk of RRV infection was 1.09 (95% confidence interval (CI): 1.02, 1.17). Subgroup analyses by climate zones showed an increase in RRV infection per 1 °C increase in temperature in humid subtropical and cold semi-arid climate zones. The overall quality of evidence was "moderate" and we rated the strength of evidence to be "limited", warranting additional evidence to reduce uncertainty. The results showed that the risk of RRV infection is positively associated with temperature. However, the risk varies across different climate zones, temperature metrics and lag periods. These findings indicate that future studies on the association between temperature and RRV infection should consider local and regional climate, socio-demographic, and environmental factors to explore vulnerability at local and regional levels.
Collapse
|
23
|
Van den Eynde C, Sohier C, Matthijs S, De Regge N. Japanese Encephalitis Virus Interaction with Mosquitoes: A Review of Vector Competence, Vector Capacity and Mosquito Immunity. Pathogens 2022; 11:317. [PMID: 35335641 PMCID: PMC8953304 DOI: 10.3390/pathogens11030317] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 02/28/2022] [Accepted: 03/01/2022] [Indexed: 02/01/2023] Open
Abstract
Japanese encephalitis virus (JEV) is a mosquito-borne zoonotic flavivirus and a major cause of human viral encephalitis in Asia. We provide an overview of the knowledge on vector competence, vector capacity, and immunity of mosquitoes in relation to JEV. JEV has so far been detected in more than 30 mosquito species. This does not necessarily mean that these species contribute to JEV transmission under field conditions. Therefore, vector capacity, which considers vector competence, as well as environmental, behavioral, cellular, and biochemical variables, needs to be taken into account. Currently, 17 species can be considered as confirmed vectors for JEV and 10 other species as potential vectors. Culex tritaeniorhynchus and Culex annulirostris are considered primary JEV vectors in endemic regions. Culex pipiens and Aedes japonicus could be considered as potentially important vectors in the case of JEV introduction in new regions. Vector competence is determined by various factors, including vector immunity. The available knowledge on physical and physiological barriers, molecular pathways, antimicrobial peptides, and microbiome is discussed in detail. This review highlights that much remains to be studied about vector immunity against JEV in order to identify novel strategies to reduce JEV transmission by mosquitoes.
Collapse
Affiliation(s)
- Claudia Van den Eynde
- Exotic Viruses and Particular Diseases, Sciensano, Groeselenberg 99, 1180 Brussels, Belgium; (C.S.); (N.D.R.)
| | - Charlotte Sohier
- Exotic Viruses and Particular Diseases, Sciensano, Groeselenberg 99, 1180 Brussels, Belgium; (C.S.); (N.D.R.)
| | - Severine Matthijs
- Enzootic, Vector-Borne and Bee Diseases, Sciensano, Groeselenberg 99, 1180 Brussels, Belgium;
| | - Nick De Regge
- Exotic Viruses and Particular Diseases, Sciensano, Groeselenberg 99, 1180 Brussels, Belgium; (C.S.); (N.D.R.)
| |
Collapse
|
24
|
Rosenbaum AM, Ojo M, Dumenci L, Palumbo AJ, Reed L, Crans S, Williams GM, Gruener J, Indelicato N, Cervantes K. Development of an Index to Measure West Nile Virus Transmission Risk in New Jersey Counties. JOURNAL OF THE AMERICAN MOSQUITO CONTROL ASSOCIATION 2021; 37:216-223. [PMID: 34817604 DOI: 10.2987/21-7029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
We developed an index for use by New Jersey counties to measure West Nile virus (WNV) transmission risk to the human population. We used a latent profile analysis to develop the index, identifying categories of environmental conditions associated with WNV transmission risk to humans. The final model included 4 indicators of transmission risk: mosquito abundance and minimum field infection rate, temperature, and human case count. We used data from 2004 to 2018 from all 21 New Jersey counties aggregated into 11 2-wk units per county per year (N = 3,465). Three WNV risk classes were identified. The Low Risk class had low levels of all variables. The Moderate Risk class had high abundance, average temperature levels, and low levels of the other variables. The High Risk class had substantially above average human case likelihood, average temperature, and high mosquito infection rates. These results suggest the presence of 3 distinct WNV risk profiles, which can be used to guide the development of public health actions intended to mitigate WNV transmission risk to the human population.
Collapse
|
25
|
Emergence potential of mosquito-borne arboviruses from the Florida Everglades. PLoS One 2021; 16:e0259419. [PMID: 34807932 PMCID: PMC8608345 DOI: 10.1371/journal.pone.0259419] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 10/19/2021] [Indexed: 11/21/2022] Open
Abstract
The Greater Everglades Region of South Florida is one of the largest natural wetlands and the only subtropical ecosystem found in the continental United States. Mosquitoes are seasonally abundant in the Everglades where several potentially pathogenic mosquito-borne arboviruses are maintained in natural transmission cycles involving vector-competent mosquitoes and reservoir-competent vertebrate hosts. The fragile nature of this ecosystem is vulnerable to many sources of environmental change, including a wetlands restoration project, climate change, invasive species and residential development. In this study, we obtained baseline data on the distribution and abundance of both mosquitos and arboviruses occurring in the southern Everglades region during the summer months of 2013, when water levels were high, and in 2014, when water levels were low. A total of 367,060 mosquitoes were collected with CO2-baited CDC light traps at 105 collection sites stratified among the major landscape features found in Everglades National Park, Big Cypress National Preserve, Fakahatchee State Park Preserve and Picayune State Forest, an area already undergoing restoration. A total of 2,010 pools of taxonomically identified mosquitoes were cultured for arbovirus isolation and identification. Seven vertebrate arboviruses were isolated: Everglades virus, Tensaw virus, Shark River virus, Gumbo Limbo virus, Mahogany Hammock virus, Keystone virus, and St. Louis encephalitis virus. Except for Tensaw virus, which was absent in 2013, the remaining viruses were found to be most prevalent in hardwood hammocks and in Fakahatchee, less prevalent in mangroves and pinelands, and absent in cypress and sawgrass. In contrast, in the summer of 2014 when water levels were lower, these arboviruses were far less prevalent and only found in hardwood hammocks, but Tensaw virus was present in cypress, sawgrass, pinelands, and a recently burned site. Major environmental changes are anticipated in the Everglades, many of which will result in increased water levels. How these might lead to the emergence of arboviruses potentially pathogenic to both humans and wildlife is discussed.
Collapse
|
26
|
Keyel AC, Raghavendra A, Ciota AT, Elison Timm O. West Nile virus is predicted to be more geographically widespread in New York State and Connecticut under future climate change. GLOBAL CHANGE BIOLOGY 2021; 27:5430-5445. [PMID: 34392584 DOI: 10.1111/gcb.15842] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 06/17/2021] [Accepted: 08/02/2021] [Indexed: 06/13/2023]
Abstract
The effects of climate change on infectious diseases are a topic of considerable interest and discussion. We studied West Nile virus (WNV) in New York (NY) and Connecticut (CT) using a Weather Research and Forecasting (WRF) model climate change scenario, which allows us to examine the effects of climate change and variability on WNV risk at county level. We chose WNV because it is well studied, has caused over 50,000 reported human cases, and over 2200 deaths in the United States. The ecological impacts have been substantial (e.g., millions of avian deaths), and economic impacts include livestock deaths, morbidity, and healthcare-related expenses. We trained two Random Forest models with observational climate data and human cases to predict future levels of WNV based on future weather conditions. The Regional Model used present-day data from NY and CT, whereas the Analog Model was fit for states most closely matching the predicted future conditions in the region. Separately, we predicted changes to mosquito-based WNV risk using a trait-based thermal biology approach (Mosquito Model). The WRF model produced control simulations (present day) and pseudo-global warming simulations (future). The Regional and Analog Models predicted an overall increase in human cases of WNV under future warming. However, the Analog Model did not predict as strong of an increase in the number of human cases as the Regional Model, and predicted a decrease in cases in some counties that currently experience high numbers of WNV cases. The Mosquito Model also predicted a decrease in risk in current high-risk areas, with an overall reduction in the population-weighted relative risk (but an increase in area-weighted risk). The Mosquito Model supports the Analog Model as making more realistic predictions than the Regional Model. All three models predicted a geographic increase in WNV cases across NY and CT.
Collapse
Affiliation(s)
- Alexander C Keyel
- Division of Infectious Diseases, Wadsworth Center, New York State Department of Health, Albany, New York, USA
- Department of Atmospheric and Environmental Sciences, University at Albany, SUNY, Albany, New York, USA
| | - Ajay Raghavendra
- Department of Atmospheric and Environmental Sciences, University at Albany, SUNY, Albany, New York, USA
| | - Alexander T Ciota
- Division of Infectious Diseases, Wadsworth Center, New York State Department of Health, Albany, New York, USA
- Department of Biomedical Sciences, School of Public Health, University at Albany, SUNY, Rensselaer, New York, USA
| | - Oliver Elison Timm
- Department of Atmospheric and Environmental Sciences, University at Albany, SUNY, Albany, New York, USA
| |
Collapse
|
27
|
Predicting the Geographic Range of an Invasive Livestock Disease across the Contiguous USA under Current and Future Climate Conditions. CLIMATE 2021. [DOI: 10.3390/cli9110159] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Vesicular stomatitis (VS) is the most common vesicular livestock disease in North America. Transmitted by direct contact and by several biting insect species, this disease results in quarantines and animal movement restrictions in horses, cattle and swine. As changes in climate drive shifts in geographic distributions of vectors and the viruses they transmit, there is considerable need to improve understanding of relationships among environmental drivers and patterns of disease occurrence. Multidisciplinary approaches integrating pathology, ecology, climatology, and biogeophysics are increasingly relied upon to disentangle complex relationships governing disease. We used a big data model integration approach combined with machine learning to estimate the potential geographic range of VS across the continental United States (CONUS) under long-term mean climate conditions over the past 30 years. The current extent of VS is confined to the western portion of the US and is related to summer and winter precipitation, winter maximum temperature, elevation, fall vegetation biomass, horse density, and proximity to water. Comparison with a climate-only model illustrates the importance of current processes-based parameters and identifies regions where uncertainty is likely to be greatest if mechanistic processes change. We then forecast shifts in the range of VS using climate change projections selected from CMIP5 climate models that most realistically simulate seasonal temperature and precipitation. Climate change scenarios that altered climatic conditions resulted in greater changes to potential range of VS, generally had non-uniform impacts in core areas of the current potential range of VS and expanded the range north and east. We expect that the heterogeneous impacts of climate change across the CONUS will be exacerbated with additional changes in land use and land cover affecting biodiversity and hydrological cycles that are connected to the ecology of insect vectors involved in VS transmission.
Collapse
|
28
|
Keyel AC, Gorris ME, Rochlin I, Uelmen JA, Chaves LF, Hamer GL, Moise IK, Shocket M, Kilpatrick AM, DeFelice NB, Davis JK, Little E, Irwin P, Tyre AJ, Helm Smith K, Fredregill CL, Elison Timm O, Holcomb KM, Wimberly MC, Ward MJ, Barker CM, Rhodes CG, Smith RL. A proposed framework for the development and qualitative evaluation of West Nile virus models and their application to local public health decision-making. PLoS Negl Trop Dis 2021; 15:e0009653. [PMID: 34499656 PMCID: PMC8428767 DOI: 10.1371/journal.pntd.0009653] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
West Nile virus (WNV) is a globally distributed mosquito-borne virus of great public health concern. The number of WNV human cases and mosquito infection patterns vary in space and time. Many statistical models have been developed to understand and predict WNV geographic and temporal dynamics. However, these modeling efforts have been disjointed with little model comparison and inconsistent validation. In this paper, we describe a framework to unify and standardize WNV modeling efforts nationwide. WNV risk, detection, or warning models for this review were solicited from active research groups working in different regions of the United States. A total of 13 models were selected and described. The spatial and temporal scales of each model were compared to guide the timing and the locations for mosquito and virus surveillance, to support mosquito vector control decisions, and to assist in conducting public health outreach campaigns at multiple scales of decision-making. Our overarching goal is to bridge the existing gap between model development, which is usually conducted as an academic exercise, and practical model applications, which occur at state, tribal, local, or territorial public health and mosquito control agency levels. The proposed model assessment and comparison framework helps clarify the value of individual models for decision-making and identifies the appropriate temporal and spatial scope of each model. This qualitative evaluation clearly identifies gaps in linking models to applied decisions and sets the stage for a quantitative comparison of models. Specifically, whereas many coarse-grained models (county resolution or greater) have been developed, the greatest need is for fine-grained, short-term planning models (m-km, days-weeks) that remain scarce. We further recommend quantifying the value of information for each decision to identify decisions that would benefit most from model input.
Collapse
Affiliation(s)
- Alexander C. Keyel
- Division of Infectious Diseases, Wadsworth Center, New York State Department of Health, Albany, New York, United States of America
- Department of Atmospheric and Environmental Sciences, University at Albany, Albany, New York, United States of America
| | - Morgan E. Gorris
- Information Systems and Modeling & Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
| | - Ilia Rochlin
- Center for Vector Biology, Rutgers University, New Brunswick, New Jersey, United States of America
| | - Johnny A. Uelmen
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Luis F. Chaves
- Instituto Costarricense de Investigación y Enseñanza en Nutrición y Salud (INCIENSA), Tres Rios, Cartago, Costa Rica
| | - Gabriel L. Hamer
- Department of Entomology, Texas A&M University, College Station, Texas, United States of America
| | - Imelda K. Moise
- Department of Geography & Regional Studies, University of Miami, Coral Gables, Florida, United States of America
| | - Marta Shocket
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, California, United States of America
| | - A. Marm Kilpatrick
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, California, United States of America
| | - Nicholas B. DeFelice
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- Institute for Exposomic Research, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, New York, United States of America
| | - Justin K. Davis
- Department of Geography and Environmental Sustainability, University of Oklahoma, Norman, Oklahoma, United States of America
| | - Eliza Little
- Connecticut Agricultural Experimental Station, New Haven, Connecticut, United States of America
| | - Patrick Irwin
- Northwest Mosquito Abatement District, Wheeling, Illinois, United States of America
- Department of Entomology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Andrew J. Tyre
- School of Natural Resources, University of Nebraska-Lincoln, Lincoln, Nebraska, United States of America
| | - Kelly Helm Smith
- National Drought Mitigation Center, University of Nebraska-Lincoln, Lincoln, Nebraska, United States of America
| | - Chris L. Fredregill
- Mosquito and Vector Control Division, Harris County Public Health, Houston, Texas, United States of America
| | - Oliver Elison Timm
- Department of Atmospheric and Environmental Sciences, University at Albany, Albany, New York, United States of America
| | - Karen M. Holcomb
- Department of Pathology, Microbiology, and Immunology, University of California Davis, California, United States of America
| | - Michael C. Wimberly
- Department of Geography and Environmental Sustainability, University of Oklahoma, Norman, Oklahoma, United States of America
| | - Matthew J. Ward
- Environmental Analytics Group, Universities Space Research Association, NASA Ames Research Center, Moffett Field, California, United States of America
- Department of Tropical Medicine, Tulane University School of Public Health & Tropical Medicine, New Orleans, Louisiana, United States of America
| | - Christopher M. Barker
- Department of Pathology, Microbiology, and Immunology, University of California Davis, California, United States of America
| | - Charlotte G. Rhodes
- Department of Entomology, Texas A&M University, College Station, Texas, United States of America
| | - Rebecca L. Smith
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| |
Collapse
|
29
|
Wolbachia prevalence in the vector species Culex pipiens and Culex torrentium in a Sindbis virus-endemic region of Sweden. Parasit Vectors 2021; 14:428. [PMID: 34446060 PMCID: PMC8390198 DOI: 10.1186/s13071-021-04937-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 08/07/2021] [Indexed: 11/10/2022] Open
Abstract
Background Wolbachia pipientis are endosymbiotic bacteria present in a large proportion of terrestrial arthropods. The species is known to sometimes affect the ability of its host to transmit vector-borne pathogens. Central Sweden is endemic for Sindbis virus (SINV), where it is mainly transmitted by the vector species Culex pipiens and Culex torrentium, with the latter established as the main vector. In this study we investigated the Wolbachia prevalence in these two vector species in a region highly endemic for SINV. Methods Culex mosquitoes were collected using CDC light traps baited with carbon dioxide over 9 years at 50 collection sites across the River Dalälven floodplains in central Sweden. Mosquito genus was determined morphologically, while a molecular method was used for reliable species determination. The presence of Wolbachia was determined through PCR using general primers targeting the wsp gene and sequencing of selected samples. Results In total, 676 Cx. pipiens and 293 Cx. torrentium were tested for Wolbachia. The prevalence of Wolbachia in Cx. pipiens was 97% (95% CI 94.8–97.6%), while only 0.7% (95% CI 0.19–2.45%) in Cx. torrentium. The two Cx. torrentium mosquitoes that were infected with Wolbachia carried different types of the bacteria. Conclusions The main vector of SINV in the investigated endemic region, Cx. torrentium, was seldom infected with Wolbachia, while it was highly prevalent in the secondary vector, Cx. pipiens. The presence of Wolbachia could potentially have an impact on the vector competence of these two species. Furthermore, the detection of Wolbachia in Cx. torrentium could indicate horizontal transmission of the endosymbiont between arthropods of different species. Graphical abstract ![]()
Collapse
|
30
|
Sadeghieh T, Sargeant JM, Greer AL, Berke O, Dueymes G, Gachon P, Ogden NH, Ng V. Zika virus outbreak in Brazil under current and future climate. Epidemics 2021; 37:100491. [PMID: 34454353 DOI: 10.1016/j.epidem.2021.100491] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 08/06/2021] [Accepted: 08/17/2021] [Indexed: 11/25/2022] Open
Abstract
INTRODUCTION Zika virus (ZIKV) is primarily transmitted byAedes aegypti and Aedes albopictus mosquitoes between humans and non-human primates. Climate change may enhance virus reproduction in Aedes spp. mosquito populations, resulting in intensified ZIKV outbreaks. The study objective was to explore how an outbreak similar to the 2016 ZIKV outbreak in Brazil might unfold with projected climate change. METHODS A compartmental infectious disease model that included compartments for humans and mosquitoes was developed to fit the 2016 ZIKV outbreak data from Brazil using least squares optimization. To explore the impact of climate change, published polynomial relationships between temperature and temperature-sensitive mosquito population and virus transmission parameters (mosquito mortality, development rate, and ZIKV extrinsic incubation period) were used. Projections for future outbreaks were obtained by simulating transmission with effects of projected average monthly temperatures on temperature-sensitive model parameters at each of three future time periods: 2011-2040, 2041-2070, and 2071-2100. The projected future climate was obtained from an ensemble of regional climate models (RCMs) obtained from the Co-Ordinated Regional Downscaling Experiment (CORDEX) that used Representative Concentration Pathways (RCP) with two radiative forcing values, RCP4.5 and RCP8.5. A sensitivity analysis was performed to explore the impact of temperature-dependent parameters on the model outcomes. RESULTS Climate change scenarios impacted the model outcomes, including the peak clinical case incidence, cumulative clinical case incidence, time to peak incidence, and the duration of the ZIKV outbreak. Comparing 2070-2100 to 2016, using RCP4.5, the peak incidence was 22,030 compared to 10,473; the time to epidemic peak was 12 compared to 9 weeks, and the outbreak duration was 52 compared to 41 weeks. Comparing 2070-2100 to 2016, using RCP8.5, the peak incidence was 21,786 compared to 10,473; the time to epidemic peak was 11 compared to 9 weeks, and the outbreak duration was 50 compared to 41weeks. The increases are due to optimal climate conditions for mosquitoes, with the mean temperature reaching 28 °C in the warmest months. Under a high emission scenario (RCP8.5), mean temperatures extend above optimal for mosquito survival in the warmest months. CONCLUSION Outbreaks of ZIKV in locations similar to Brazil are expected to be more intense with a warming climate. As climate change impacts are becoming increasingly apparent on human health, it is important to quantify the effect and use this knowledge to inform decisions on prevention and control strategies.
Collapse
Affiliation(s)
- Tara Sadeghieh
- Population Medicine, University of Guelph, Guelph, Ontario, Canada; Centre for Public Health and Zoonoses, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada; Public Health Risk Sciences Division, National Microbiology Laboratory, Public Health Agency of Canada, Guelph, Ontario and St. Hyacinthe, Québec, Canada.
| | - Jan M Sargeant
- Population Medicine, University of Guelph, Guelph, Ontario, Canada; Centre for Public Health and Zoonoses, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Amy L Greer
- Population Medicine, University of Guelph, Guelph, Ontario, Canada; Centre for Public Health and Zoonoses, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Olaf Berke
- Population Medicine, University of Guelph, Guelph, Ontario, Canada; Centre for Public Health and Zoonoses, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Guillaume Dueymes
- ESCER (Étude et Simulation du Climat à l'Échelle Régionale) Centre, Université du Québec à Montréal, Québec, Canada
| | - Philippe Gachon
- ESCER (Étude et Simulation du Climat à l'Échelle Régionale) Centre, Université du Québec à Montréal, Québec, Canada
| | - Nicholas H Ogden
- Public Health Risk Sciences Division, National Microbiology Laboratory, Public Health Agency of Canada, Guelph, Ontario and St. Hyacinthe, Québec, Canada
| | - Victoria Ng
- Public Health Risk Sciences Division, National Microbiology Laboratory, Public Health Agency of Canada, Guelph, Ontario and St. Hyacinthe, Québec, Canada
| |
Collapse
|
31
|
New records of California serogroup viruses in Aedes mosquitoes and first detection in simulioidae flies from Northern Canada and Alaska. Polar Biol 2021. [DOI: 10.1007/s00300-021-02921-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
32
|
Predicting Spatial Patterns of Sindbis Virus (SINV) Infection Risk in Finland Using Vector, Host and Environmental Data. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18137064. [PMID: 34281003 PMCID: PMC8296873 DOI: 10.3390/ijerph18137064] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/27/2021] [Accepted: 06/28/2021] [Indexed: 11/17/2022]
Abstract
Pogosta disease is a mosquito-borne infection, caused by Sindbis virus (SINV), which causes epidemics of febrile rash and arthritis in Northern Europe and South Africa. Resident grouse and migratory birds play a significant role as amplifying hosts and various mosquito species, including Aedes cinereus, Culex pipiens, Cx. torrentium and Culiseta morsitans are documented vectors. As specific treatments are not available for SINV infections, and joint symptoms may persist, the public health burden is considerable in endemic areas. To predict the environmental suitability for SINV infections in Finland, we applied a suite of geospatial and statistical modeling techniques to disease occurrence data. Using an ensemble approach, we first produced environmental suitability maps for potential SINV vectors in Finland. These suitability maps were then combined with grouse densities and environmental data to identify the influential determinants for SINV infections and to predict the risk of Pogosta disease in Finnish municipalities. Our predictions suggest that both the environmental suitability for vectors and the high risk of Pogosta disease are focused in geographically restricted areas. This provides evidence that the presence of both SINV vector species and grouse densities can predict the occurrence of the disease. The results support material for public-health officials when determining area-specific recommendations and deliver information to health care personnel to raise awareness of the disease among physicians.
Collapse
|
33
|
|
34
|
Nuñez AI, Talavera S, Birnberg L, Rivas R, Pujol N, Verdún M, Aranda C, Berdugo M, Busquets N. Evidence of Zika virus horizontal and vertical transmission in Aedes albopictus from Spain but not infectious virus in saliva of the progeny. Emerg Microbes Infect 2021; 9:2236-2244. [PMID: 33008282 PMCID: PMC7594878 DOI: 10.1080/22221751.2020.1830718] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Aedes albopictus mosquitoes have been experimentally demonstrated to be a competent vector for Zika virus (ZIKV) in different countries, but there are still some gaps related to the importance of Ae. albopictus in ZIKV transmission. Recent studies on Spanish Ae. albopictus populations showed controversial results for ZIKV transmission and no studies have been performed yet to detect infectious ZIKV in saliva of progeny of infected female mosquitoes. Herein, the horizontal transmission (HT) and vertical transmission (VT) of ZIKV in field-collected Ae. albopictus mosquitoes from Spain were evaluated for ZIKV strains (African I and Asian lineages) to better estimate the risk of ZIKV transmission by Ae. albopictus. The two field-collected Ae. albopictus populations assayed were infected by all tested ZIKV strains, however differences in terms of vector competence were detected depending on strain-population combination. Moreover, a higher susceptibility to the African I lineage strain than to the Asian lineage strain was observed in both mosquito populations. On the other hand, VT was demonstrated for both ZIKV lineages, detecting the virus in both males and females of the progeny of infected females, although importantly ZIKV dissemination and transmission were not detected in the infected females from the offspring. The results of the present study demonstrate that Spanish Ae. albopictus populations could sustain virus transmission in case of ZIKV introduction, but VT would play a poor role in the ZIKV epidemiology. Overall, our results provide helpful information to health authorities to establish efficient surveillance and vector control programmes for ZIKV.
Collapse
Affiliation(s)
- Ana I Nuñez
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, Bellaterra, 08193, Spain
| | - Sandra Talavera
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, Bellaterra, 08193, Spain
| | - Lotty Birnberg
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, Bellaterra, 08193, Spain
| | - Raquel Rivas
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, Bellaterra, 08193, Spain
| | - Núria Pujol
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, Bellaterra, 08193, Spain
| | - Marta Verdún
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, Bellaterra, 08193, Spain
| | - Carles Aranda
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, Bellaterra, 08193, Spain.,Consell Comarcal del Baix Llobregat, Servei de Control de Mosquits, Barcelona, Spain
| | - Miguel Berdugo
- Institut de Biología evolutiva de Barcelona, Universidad Pompeu Fabra-CSIC, Dr. Aigüader 88, Barcelona, 08003, Spain
| | - Núria Busquets
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, Bellaterra, 08193, Spain
| |
Collapse
|
35
|
Sadeghieh T, Sargeant JM, Greer AL, Berke O, Dueymes G, Gachon P, Ogden NH, Ng V. Yellow fever virus outbreak in Brazil under current and future climate. Infect Dis Model 2021; 6:664-677. [PMID: 33997536 PMCID: PMC8090996 DOI: 10.1016/j.idm.2021.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 02/20/2021] [Accepted: 04/05/2021] [Indexed: 11/26/2022] Open
Abstract
INTRODUCTION Yellow fever (YF) is primarily transmitted by Haemagogus species of mosquitoes. Under climate change, mosquitoes and the pathogens that they carry are expected to develop faster, potentially impacting the case count and duration of YF outbreaks. The aim of this study was to determine how YF virus outbreaks in Brazil may change under future climate, using ensemble simulations from regional climate models under RCP4.5 and RCP8.5 scenarios for three time periods: 2011-2040 (short-term), 2041-2070 (mid-term), and 2071-2100 (long-term). METHODS A compartmental model was developed to fit the 2017/18 YF outbreak data in Brazil using least squares optimization. To explore the impact of climate change, temperature-sensitive mosquito parameters were set to change over projected time periods using polynomial equations fitted to their relationship with temperature according to the average temperature for years 2011-2040, 2041-2070, and 2071-2100 for climate change scenarios using RCP4.5 and RCP8.5, where RCP4.5/RCP8.5 corresponds to intermediate/high radiative forcing values and to moderate/higher warming trends. A sensitivity analysis was conducted to determine how the temperature-sensitive parameters impacted model results, and to determine how vaccination could play a role in reducing YF in Brazil. RESULTS Yellow fever case projections for Brazil from the models varied when climate change scenarios were applied, including the peak clinical case incidence, cumulative clinical case incidence, time to peak incidence, and the outbreak duration. Overall, a decrease in YF cases and outbreak duration was observed. Comparing the observed incidence in 2017/18 to the projected incidence in 2070-2100, for RCP4.5, the cumulative case incidence decreased from 184 to 161, and the outbreak duration decreased from 21 to 20 weeks. For RCP8.5, the peak case incidence decreased from 184 to 147, and the outbreak duration decreased from 21 to 17 weeks. The observed decrease was primarily due to temperature increasing beyond that suitable for Haemagogus mosquito survival. CONCLUSIONS Climate change is anticipated to have an impact on mosquito-borne diseases. We found outbreaks of YF may reduce in intensity as temperatures increase in Brazil; however, temperature is not the only factor involved with disease transmission. Other factors must be explored to determine the attributable impact of climate change on mosquito-borne diseases.
Collapse
Affiliation(s)
- Tara Sadeghieh
- Population Medicine, University of Guelph, Guelph, Ontario, Canada
- Centre for Public Health and Zoonoses, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
- Public Health Risk Sciences Division, National Microbiology Laboratory, Public Health Agency of Canada, Guelph, Ontario, St. Hyacinthe, Québec, Canada
| | - Jan M. Sargeant
- Population Medicine, University of Guelph, Guelph, Ontario, Canada
- Centre for Public Health and Zoonoses, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Amy L. Greer
- Population Medicine, University of Guelph, Guelph, Ontario, Canada
- Centre for Public Health and Zoonoses, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Olaf Berke
- Population Medicine, University of Guelph, Guelph, Ontario, Canada
- Centre for Public Health and Zoonoses, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Guillaume Dueymes
- ESCER (Étude et Simulation du Climat à l’Échelle Régionale) Centre, Université du Québec à Montréal, Québec, Canada
| | - Philippe Gachon
- ESCER (Étude et Simulation du Climat à l’Échelle Régionale) Centre, Université du Québec à Montréal, Québec, Canada
| | - Nicholas H. Ogden
- Public Health Risk Sciences Division, National Microbiology Laboratory, Public Health Agency of Canada, Guelph, Ontario, St. Hyacinthe, Québec, Canada
| | - Victoria Ng
- Public Health Risk Sciences Division, National Microbiology Laboratory, Public Health Agency of Canada, Guelph, Ontario, St. Hyacinthe, Québec, Canada
| |
Collapse
|
36
|
Calderón A, Guzmán C, Oviedo-Socarras T, Mattar S, Rodríguez V, Castañeda V, Moraes Figueiredo LT. Two Cases of Natural Infection of Dengue-2 Virus in Bats in the Colombian Caribbean. Trop Med Infect Dis 2021; 6:tropicalmed6010035. [PMID: 33809400 PMCID: PMC8005977 DOI: 10.3390/tropicalmed6010035] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 02/03/2021] [Accepted: 02/08/2021] [Indexed: 11/16/2022] Open
Abstract
Dengue, a mosquito-borne zoonotic disease, is the most common vector-borne disease in tropical and subtropical areas. In this study, we aim to demonstrate biological evidence of dengue virus infection in bats. A cross-sectional study was carried out in the departments of Cordoba and Sucre, Colombia. A total of 286 bats were captured following the ethical protocols of animal experimentation. The specimens were identified and euthanized using a pharmacological treatment with atropine, acepromazine and sodium pentobarbital. Duplicate samples of brain, heart, lung, spleen, liver, and kidney were collected with one set stored in Trizol and the other stored in 10% buffered formalin for histopathological and immunohistochemical analysis using polyclonal antibodies. Brain samples from lactating mice with an intracranial inoculation of DENV-2 were used as a positive control. As a negative control, lactating mouse brains without inoculation and bats brains negative for RT-PCR were included. Tissue sections from each specimen of bat without conjugate were used as staining control. In a specimen of Carollia perspicillata captured in Ayapel (Cordoba) and Phylostomus discolor captured in San Carlos (Cordoba), dengue virus was detected, and sequences were matched to DENV serotype 2. In bats RT-PCR positive for dengue, lesions compatible with viral infections, and the presence of antigens in tissues were observed. Molecular findings, pathological lesions, and detection of antigens in tissues could demonstrate viral DENV-2 replication and may correspond to natural infection in bats. Additional studies are needed to elucidate the exact role of these species in dengue epidemics.
Collapse
Affiliation(s)
- Alfonso Calderón
- Faculty of Veterinary Medicine and Animal Production Husbandry, Institute for Biological Research in the Tropics (IIBT), University of Cordoba, Monteria 230002, Cordoba, Colombia;
| | - Camilo Guzmán
- Department of Pharmacy, Faculty of Health Sciences, Institute for Biological Research in the Tropics (IIBT), University of Cordoba, Monteria 230002, Cordoba, Colombia;
| | - Teresa Oviedo-Socarras
- Research Group on Tropical Animal Production (GIPAT), Faculty of Veterinary Medicine and Animal Production Husbandry, University of Cordoba, Monteria 230002, Cordoba, Colombia;
| | - Salim Mattar
- Faculty of Veterinary Medicine and Animal Production Husbandry, Institute for Biological Research in the Tropics (IIBT), University of Cordoba, Monteria 230002, Cordoba, Colombia;
- Correspondence: or
| | - Virginia Rodríguez
- Bacteriological Program, Microbiological and Biomedical Research Group of Cordoba (GIMBIC), Faculty of Health Sciences, University of Cordoba, Monteria 230002, Cordoba, Colombia;
| | - Víctor Castañeda
- Veterinary Diagnostic Laboratories Network, Colombian Agricultural Institute, Cerete 230550, Cordoba, Colombia;
| | | |
Collapse
|
37
|
Morgan J, Strode C, Salcedo-Sora JE. Climatic and socio-economic factors supporting the co-circulation of dengue, Zika and chikungunya in three different ecosystems in Colombia. PLoS Negl Trop Dis 2021; 15:e0009259. [PMID: 33705409 PMCID: PMC7987142 DOI: 10.1371/journal.pntd.0009259] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 03/23/2021] [Accepted: 02/20/2021] [Indexed: 02/06/2023] Open
Abstract
Dengue, Zika and chikungunya are diseases of global health significance caused by arboviruses and transmitted by the mosquito Aedes aegypti, which is of worldwide circulation. The arrival of the Zika and chikungunya viruses to South America increased the complexity of transmission and morbidity caused by these viruses co-circulating in the same vector mosquito species. Here we present an integrated analysis of the reported arbovirus cases between 2007 and 2017 and local climate and socio-economic profiles of three distinct Colombian municipalities (Bello, Cúcuta and Moniquirá). These locations were confirmed as three different ecosystems given their contrasted geographic, climatic and socio-economic profiles. Correlational analyses were conducted with both generalised linear models and generalised additive models for the geographical data. Average temperature, minimum temperature and wind speed were strongly correlated with disease incidence. The transmission of Zika during the 2016 epidemic appeared to decrease circulation of dengue in Cúcuta, an area of sustained high incidence of dengue. Socio-economic factors such as barriers to health and childhood services, inadequate sanitation and poor water supply suggested an unfavourable impact on the transmission of dengue, Zika and chikungunya in all three ecosystems. Socio-demographic influencers were also discussed including the influx of people to Cúcuta, fleeing political and economic instability from neighbouring Venezuela. Aedes aegypti is expanding its range and increasing the global threat of these diseases. It is therefore vital that we learn from the epidemiology of these arboviruses and translate it into an actionable local knowledge base. This is even more acute given the recent historical high of dengue cases in the Americas in 2019, preceding the COVID-19 pandemic, which is itself hampering mosquito control efforts.
Collapse
Affiliation(s)
- Jasmine Morgan
- Department of Biology, Edge Hill University, Lancashire, United Kingdom
| | - Clare Strode
- Department of Biology, Edge Hill University, Lancashire, United Kingdom
- * E-mail: (CS); (JES-S)
| | - J. Enrique Salcedo-Sora
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
- * E-mail: (CS); (JES-S)
| |
Collapse
|
38
|
Wimalasiri-Yapa BMCR, Barrero RA, Stassen L, Hafner LM, McGraw EA, Pyke AT, Jansen CC, Suhrbier A, Yakob L, Hu W, Devine GJ, Frentiu FD. Temperature modulates immune gene expression in mosquitoes during arbovirus infection. Open Biol 2021; 11:200246. [PMID: 33401993 PMCID: PMC7881175 DOI: 10.1098/rsob.200246] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 12/04/2020] [Indexed: 12/20/2022] Open
Abstract
The principal vector of dengue, Zika and chikungunya viruses is the mosquito Aedes aegypti, with its ability to transmit pathogens influenced by ambient temperature. We use chikungunya virus (CHIKV) to understand how the mosquito transcriptome responds to arbovirus infection at different ambient temperatures. We exposed CHIKV-infected mosquitoes to 18, 28 and 32°C, and found that higher temperature correlated with higher virus levels, particularly at 3 days post infection, but lower temperature resulted in reduced virus levels. RNAseq analysis indicated significantly altered gene expression levels in CHIKV infection. The highest number of significantly differentially expressed genes was observed at 28°C, with a more muted effect at the other temperatures. At the higher temperature, the expression of many classical immune genes, including Dicer-2, was not substantially altered in response to CHIKV. The upregulation of Toll, IMD and JAK-STAT pathways was only observed at 28°C. Functional annotations suggested that genes in immune response and metabolic pathways related to energy supply and DNA replication were involved in temperature-dependent changes. Time post infection also led to substantially different gene expression profiles, and this varied with temperature. In conclusion, temperature significantly modulates mosquito gene expression in response to infection, potentially leading to impairment of immune defences at higher temperatures.
Collapse
Affiliation(s)
- B. M. C. Randika Wimalasiri-Yapa
- Institute of Health and Biomedical Innovation, and School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Queensland, Australia
- Department of Medical Laboratory Sciences, Faculty of Health Science, Open University of Sri Lanka, Nugegoda, Colombo, Sri Lanka
| | - Roberto A. Barrero
- eResearch Office, Division of Research and Innovation, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Liesel Stassen
- Institute of Health and Biomedical Innovation, and School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Louise M. Hafner
- Institute of Health and Biomedical Innovation, and School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Elizabeth A. McGraw
- Center for Infectious Disease Dynamics, Department of Entomology, The Pennsylvania State University, University Park, PA 16801, USA
| | - Alyssa T. Pyke
- Public Health Virology Laboratory, Forensic and Scientific Services, Coopers Plains, Queensland, Australia
| | - Cassie C. Jansen
- Communicable Diseases Branch, Department of Health, Queensland Government, Herston, Queensland, Australia
| | - Andreas Suhrbier
- Inflammation Biology, QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4006, Australia
| | - Laith Yakob
- London School of Hygiene and Tropical Medicine, London, UK
| | - Wenbiao Hu
- School of Public Health and Social Work, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Gregor J. Devine
- Mosquito Control Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Francesca D. Frentiu
- Institute of Health and Biomedical Innovation, and School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Queensland, Australia
| |
Collapse
|
39
|
Singh H, Singh N, Mall RK. Japanese Encephalitis and Associated Environmental Risk Factors in Eastern Uttar Pradesh: A time series analysis from 2001 to 2016. Acta Trop 2020; 212:105701. [PMID: 32956640 DOI: 10.1016/j.actatropica.2020.105701] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 09/07/2020] [Accepted: 09/07/2020] [Indexed: 01/19/2023]
Abstract
India and other Southeast Asian countries are severely affected by Japanese encephalitis (JE), one of the deadliest vector-borne disease threat to human health. Several epidemiological observations suggest climate variables play a role in providing a favorable environment for mosquito development and virus transmission. In this study, generalized additive models were used to determine the association of JE admissions and mortality with climate variables in Gorakhpur district, India, from 2001-2016. The model predicted that every 1 unit increase in mean (Tmean;°C), and minimum (Tmin;°C) temperature, rainfall (RF; mm) and relative humidity (RH; %) would on average increase the JE admissions by 22.23 %, 17.83 %, 0.66 %, and 5.22 % respectively and JE mortality by 13.27 %, 11.77 %, 0.94 %, and 3.27 % respectively Conversely, every unit decrease in solar radiation (Srad; MJ/m2/day) and wind speed (WS; Kmph) caused an increase in JE admission by 17% and 11.42% and in JE mortality by 9.37% and 4.88% respectively suggesting a protective effect at higher levels. The seasonal analysis shows that temperature was significantly associated with JE in pre-monsoon and post-monsoon while RF, RH, Srad, and WS are associated with the monsoon. Effect modification due to age and gender showed an equal risk for both genders and increased risk for adults above 15 years of age, however, males and age groups under 15 years outnumbered females and adults. Sensitivity analysis results to explore lag effects in climate variables showed that climate variables show the strongest association at lag 1 to 1.5 months with significant lag effect up tp lag 0-60 days. The exposure-response curve for climate variables showed a more or less linear relationship, with an increase in JE admissions and mortality after a certain threshold and decrease were reported at extreme levels of exposure. The study concludes that climate variables could influence the JE vector development and multiplication and parasite maturation and transmission in the Gorakhpur region whose indirect impact was noted for JE admission and mortality. In response to the changing climate, public health interventions, public awareness, and early warning systems would play an unprecedented role to compensate for future risk.
Collapse
|
40
|
Cheng L, Liu WL, Li HH, Su MP, Wu SC, Chen HW, Pan CY, Tsai JJ, Chen CH. Releasing Intracellular NS1 from Mosquito Cells for the Detection of Dengue Virus-Infected Mosquitoes. Viruses 2020; 12:v12101105. [PMID: 33003584 PMCID: PMC7599882 DOI: 10.3390/v12101105] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 09/23/2020] [Accepted: 09/28/2020] [Indexed: 12/19/2022] Open
Abstract
Dengue virus (DENV), the pathogen that causes dengue fever, is mainly transmitted by Aedes aegypti. Surveillance of infected mosquitoes is a major component of integrated mosquito control methods for reducing the risk of vector-born disease outbreaks. However, a specialized rapid test for DENV detection in mosquitoes is not currently available. Utilizing immunoblotting, we found that the secretion of NS1 from both a DENV-infected mosquito cell line and mosquito bodies was below the detection threshold. However, when Triton X-100 was used to lyse infected mosquitoes, intracellular NS1 was released, and could then be effectively detected by the NS1 rapid test. The distribution of DENV NS1 in intrathoracically infected mosquitoes was different from that of orally infected mosquitoes. Next, we performed sensitivity tests by bisecting mosquitoes longitudinally; one half of each mosquito was subjected to the NS1 rapid test while the other half was used for qPCR confirmation. This modified test had a sensitivity of nearly 90% from five days post-infection onwards, while DENV had escaped from the midgut barrier. This adapted test offers a valuable, easy-to-use tool for mosquito surveillance, which is a crucial component of DENV disease control.
Collapse
Affiliation(s)
- Lie Cheng
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli 350401, Taiwan; (L.C.); (H.-H.L.); (H.-W.C.)
- Tropical Medicine Center, Kaohsiung Medical University Hospital, Kaohsiung 807377, Taiwan
| | - Wei-Liang Liu
- National Mosquito-Borne Diseases Control Research Center, National Health Research Institutes, Miaoli 350401, Taiwan; (W.-L.L.); (S.-C.W.)
| | - Hsing-Han Li
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli 350401, Taiwan; (L.C.); (H.-H.L.); (H.-W.C.)
- Institution of Biotechnology, National Tsing Hua University, Hsinchu 300044, Taiwan
| | - Matthew P. Su
- Department of Biological Science, Nagoya University, Nagoya 464-8601, Japan;
| | - Shih-Cheng Wu
- National Mosquito-Borne Diseases Control Research Center, National Health Research Institutes, Miaoli 350401, Taiwan; (W.-L.L.); (S.-C.W.)
| | - Hsin-Wei Chen
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli 350401, Taiwan; (L.C.); (H.-H.L.); (H.-W.C.)
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 110001, Taiwan
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807378, Taiwan
| | - Chao-Ying Pan
- Department of Health, Kaohsiung City Government, Kaohsiung 800852, Taiwan;
| | - Jih-Jin Tsai
- Tropical Medicine Center, Kaohsiung Medical University Hospital, Kaohsiung 807377, Taiwan
- Division of Infectious Diseases, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 807377, Taiwan
- School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807378, Taiwan
- Correspondence: (J.-J.T.); (C.-H.C.)
| | - Chun-Hong Chen
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli 350401, Taiwan; (L.C.); (H.-H.L.); (H.-W.C.)
- National Mosquito-Borne Diseases Control Research Center, National Health Research Institutes, Miaoli 350401, Taiwan; (W.-L.L.); (S.-C.W.)
- Correspondence: (J.-J.T.); (C.-H.C.)
| |
Collapse
|
41
|
Sabin NS, Calliope AS, Simpson SV, Arima H, Ito H, Nishimura T, Yamamoto T. Implications of human activities for (re)emerging infectious diseases, including COVID-19. J Physiol Anthropol 2020; 39:29. [PMID: 32977862 PMCID: PMC7517057 DOI: 10.1186/s40101-020-00239-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 09/16/2020] [Indexed: 12/12/2022] Open
Abstract
Since 1980, the world has been threatened by different waves of emerging disease epidemics. In the twenty-first century, these diseases have become an increasing global concern because of their health and economic impacts in both developed and resource-constrained countries. It is difficult to stop the occurrence of new pathogens in the future due to the interconnection among humans, animals, and the environment. However, it is possible to face a new disease or to reduce the risk of its spread by implementing better early warning systems and effective disease control and prevention, e.g., effective global surveillance, development of technology for better diagnostics, effective treatments, and vaccines, the global political will to respond to any threats and multidisciplinary collaboration involving all sectors in charge of good health maintenance. In this review, we generally describe some factors related to human activities and show how they can play a role in the transmission and spread of infectious diseases by using some diseases as examples. Additionally, we describe and discuss major factors that are facilitating the spread of the new pandemic known as COVID-19 worldwide.
Collapse
Affiliation(s)
- Nundu Sabiti Sabin
- Department of International Health and Medical Anthropology, Institute of Tropical Medicine, Nagasaki University, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan
- Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
- Leading Program, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Akintije Simba Calliope
- Department of International Health and Medical Anthropology, Institute of Tropical Medicine, Nagasaki University, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan
- Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
- Leading Program, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Shirley Victoria Simpson
- Department of International Health and Medical Anthropology, Institute of Tropical Medicine, Nagasaki University, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan
- Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
- Leading Program, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Hiroaki Arima
- Department of International Health and Medical Anthropology, Institute of Tropical Medicine, Nagasaki University, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan
- Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Hiromu Ito
- Department of International Health and Medical Anthropology, Institute of Tropical Medicine, Nagasaki University, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan
| | - Takayuki Nishimura
- Department of Human Science, Faculty of Design, Kyushu University, Fukuoka, Japan
- Department of Public Health, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Taro Yamamoto
- Department of International Health and Medical Anthropology, Institute of Tropical Medicine, Nagasaki University, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan.
- Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan.
- Leading Program, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan.
| |
Collapse
|
42
|
Special Issue "Transmission Dynamics of Insect Viruses". Viruses 2020; 12:v12060644. [PMID: 32545842 PMCID: PMC7354501 DOI: 10.3390/v12060644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 06/12/2020] [Indexed: 11/16/2022] Open
Abstract
At the close of this Special Issue of Viruses on the Transmission Dynamics of Insect Viruses, we would like to thank all of the authors for their submissions and the great work expanding our knowledge of insect virus biology and transmission [...].
Collapse
|