1
|
Gao Q, Li S, Sun W, Yan H, Wang Y, Chang S, Zhao P. Immunopotentiating effect of lentinan on chicks and its inhibitory effect on Marek's disease virus infection. Poult Sci 2024; 103:103840. [PMID: 38772093 PMCID: PMC11131074 DOI: 10.1016/j.psj.2024.103840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/23/2024] [Accepted: 05/04/2024] [Indexed: 05/23/2024] Open
Abstract
Marek's disease virus (MDV) is a significant tumorigenic virus that causes severe immunosuppression in chickens. Lentinan (LNT) is an immunomodulator containing β-glucans and is widely used in areas such as antiviral, anticancer, and immune regulation. To investigate the immunomodulatory effects of LNT on specific pathogen-free (SPF) chicks and its potential to inhibit MDV infection, we conducted an MDV challenge experiment and observed the immune-enhancing effect of LNT on SPF chicks. The results showed that LNT promoted the growth and development of SPF chicks and induced the upregulation of cytokines such as Mx protein, interferon-γ (INF-γ), tumor necrosis factor-α (TNF-α), and interleukin-2 (IL-2). The specific gravity of CD4+ T-lymphocytes and CD8+ T-lymphocytes and their ratios were also significantly upregulated. Prophylactic use of LNT inhibited MDV replication in lymphocytes, liver, and spleen. It also alleviated MDV-induced weight loss and hepatosplenomegaly in SPF chicks. The present study confirms that LNT can enhance the levels of innate and cellular immunity in SPF chicks and contributes to the inhibition of MDV replication in vivo and mitigation of immune organ damage in chicks due to MDV infection. This provides an adjunctive measure for better control of MDV infection.
Collapse
Affiliation(s)
- Qiming Gao
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, 271018, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai'an, 271018, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Tai'an, 271018, China
| | - Shun Li
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, 271018, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai'an, 271018, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Tai'an, 271018, China
| | - Wanli Sun
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, 271018, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai'an, 271018, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Tai'an, 271018, China
| | - Hongjian Yan
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, 271018, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai'an, 271018, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Tai'an, 271018, China
| | - Yixin Wang
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, 271018, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai'an, 271018, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Tai'an, 271018, China
| | - Shuang Chang
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, 271018, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai'an, 271018, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Tai'an, 271018, China
| | - Peng Zhao
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, 271018, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai'an, 271018, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Tai'an, 271018, China.
| |
Collapse
|
2
|
Zhu ZJ, Teng M, Liu Y, Chen FJ, Yao Y, Li EZ, Luo J. Immune escape of avian oncogenic Marek's disease herpesvirus and antagonistic host immune responses. NPJ Vaccines 2024; 9:109. [PMID: 38879650 PMCID: PMC11180173 DOI: 10.1038/s41541-024-00905-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 06/07/2024] [Indexed: 06/19/2024] Open
Abstract
Marek's disease virus (MDV) is a highly pathogenic and oncogenic alpha herpesvirus that causes Marek's disease (MD), which is one of the most important immunosuppressive and rapid-onset neoplastic diseases in poultry. The onset of MD lymphomas and other clinical diseases can be efficiently prevented by vaccination; these vaccines are heralded as the first demonstration of a successful vaccination strategy against a cancer. However, the persistent evolution of epidemic MDV strains towards greater virulence has recently resulted in frequent outbreaks of MD in vaccinated chicken flocks worldwide. Herein, we provide an overall review focusing on the discovery and identification of the strategies by which MDV evades host immunity and attacks the immune system. We have also highlighted the decrease in the immune efficacy of current MD vaccines. The prospects, strategies and new techniques for the development of efficient MD vaccines, together with the possibilities of antiviral therapy in MD, are also discussed.
Collapse
Affiliation(s)
- Zhi-Jian Zhu
- College of Biological and Food Engineering & Affiliated Central Hospital, Huanghuai University, Zhumadian, 463000, People's Republic of China
- Institute for Animal Health & UK-China Center of Excellence for Research on Avian Disease, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, People's Republic of China
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, People's Republic of China
- Key Laboratory of Animal Immunology, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Zhengzhou, 450002, People's Republic of China
| | - Man Teng
- Institute for Animal Health & UK-China Center of Excellence for Research on Avian Disease, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, People's Republic of China
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, People's Republic of China
- Key Laboratory of Animal Immunology, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Zhengzhou, 450002, People's Republic of China
| | - Yu Liu
- College of Biological and Food Engineering & Affiliated Central Hospital, Huanghuai University, Zhumadian, 463000, People's Republic of China
| | - Fu-Jia Chen
- College of Biological and Food Engineering & Affiliated Central Hospital, Huanghuai University, Zhumadian, 463000, People's Republic of China
| | - Yongxiu Yao
- The Pirbright Institute & UK-China Centre of Excellence for Research on Avian Diseases, Pirbright, Ash Road, Guildford, Surrey, GU24 0NF, UK
| | - En-Zhong Li
- College of Biological and Food Engineering & Affiliated Central Hospital, Huanghuai University, Zhumadian, 463000, People's Republic of China.
| | - Jun Luo
- Institute for Animal Health & UK-China Center of Excellence for Research on Avian Disease, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, People's Republic of China.
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, People's Republic of China.
- Key Laboratory of Animal Immunology, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Zhengzhou, 450002, People's Republic of China.
- Laboratory of Functional Microbiology and Animal Health, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471003, People's Republic of China.
- Longhu Laboratory, Zhengzhou, 450046, People's Republic of China.
| |
Collapse
|
3
|
Zhou P, Liu D, Zhang Q, Wu W, Chen D, Luo R. Antiviral effects of duck type I and type III interferons against Duck Tembusu virus in vitro and in vivo. Vet Microbiol 2023; 287:109889. [PMID: 37913673 DOI: 10.1016/j.vetmic.2023.109889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 09/17/2023] [Accepted: 10/12/2023] [Indexed: 11/03/2023]
Abstract
Duck Tembusu Virus (DTMUV) is a newly emerging avian flavivirus that causes substantial economic losses to the duck industry in Asia by causing severe egg drop syndrome and fatal encephalitis in domestic ducks. During viral replication, host cells recognize the RNA structures produced by DTMUV, which triggers the production of interferons (IFNs) to inhibit viral replication. However, the function of duck type I and type III IFNs in inhibiting DTMUV infection remains largely unknown. In this study, we expressed and purified recombinant duck IFN-β (duIFN-β) and IFN-λ (duIFN-λ) in Escherichia coli and evaluated their antiviral activity against vesicular stomatitis virus (VSV). Furthermore, we found that both duIFN-β and duIFN-λ activated the ISRE promoter and induced the expression of ZAP, OAS, and RNaseL in duck embryo fibroblasts (DEFs). Notably, duIFN-β showed faster and more potent induction of ISGs in vitro and in vivo compared to duIFN-λ. Moreover, both duIFN-β and duIFN-λ showed high potential to inhibit DTMUV infection in DEFs, with duIFN-β demonstrating better antiviral efficacy than duIFN-λ against DTMUV in ducks. In conclusion, our results revealed that both duIFN-β and duIFN-λ can induce ISGs production and exhibit significant antiviral activity against DTMUV in vitro and in vivo, providing new insights for the development of antiviral therapeutic strategies in ducks.
Collapse
Affiliation(s)
- Peng Zhou
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, the Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei 430070, China
| | - Dejian Liu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, the Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei 430070, China
| | - Qingxiang Zhang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, the Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei 430070, China
| | - Wanrong Wu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, the Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei 430070, China
| | - Dong Chen
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, the Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei 430070, China
| | - Rui Luo
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, the Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei 430070, China.
| |
Collapse
|
4
|
Kamble N, Reddy VRAP, Jackson B, Anjum FR, Ubachukwu CC, Patil A, Behboudi S. Inhibition of Marek's Disease Virus Replication and Spread by 25-hydroxycholesterol and 27-hydroxycholesterol In Vitro. Viruses 2023; 15:1652. [PMID: 37631994 PMCID: PMC10457855 DOI: 10.3390/v15081652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/25/2023] [Accepted: 07/27/2023] [Indexed: 08/27/2023] Open
Abstract
Marek's disease virus (MDV) causes a deadly lymphoproliferative disease in chickens, resulting in huge economic losses in the poultry industry. It has been suggested that MDV suppresses the induction of type I interferons and thus escapes immune control. Cholesterol 25-hydroxylase (CH25H), a gene that encodes an enzyme that catalyses cholesterol to 25-hydroxycholesterol (25-HC), is an interferon-stimulating gene (ISG) known to exert antiviral activities. Other oxysterols, such as 27-hydroxycholesterols (27-HC), have also been shown to exert antiviral activities, and 27-HC is synthesised by the catalysis of cholesterol via the cytochrome P450 enzyme oxidase sterol 27-hydroxylase A1 (CYP27A1). At 24 h post infection (hpi), MDV stimulated a type I interferon (IFN-α) response, which was significantly reduced at 48 and 72 hpi, as detected using the luciferase assay for chicken type I IFNs. Then, using RT-PCR, we demonstrated that chicken type I IFN (IFN-α) upregulates chicken CH25H and CYP27A1 genes in chicken embryo fibroblast (CEF) cells. In parallel, our results demonstrate a moderate and transient upregulation of CH25H at 48 hpi and CYP27A1 at 72hpi in MDV-infected CEF cells. A significant reduction in MDV titer and plaque sizes was observed in CEFs treated with 25-HC or 27-HC in vitro, as demonstrated using a standard plaque assay for MDV. Taken together, our results suggest that 25-HC and 27-HC may be useful antiviral agents to control MDV replication and spread.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Shahriar Behboudi
- Avian Immunology Group, The Pirbright Institute, Pirbright, Woking, Surrey GU24 0NE, UK (V.R.A.P.R.); (F.R.A.); (C.C.U.); (A.P.)
| |
Collapse
|
5
|
Boodhoo N, Matsuyama-Kato A, Raj S, Fazel F, St-Denis M, Sharif S. Effect of Pre-Treatment with a Recombinant Chicken Interleukin-17A on Vaccine Induced Immunity against a Very Virulent Marek's Disease Virus. Viruses 2023; 15:1633. [PMID: 37631976 PMCID: PMC10459749 DOI: 10.3390/v15081633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 07/23/2023] [Accepted: 07/24/2023] [Indexed: 08/27/2023] Open
Abstract
The host response to pathogenic microbes can lead to expression of interleukin (IL)-17, which has antimicrobial and anti-viral activity. However, relatively little is known about the basic biological role of chicken IL-17A against avian viruses, particularly against Marek's disease virus (MDV). We demonstrate that, following MDV infection, upregulation of IL-17A mRNA and an increase in the frequency of IL-17A+ T cells in the spleen occur compared to control chickens. To elaborate on the role of chIL-17A in MD, the full-length chIL-17A coding sequence was cloned into a pCDNA3.1-V5/HIS TOPO plasmid. The effect of treatment with pcDNA:chIL-17A plasmid in combination with a vaccine (HVT) and very virulent(vv)MDV challenge or vvMDV infection was assessed. In combination with HVT vaccination, chickens that were inoculated with the pcDNA:chIL-17A plasmid had reduced tumor incidence compared to chickens that received the empty vector control or that were vaccinated only (66.6% in the HVT + empty vector group and 73.33% in HVT group versus 53.3% in the HVT + pcDNA:chIL-17A). Further analysis demonstrated that the chickens that received the HVT vaccine and/or plasmid expressing IL-17A had lower MDV-Meq transcripts in the spleen. In conclusion, chIL-17A can influence the immunity conferred by HVT vaccination against MDV infection in chickens.
Collapse
Affiliation(s)
| | | | | | | | | | - Shayan Sharif
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada; (N.B.); (A.M.-K.); (S.R.); (F.F.); (M.S.-D.)
| |
Collapse
|
6
|
Yu ZH, Zhang YP, Lan XG, Wang YN, Guo RR, Li K, Gao L, Qi XL, Cui HY, Wang XM, Gao YL, Liu CJ. Differences in Pathogenicity and Vaccine Resistance Discovered between Two Epidemic Strains of Marek's Disease Virus in China. Viruses 2023; 15:v15040945. [PMID: 37112925 PMCID: PMC10145439 DOI: 10.3390/v15040945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 04/03/2023] [Accepted: 04/08/2023] [Indexed: 04/29/2023] Open
Abstract
Despite highly effective vaccines, Marek's disease (MD) causes great economic loss to the poultry industry annually, largely due to the continuous emergence of new MD virus (MDV) strains. To explore the pathogenic characteristics of newly emerged MDV strains, we selected two strains (AH/1807 and DH/18) with clinically different pathotypes. We studied each strain's infection process and pathogenicity and observed differences in immunosuppression and vaccine resistance. Specific pathogen-free chickens, unvaccinated or vaccinated with CVI988, were challenged with AH/1807 or DH/18. Both infections induced MD damage; however, differences were observed in terms of mortality (AH/1807: 77.8%, DH/18: 50%) and tumor rates (AH/1807: 50%, DH/18: 33.3%). The immune protection indices of the vaccine also differed (AH/1807: 94.1, DH/18: 61.1). Additionally, while both strains caused interferon-β and interferon-γ expression to decline, DH/18 infection caused stronger immunosuppression than AH/1807. This inhibition persisted even after vaccination, leading to increased replication of DH/18 that ultimately broke through vaccine immune protection. These results indicate that both strains have different characteristics, and that strains such as DH/18, which cause weaker pathogenic damage but can break through vaccine immune protection, require further attention. Our findings increase the understanding of the differences between epidemic strains and factors underlying MD vaccination failure in China.
Collapse
Affiliation(s)
- Zheng-Hao Yu
- Avian Immunosuppressive Diseases Division, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute of the Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Yan-Ping Zhang
- Avian Immunosuppressive Diseases Division, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute of the Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Xing-Ge Lan
- Avian Immunosuppressive Diseases Division, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute of the Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Ya-Nan Wang
- Avian Immunosuppressive Diseases Division, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute of the Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Rong-Rong Guo
- Avian Immunosuppressive Diseases Division, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute of the Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Kai Li
- Avian Immunosuppressive Diseases Division, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute of the Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Li Gao
- Avian Immunosuppressive Diseases Division, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute of the Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Xiao-Le Qi
- Avian Immunosuppressive Diseases Division, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute of the Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Hong-Yu Cui
- Avian Immunosuppressive Diseases Division, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute of the Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Xiao-Mei Wang
- Avian Immunosuppressive Diseases Division, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute of the Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Yu-Long Gao
- Avian Immunosuppressive Diseases Division, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute of the Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Chang-Jun Liu
- Avian Immunosuppressive Diseases Division, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute of the Chinese Academy of Agricultural Sciences, Harbin 150069, China
| |
Collapse
|
7
|
Matsuyama-Kato A, Shojadoost B, Boodhoo N, Raj S, Alizadeh M, Fazel F, Fletcher C, Zheng J, Gupta B, Abdul-Careem MF, Plattner BL, Behboudi S, Sharif S. Activated Chicken Gamma Delta T Cells Are Involved in Protective Immunity against Marek's Disease. Viruses 2023; 15:v15020285. [PMID: 36851499 PMCID: PMC9962238 DOI: 10.3390/v15020285] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/10/2023] [Accepted: 01/17/2023] [Indexed: 01/20/2023] Open
Abstract
Gamma delta (γδ) T cells play a significant role in the prevention of viral infection and tumor surveillance in mammals. Although the involvement of γδ T cells in Marek's disease virus (MDV) infection has been suggested, their detailed contribution to immunity against MDV or the progression of Marek's disease (MD) remains unknown. In the current study, T cell receptor (TCR)γδ-activated peripheral blood mononuclear cells (PBMCs) were infused into recipient chickens and their effects were examined in the context of tumor formation by MDV and immunity against MDV. We demonstrated that the adoptive transfer of TCRγδ-activated PBMCs reduced virus replication in the lungs and tumor incidence in MDV-challenged chickens. Infusion of TCRγδ-activated PBMCs induced IFN-γ-producing γδ T cells at 10 days post-infection (dpi), and degranulation activity in circulating γδ T cell and CD8α+ γδ T cells at 10 and 21 dpi in MDV-challenged chickens. Additionally, the upregulation of IFN-γ and granzyme A gene expression at 10 dpi was significant in the spleen of the TCRγδ-activated PBMCs-infused and MDV-challenged group compared to the control group. Taken together, our results revealed that TCRγδ stimulation promotes the effector function of chicken γδ T cells, and these effector γδ T cells may be involved in protection against MD.
Collapse
Affiliation(s)
- Ayumi Matsuyama-Kato
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Bahram Shojadoost
- Ceva Animal Health Inc., Research Park Centre, Guelph, ON N1G 4T2, Canada
| | - Nitish Boodhoo
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Sugandha Raj
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Mohammadali Alizadeh
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Fatemeh Fazel
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Charlotte Fletcher
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Jiayu Zheng
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Bhavya Gupta
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada
| | | | - Brandon L. Plattner
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA
| | | | - Shayan Sharif
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada
- Correspondence: ; Tel.: +1-519-824-4120 (ext. 54641); Fax: +1-519-824-5930
| |
Collapse
|
8
|
Jiang B, Wang J, Cao M, Jin H, Liu W, Cheng J, Zhou L, Xu J, Li Y. Differential Replication and Cytokine Response between Vaccine and Very Virulent Marek's Disease Viruses in Spleens and Bursas during Latency and Reactivation. Viruses 2022; 15:6. [PMID: 36680047 PMCID: PMC9864003 DOI: 10.3390/v15010006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 12/13/2022] [Accepted: 12/18/2022] [Indexed: 12/24/2022] Open
Abstract
Marek's disease virus (MDV) infection results in Marek's disease (MD) in chickens, a lymphoproliferative and oncogenic deadly disease, leading to severe economic losses. The spleen and bursa are the most important lymphoid and major target organs for MDV replication. The immune response elicited by MDV replication in the spleen and bursa is critical for the formation of latent MDV infection and reactivation. However, the mechanism of the host immune response induced by MDV in these key lymphoid organs during the latent and reactivation infection phases is not well understood. In the study, we focused on the replication dynamics of a vaccine MDV strain MDV/CVI988 and a very virulent MDV strain MDV/RB1B in the spleen and bursa in the latent and reactivation infection phases (7-28 days post-inoculation [dpi]), as well as the expression of some previously characterized immune-related molecules. The results showed that the replication ability of MDV/RB1B was significantly stronger than that of MDV/CVI988 within 28 days post-infection, and the replication levels of both MDV strains in the spleen were significantly higher than those in the bursa. During the latent and reactivation phase of MDV infection (7-28 dpi), the transcriptional upregulation of chicken IL-1β, IL6, IL-8L1 IFN-γ and PML in the spleen and bursa induced by MDV/RB1B infection was overall stronger than that of MDV/CVI988. However, compared to MDV/RB1Binfection, MDV/CVI988 infection resulted in a more effective transcriptional activation of CCL4 in the latent infection phase (7-14 dpi), which may be a characteristic distinguishing MDV vaccine strain from the very virulent strain.
Collapse
Affiliation(s)
- Bo Jiang
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agricultural and Forestry Sciences, Beijing 100097, China
| | - Jing Wang
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agricultural and Forestry Sciences, Beijing 100097, China
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Mengyao Cao
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agricultural and Forestry Sciences, Beijing 100097, China
- College of Animal Science and Technology, Beijing University of Agriculture, Beijing 102206, China
| | - Huan Jin
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agricultural and Forestry Sciences, Beijing 100097, China
| | - Wenxiao Liu
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agricultural and Forestry Sciences, Beijing 100097, China
| | - Jing Cheng
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agricultural and Forestry Sciences, Beijing 100097, China
| | - Linyi Zhou
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agricultural and Forestry Sciences, Beijing 100097, China
| | - Jian Xu
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agricultural and Forestry Sciences, Beijing 100097, China
- Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730070, China
| | - Yongqing Li
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agricultural and Forestry Sciences, Beijing 100097, China
| |
Collapse
|
9
|
Marek's disease virus prolongs survival of primary chicken B-cells by inducing a senescence-like phenotype. PLoS Pathog 2021; 17:e1010006. [PMID: 34673841 PMCID: PMC8562793 DOI: 10.1371/journal.ppat.1010006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 11/02/2021] [Accepted: 10/04/2021] [Indexed: 12/17/2022] Open
Abstract
Marek’s disease virus (MDV) is an alphaherpesvirus that causes immunosuppression and deadly lymphoma in chickens. Lymphoid organs play a central role in MDV infection in animals. B-cells in the bursa of Fabricius facilitate high levels of MDV replication and contribute to dissemination at early stages of infection. Several studies investigated host responses in bursal tissue of MDV-infected chickens; however, the cellular responses specifically in bursal B-cells has never been investigated. We took advantage of our recently established in vitro infection system to decipher the cellular responses of bursal B-cells to infection with a very virulent MDV strain. Here, we demonstrate that MDV infection extends the survival of bursal B-cells in culture. Microarray analyses revealed that most cytokine/cytokine-receptor-, cell cycle- and apoptosis-associated genes are significantly down-regulated in these cells. Further functional assays validated these strong effects of MDV infections on cell cycle progression and thus, B-cell proliferation. In addition, we confirmed that MDV infections protect B-cells from apoptosis and trigger an accumulation of the autophagy marker Lc3-II. Taken together, our data indicate that MDV-infected bursal B-cells show hallmarks of a senescence-like phenotype, leading to a prolonged B-cell survival. This study provides an in-depth analysis of bursal B-cell responses to MDV infection and important insights into how the virus extends the survival of these cells. Upon MDV entry via the respiratory tract, B-cells are among the first cells to be infected in the lung and allow an efficient amplification of the virus. B-cells ensure the transmission of the virus to activated T-cells in which it replicates and ultimately transforms CD4-positive T-cells. Although playing a pivotal role in the MDV life cycle, the response of B-cells to MDV is currently not fully understood. Here, by using an in vitro infection model of primary bursal B-cells, we show that MDV infection leads to a prolonged B-cell survival resulting from decreased cell proliferation, protection from apoptosis and activation of autophagy. Our study provides new insights into the B-cell response to MDV infection, demonstrating that MDV triggers a senescence-like phenotype in B-cells that could potentiate their role in MDV pathogenesis.
Collapse
|
10
|
Bavananthasivam J, Alizadeh M, Astill J, Alqazlan N, Matsuyama-Kato A, Shojadoost B, Taha-Abdelaziz K, Sharif S. Effects of administration of probiotic lactobacilli on immunity conferred by the herpesvirus of turkeys vaccine against challenge with a very virulent Marek's disease virus in chickens. Vaccine 2021; 39:2424-2433. [PMID: 33781599 DOI: 10.1016/j.vaccine.2021.03.046] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 03/06/2021] [Accepted: 03/10/2021] [Indexed: 12/14/2022]
Abstract
Several vaccines have been used to control Marek's disease (MD) in chickens. However, the emergence of new strains of Marek's disease virus (MDV) imposes a threat to vaccine efficacy. Therefore, the current study was carried out to investigate whether concurrent administration of probiotics with the herpesvirus of turkeys (HVT) vaccine enhances its protective efficacy against MDV infection. In this regard, a cocktail comprised of four Lactobacillus species was administered with HVT to chicken embryos at embryonic day 18 (ED18) and/or from day 1 to day 4 post-hatch. The results revealed that the administration of a probiotic Lactobacillus with HVT at ED18 followed by oral gavage with the same lactobacilli cocktail to newly hatched chicks for the first 4 days post-hatch increased the expression of major histocompatibility complex (MHC) II on macrophages and B cells in spleen and decreased the number of CD4+CD25+ T regulatory cells in the spleen. Subsequently, chicks were infected with MDV. The chickens that received in ovo HVT and lactobacilli or HVT had higher expression of IFN-α at 21dpi in the spleen compared to the chickens that were challenged with MDV. Also, the expression of IFN-β in cecal tonsils at 10dpi was higher in the groups that received in ovo HVT and lactobacilli and oral lactobacilli compared to the group that received in ovo HVT alone. Moreover, the expression of tumor growth factor (TGF)-β4 at 4 days post-infection was reduced in the group that received both HVT and probiotics at ED18. Additionally, concurrent probiotics administration reduced tumor incidence by half when compared to HVT vaccine alone indicating enhancing effect of lactobacilli with HVT vaccine on host immune responses. In conclusion, these findings suggest the potential use of probiotic lactobacilli as adjuvants with the HVT vaccine against MDV infection in chickens.
Collapse
Affiliation(s)
- Jegarubee Bavananthasivam
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Mohammadali Alizadeh
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Jake Astill
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Nadiyah Alqazlan
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Ayumi Matsuyama-Kato
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Bahram Shojadoost
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Khaled Taha-Abdelaziz
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario N1G 2W1, Canada; Pathology Department, Faculty of Veterinary Medicine, Beni-Suef University, Al Shamlah 62511, Beni-Suef, Egypt
| | - Shayan Sharif
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario N1G 2W1, Canada.
| |
Collapse
|
11
|
Mardivirus Infection and Persistence in Feathers of a Chicken Model Harboring a Local Autoimmune Response. Microorganisms 2020; 8:microorganisms8101613. [PMID: 33092272 PMCID: PMC7589623 DOI: 10.3390/microorganisms8101613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 10/16/2020] [Accepted: 10/19/2020] [Indexed: 11/23/2022] Open
Abstract
Herpesvirus of turkey (HVT) is commonly used as a vaccine to protect chickens against Marek’s disease. Following vaccination, HVT infects feathers where it can be detected in all chicken lines examined. Unlike the parental Brown line (BL), Smyth line (SL) chickens develop vitiligo, due to autoimmune destruction of melanocytes in feathers. Previous reports showed a strong inflammatory response in Smyth chickens’ feathers at vitiligo onset, that subsided once melanocytes were destroyed, and depigmentation was complete. Here, we questioned whether the local autoimmune response in the Smyth model influences HVT infection and persistence in feathers. For this, one-day-old SL and BL chickens were vaccinated with Newcastle disease (rHVT-ND). Vitiligo was scored and HVT loads in pigmented and non-pigmented growing feathers were quantified regularly over 20 weeks. Chickens of both lines showed moderate HVT loads in feathers. At the onset of active vitiligo, the HVT load was significantly higher in SL compared to BL feathers. However, no difference in HVT loads was noticed between pigmented and non-pigmented feathers from SL chickens. Therefore, surprisingly, the inflammatory response in feathers of SL chickens did not inhibit HVT infection and persistence, but on the contrary, temporarily promoted HVT infection in feathers.
Collapse
|
12
|
Li S, Yang J, Zhu Y, Ji X, Wang K, Jiang S, Luo J, Wang H, Zheng W, Chen N, Ye J, Meurens F, Zhu J. Chicken DNA Sensing cGAS-STING Signal Pathway Mediates Broad Spectrum Antiviral Functions. Vaccines (Basel) 2020; 8:vaccines8030369. [PMID: 32660114 PMCID: PMC7563795 DOI: 10.3390/vaccines8030369] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 07/03/2020] [Accepted: 07/06/2020] [Indexed: 02/06/2023] Open
Abstract
The innate DNA sensing receptors are one family of pattern recognition receptors and play important roles in antiviral infections, especially DNA viral infections. Among the multiple DNA sensors, cGAS has been studied intensively and is most defined in mammals. However, DNA sensors in chickens have not been much studied, and the chicken cGAS is still not fully understood. In this study, we investigated the chicken cGAS-STING signal axis, revealed its synergistic activity, species-specificity, and the signal essential sites in cGAS. Importantly, both cGAS and STING exhibited antiviral effects against DNA viruses, retroviruses, and RNA viruses, suggesting the broad range antiviral functions and the critical roles in chicken innate immunity.
Collapse
Affiliation(s)
- Shuangjie Li
- Comparative Medicine Research Institute, Yangzhou University, 88 South University Avenue, Yangzhou 225009, China; (S.L.); (J.Y.); (Y.Z.); (X.J.); (K.W.); (S.J.); (J.L.); (H.W.); (W.Z.); (N.C.); (J.Y.)
- College Veterinary Medicine, Yangzhou University, 88 South University Avenue, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, 88 South University Avenue, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou 225009, China
| | - Jie Yang
- Comparative Medicine Research Institute, Yangzhou University, 88 South University Avenue, Yangzhou 225009, China; (S.L.); (J.Y.); (Y.Z.); (X.J.); (K.W.); (S.J.); (J.L.); (H.W.); (W.Z.); (N.C.); (J.Y.)
- College Veterinary Medicine, Yangzhou University, 88 South University Avenue, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, 88 South University Avenue, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou 225009, China
| | - Yuanyuan Zhu
- Comparative Medicine Research Institute, Yangzhou University, 88 South University Avenue, Yangzhou 225009, China; (S.L.); (J.Y.); (Y.Z.); (X.J.); (K.W.); (S.J.); (J.L.); (H.W.); (W.Z.); (N.C.); (J.Y.)
- College Veterinary Medicine, Yangzhou University, 88 South University Avenue, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, 88 South University Avenue, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou 225009, China
| | - Xingyu Ji
- Comparative Medicine Research Institute, Yangzhou University, 88 South University Avenue, Yangzhou 225009, China; (S.L.); (J.Y.); (Y.Z.); (X.J.); (K.W.); (S.J.); (J.L.); (H.W.); (W.Z.); (N.C.); (J.Y.)
- College Veterinary Medicine, Yangzhou University, 88 South University Avenue, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, 88 South University Avenue, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou 225009, China
| | - Kun Wang
- Comparative Medicine Research Institute, Yangzhou University, 88 South University Avenue, Yangzhou 225009, China; (S.L.); (J.Y.); (Y.Z.); (X.J.); (K.W.); (S.J.); (J.L.); (H.W.); (W.Z.); (N.C.); (J.Y.)
- College Veterinary Medicine, Yangzhou University, 88 South University Avenue, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, 88 South University Avenue, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou 225009, China
| | - Sen Jiang
- Comparative Medicine Research Institute, Yangzhou University, 88 South University Avenue, Yangzhou 225009, China; (S.L.); (J.Y.); (Y.Z.); (X.J.); (K.W.); (S.J.); (J.L.); (H.W.); (W.Z.); (N.C.); (J.Y.)
- College Veterinary Medicine, Yangzhou University, 88 South University Avenue, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, 88 South University Avenue, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou 225009, China
| | - Jia Luo
- Comparative Medicine Research Institute, Yangzhou University, 88 South University Avenue, Yangzhou 225009, China; (S.L.); (J.Y.); (Y.Z.); (X.J.); (K.W.); (S.J.); (J.L.); (H.W.); (W.Z.); (N.C.); (J.Y.)
- College Veterinary Medicine, Yangzhou University, 88 South University Avenue, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, 88 South University Avenue, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou 225009, China
| | - Hui Wang
- Comparative Medicine Research Institute, Yangzhou University, 88 South University Avenue, Yangzhou 225009, China; (S.L.); (J.Y.); (Y.Z.); (X.J.); (K.W.); (S.J.); (J.L.); (H.W.); (W.Z.); (N.C.); (J.Y.)
- College Veterinary Medicine, Yangzhou University, 88 South University Avenue, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, 88 South University Avenue, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou 225009, China
| | - Wanglong Zheng
- Comparative Medicine Research Institute, Yangzhou University, 88 South University Avenue, Yangzhou 225009, China; (S.L.); (J.Y.); (Y.Z.); (X.J.); (K.W.); (S.J.); (J.L.); (H.W.); (W.Z.); (N.C.); (J.Y.)
- College Veterinary Medicine, Yangzhou University, 88 South University Avenue, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, 88 South University Avenue, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou 225009, China
| | - Nanhua Chen
- Comparative Medicine Research Institute, Yangzhou University, 88 South University Avenue, Yangzhou 225009, China; (S.L.); (J.Y.); (Y.Z.); (X.J.); (K.W.); (S.J.); (J.L.); (H.W.); (W.Z.); (N.C.); (J.Y.)
- College Veterinary Medicine, Yangzhou University, 88 South University Avenue, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, 88 South University Avenue, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou 225009, China
| | - Jianqiang Ye
- Comparative Medicine Research Institute, Yangzhou University, 88 South University Avenue, Yangzhou 225009, China; (S.L.); (J.Y.); (Y.Z.); (X.J.); (K.W.); (S.J.); (J.L.); (H.W.); (W.Z.); (N.C.); (J.Y.)
- College Veterinary Medicine, Yangzhou University, 88 South University Avenue, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, 88 South University Avenue, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou 225009, China
| | - François Meurens
- BIOEPAR, INRAE, Ecole Nationale Vétérinaire Oniris, CEDEX 3, 44307 Nantes, France;
| | - Jianzhong Zhu
- Comparative Medicine Research Institute, Yangzhou University, 88 South University Avenue, Yangzhou 225009, China; (S.L.); (J.Y.); (Y.Z.); (X.J.); (K.W.); (S.J.); (J.L.); (H.W.); (W.Z.); (N.C.); (J.Y.)
- College Veterinary Medicine, Yangzhou University, 88 South University Avenue, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, 88 South University Avenue, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou 225009, China
- Correspondence:
| |
Collapse
|
13
|
Hagag IT, Wight DJ, Bartsch D, Sid H, Jordan I, Bertzbach LD, Schusser B, Kaufer BB. Abrogation of Marek's disease virus replication using CRISPR/Cas9. Sci Rep 2020; 10:10919. [PMID: 32616820 PMCID: PMC7331644 DOI: 10.1038/s41598-020-67951-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 06/16/2020] [Indexed: 02/06/2023] Open
Abstract
Marek's disease virus (MDV) is a highly cell-associated alphaherpesvirus that causes deadly lymphomas in chickens. While vaccination protects against clinical symptoms, MDV field strains can still circulate in vaccinated flocks and continuously evolve towards greater virulence. MDV vaccines do not provide sterilizing immunity, allowing the virus to overcome vaccine protection, and has increased the need for more potent vaccines or alternative interventions. In this study, we addressed if the CRISPR/Cas9 system can protect cells from MDV replication. We first screened a number of guide RNAs (gRNAs) targeting essential MDV genes for their ability to prevent virus replication. Single gRNAs significantly inhibited virus replication, but could result in the emergence of escape mutants. Strikingly, combining two or more gRNAs completely abrogated virus replication and no escape mutants were observed upon serial passaging. Our study provides the first proof-of-concept, demonstrating that the CRISPR/Cas9 system can be efficiently used to block MDV replication. The presented findings lay the foundation for future research to completely protect chickens from this deadly pathogen.
Collapse
Affiliation(s)
- Ibrahim T Hagag
- Institut für Virologie, Freie Universität Berlin, Robert-von-Ostertag-Str. 7-13, 14163, Berlin, Germany
- Department of Virology, Faculty of Veterinary Medicine, Zagazig University, El-Tagneed St. 114, Zagazig, 44511, Egypt
| | - Darren J Wight
- Institut für Virologie, Freie Universität Berlin, Robert-von-Ostertag-Str. 7-13, 14163, Berlin, Germany
| | - Denise Bartsch
- Reproductive Biotechnology, School of Life Sciences Weihenstephan, Technical University of Munich, Liesel-Beckmann-Str. 1, 85354, Freising, Germany
| | - Hicham Sid
- Reproductive Biotechnology, School of Life Sciences Weihenstephan, Technical University of Munich, Liesel-Beckmann-Str. 1, 85354, Freising, Germany
| | - Ingo Jordan
- ProBioGen AG, Herbert-Bayer-Straße 8, 13086, Berlin, Germany
| | - Luca D Bertzbach
- Institut für Virologie, Freie Universität Berlin, Robert-von-Ostertag-Str. 7-13, 14163, Berlin, Germany
| | - Benjamin Schusser
- Reproductive Biotechnology, School of Life Sciences Weihenstephan, Technical University of Munich, Liesel-Beckmann-Str. 1, 85354, Freising, Germany.
| | - Benedikt B Kaufer
- Institut für Virologie, Freie Universität Berlin, Robert-von-Ostertag-Str. 7-13, 14163, Berlin, Germany.
| |
Collapse
|
14
|
Bertzbach LD, Conradie AM, You Y, Kaufer BB. Latest Insights into Marek's Disease Virus Pathogenesis and Tumorigenesis. Cancers (Basel) 2020; 12:cancers12030647. [PMID: 32164311 PMCID: PMC7139298 DOI: 10.3390/cancers12030647] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 03/06/2020] [Accepted: 03/07/2020] [Indexed: 12/14/2022] Open
Abstract
Marek’s disease virus (MDV) infects chickens and causes one of the most frequent cancers in animals. Over 100 years of research on this oncogenic alphaherpesvirus has led to a profound understanding of virus-induced tumor development. Live-attenuated vaccines against MDV were the first that prevented cancer and minimized the losses in the poultry industry. Even though the current gold standard vaccine efficiently protects against clinical disease, the virus continuously evolves towards higher virulence. Emerging field strains were able to overcome the protection provided by the previous two vaccine generations. Research over the last few years revealed important insights into the virus life cycle, cellular tropism, and tumor development that are summarized in this review. In addition, we discuss recent data on the MDV transcriptome, the constant evolution of this highly oncogenic virus towards higher virulence, and future perspectives in MDV research.
Collapse
|