1
|
Ferdoush J, Abdul Kadir R, Simay Kaplanoglu S, Osborn M. SARS-CoV-2 and UPS with potentials for therapeutic interventions. Gene 2024; 912:148377. [PMID: 38490508 DOI: 10.1016/j.gene.2024.148377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/09/2024] [Accepted: 03/12/2024] [Indexed: 03/17/2024]
Abstract
The Ubiquitin proteasome system (UPS), an essential eukaryotic/host/cellular post-translational modification (PTM), plays a critical role in the regulation of diverse cellular functions including regulation of protein stability, immune signaling, antiviral activity, as well as virus replication. Although UPS regulation of viral proteins may be utilized by the host as a defense mechanism to invade viruses, viruses may have adapted to take advantage of the host UPS. This system can be manipulated by viruses such as the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) to stimulate various steps of the viral replication cycle and facilitate pathogenesis, thereby causing the respiratory disease COVID-19. Many SARS-CoV-2 encoded proteins including open reading frame 3a (ORF3a), ORF6, ORF7a, ORF9b, and ORF10 interact with the host's UPS machinery, influencing host immune signaling and apoptosis. Moreover, SARS-CoV-2 encoded papain-like protease (PLpro) interferes with the host UPS to facilitate viral replication and to evade the host's immune system. These alterations in SARS-CoV-2 infected cells have been revealed by various proteomic studies, suggesting potential targets for clinical treatment. To provide insight into the underlying causes of COVID-19 and suggest possible directions for therapeutic interventions, this paper reviews the intricate relationship between SARS-CoV-2 and UPS. Promising treatment strategies are also investigated in this paper including targeting PLpro with zinc-ejector drugs, as well as targeting viral non-structural protein (nsp12) via heat treatment associated ubiquitin-mediated proteasomal degradation to reduce viral pathogenesis.
Collapse
Affiliation(s)
- Jannatul Ferdoush
- Department of Biology, Geology, and Environmental Science, University of Tennessee at Chattanooga 615 McCallie Ave, Chattanooga, TN 37403, USA.
| | - Rizwaan Abdul Kadir
- Department of Biology, Geology, and Environmental Science, University of Tennessee at Chattanooga 615 McCallie Ave, Chattanooga, TN 37403, USA
| | - Selin Simay Kaplanoglu
- Department of Biology, Geology, and Environmental Science, University of Tennessee at Chattanooga 615 McCallie Ave, Chattanooga, TN 37403, USA
| | - Morgan Osborn
- Department of Biology, Geology, and Environmental Science, University of Tennessee at Chattanooga 615 McCallie Ave, Chattanooga, TN 37403, USA
| |
Collapse
|
2
|
Zarate-Sanchez E, George SC, Moya ML, Robertson C. Vascular dysfunction in hemorrhagic viral fevers: opportunities for organotypic modeling. Biofabrication 2024; 16:032008. [PMID: 38749416 PMCID: PMC11151171 DOI: 10.1088/1758-5090/ad4c0b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 04/25/2024] [Accepted: 05/15/2024] [Indexed: 06/06/2024]
Abstract
The hemorrhagic fever viruses (HFVs) cause severe or fatal infections in humans. Named after their common symptom hemorrhage, these viruses induce significant vascular dysfunction by affecting endothelial cells, altering immunity, and disrupting the clotting system. Despite advances in treatments, such as cytokine blocking therapies, disease modifying treatment for this class of pathogen remains elusive. Improved understanding of the pathogenesis of these infections could provide new avenues to treatment. While animal models and traditional 2D cell cultures have contributed insight into the mechanisms by which these pathogens affect the vasculature, these models fall short in replicatingin vivohuman vascular dynamics. The emergence of microphysiological systems (MPSs) offers promising avenues for modeling these complex interactions. These MPS or 'organ-on-chip' models present opportunities to better mimic human vascular responses and thus aid in treatment development. In this review, we explore the impact of HFV on the vasculature by causing endothelial dysfunction, blood clotting irregularities, and immune dysregulation. We highlight how existing MPS have elucidated features of HFV pathogenesis as well as discuss existing knowledge gaps and the challenges in modeling these interactions using MPS. Understanding the intricate mechanisms of vascular dysfunction caused by HFV is crucial in developing therapies not only for these infections, but also for other vasculotropic conditions like sepsis.
Collapse
Affiliation(s)
- Evelyn Zarate-Sanchez
- Department of Biomedical Engineering, University of California, Davis, Davis, CA, United States of America
| | - Steven C George
- Department of Biomedical Engineering, University of California, Davis, Davis, CA, United States of America
| | - Monica L Moya
- Materials Engineering Division, Lawrence Livermore National Laboratory, Livermore, CA, United States of America
| | - Claire Robertson
- Materials Engineering Division, Lawrence Livermore National Laboratory, Livermore, CA, United States of America
- UC Davis Comprehensive Cancer Center, Davis, CA, United States of America
| |
Collapse
|
3
|
Vucetic A, Lafleur A, Côté M, Kobasa D, Chan M, Alvarez F, Piccirillo C, Dong G, Olivier M. Extracellular vesicle storm during the course of Ebola virus infection in primates. Front Cell Infect Microbiol 2023; 13:1275277. [PMID: 38035334 PMCID: PMC10684970 DOI: 10.3389/fcimb.2023.1275277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 10/30/2023] [Indexed: 12/02/2023] Open
Abstract
Introduction Ebola virus (EBOV) is an RNA virus of the Filoviridae family that is responsible for outbreaks of hemorrhagic fevers in primates with a lethality rate as high as 90%. EBOV primarily targets host macrophages leading to cell activation and systemic cytokine storm, and fatal infection is associated with an inhibited interferon response, and lymphopenia. The EBOV surface glycoprotein (GP) has been shown to directly induce T cell depletion and can be secreted outside the virion via extracellular vesicles (EVs), though most studies are limited to epithelial cells and underlying mechanisms remain poorly elucidated. Methods To assess the role of GP on EBOV-induced dysregulation of host immunity, we first utilized EBOV virus-like particles (VLPs) expressing VP40 and NP either alone (Bald-VLP) or in conjunction with GP (VLP-GP) to investigate early inflammatory responses in THP-1 macrophages and in a murine model. We then sought to decipher the role of non-classical inflammatory mediators such as EVs over the course of EBOV infection in two EBOV-infected rhesus macaques by isolating and characterizing circulatory EVs throughout disease progression using size exclusion chromatography, nanoparticle tracking-analysis, and LC-MS/MS. Results While all VLPs could induce inflammatory mediators and recruit small peritoneal macrophages, pro-inflammatory cytokine and chemokine gene expression was exacerbated by the presence of GP. Further, quantification of EVs isolated from infected rhesus macaques revealed that the concentration of vesicles peaked in circulation at the terminal stage, at which time EBOV GP could be detected in host-derived exosomes. Moreover, comparative proteomics conducted across EV populations isolated from serum at various time points before and after infection revealed differences in host-derived protein content that were most significantly pronounced at the endpoint of infection, including significant expression of mediators of TLR4 signaling. Discussion These results suggest a dynamic role for EVs in the modification of disease states in the context of EBOV. Overall, our work highlights the importance of viral factors, such as the GP, and host derived EVs in the inflammatory cascade and pathogenesis of EBOV, which can be collectively further exploited for novel antiviral development.
Collapse
Affiliation(s)
- Andrea Vucetic
- Department of Microbiology and Immunology, McGill University, Montréal, QC, Canada
- Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, Montréal, QC, Canada
| | - Andrea Lafleur
- Department of Microbiology and Immunology, McGill University, Montréal, QC, Canada
- Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, Montréal, QC, Canada
| | - Marceline Côté
- Department of Biochemistry, Microbiology and Immunology and Centre for Infection, Immunity and Inflammation, University of Ottawa, Ottawa, ON, Canada
| | - Darwyn Kobasa
- Special Pathogen Program, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB, Canada
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB, Canada
| | - Mable Chan
- Special Pathogen Program, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB, Canada
| | - Fernando Alvarez
- Department of Microbiology and Immunology, McGill University, Montréal, QC, Canada
- Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, Montréal, QC, Canada
- Federation of Clinical Immunology (FOCiS) Centres of Excellence in Translational Immunology (CETI), Research Institute of the McGill University Health Centre, Montréal, QC, Canada
| | - Ciriaco Piccirillo
- Department of Microbiology and Immunology, McGill University, Montréal, QC, Canada
- Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, Montréal, QC, Canada
- Federation of Clinical Immunology (FOCiS) Centres of Excellence in Translational Immunology (CETI), Research Institute of the McGill University Health Centre, Montréal, QC, Canada
| | - George Dong
- Department of Microbiology and Immunology, McGill University, Montréal, QC, Canada
- Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, Montréal, QC, Canada
| | - Martin Olivier
- Department of Microbiology and Immunology, McGill University, Montréal, QC, Canada
- Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, Montréal, QC, Canada
- Federation of Clinical Immunology (FOCiS) Centres of Excellence in Translational Immunology (CETI), Research Institute of the McGill University Health Centre, Montréal, QC, Canada
| |
Collapse
|
4
|
Canid herpesvirus 1 Preferentially Infects Polarized Madin-Darby Canine Kidney Cells from the Basolateral Surface. Viruses 2022; 14:v14061291. [PMID: 35746762 PMCID: PMC9230387 DOI: 10.3390/v14061291] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/15/2022] [Accepted: 06/11/2022] [Indexed: 11/17/2022] Open
Abstract
Canid herpesvirus 1 (CHV-1) infects polarized canine epithelia. Herein, we present our initial work characterizing CHV-1 infection of Madin-Darby canine kidney (MDCK) cells that were polarized on trans-wells. We previously showed that infection of these cells in non-polarized cultures stimulated the formation of extensive lamellipodial membrane protrusions. Uninfected polarized MDCK cells already form extensive lamellipodial membrane protrusions on the apical surface in the absence of virus. Using scanning electron microscopy, we found that CHV-1 infection does not lead to a change in the form of the lamellipodial membrane protrusions on the apical surface of polarized MDCK cells. We found that CHV-1 was able to infect polarized cultures from either the apical or basolateral side; however, higher viral titers were produced upon infection of the basolateral side. Regardless of the side infected, titers of virus were higher in the apical compartment compared to the basal compartment; however, these differences were not statistically significant. In addition to cell-free virus that was recovered in the media, the highest amount of virus produced remained cell-associated over the course of the experiment. The efficiency of CHV-1 infection of the basolateral side of polarized epithelial cells is consistent with the pathobiology of this varicellovirus.
Collapse
|
5
|
T-Cell Immunoglobulin and Mucin Domain 1 (TIM-1) Is a Functional Entry Factor for Tick-Borne Encephalitis Virus. mBio 2022; 13:e0286021. [PMID: 35073759 PMCID: PMC8787471 DOI: 10.1128/mbio.02860-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Tick-borne encephalitis virus (TBEV) is the causative agent of a potentially fatal neurological infection affecting humans. The host factors required for viral entry have yet to be described. Here, we found that T-cell immunoglobulin and mucin domain 1 (TIM-1) acted as the cellular entry factor for TBEV. Using a virus overlay protein binding assay, TIM-1 was identified as a virion-interacting protein. Cells that were relatively resistant to TBEV infection became highly susceptible to infection when TIM-1 was ectopically expressed. TIM-1 knockout and viral RNA bypass assays showed that TIM-1 functioned in the entry phase of TBEV infection. TIM-1 mediated TBEV uptake and was cointernalized with virus particles into the cell. Antibodies for TIM-1, soluble TIM-1, or TIM-1 knockdown significantly inhibited TBEV infection in permissive cells. Furthermore, in TIM-1 knockout mice, TIM-1 deficiency markedly lowered viral burden and reduced mortality and morbidity, highlighting the functional relevance of TIM-1 in vivo. With TIM-1, we have identified a key host factor for TBEV entry and a potential target for antiviral intervention. IMPORTANCE TBEV is a tick-transmitted flavivirus that causes serious diseases in the human central nervous system in Eurasia. The host determinants required for viral entry remain poorly understood. Here, we found that TIM-1 is a cellular entry factor for TBEV. Antibodies directed at TIM-1 or soluble TIM-1 treatment decreased virus infection in cell cultures. TIM-1 was cointernalized with virus particles into cells. TIM-1 deficiency significantly lowered viral burden and attenuated pathogenesis in the murine TBEV infection model. The demonstration of TIM-1 as a cellular entry factor for TBEV will improve understanding of virus infection and provide a target for antiviral development.
Collapse
|
6
|
Downs I, Johnson JC, Rossi F, Dyer D, Saunders DL, Twenhafel NA, Esham HL, Pratt WD, Trefry J, Zumbrun E, Facemire PR, Johnston SC, Tompkins EL, Jansen NK, Honko A, Cardile AP. Natural History of Aerosol-Induced Ebola Virus Disease in Rhesus Macaques. Viruses 2021; 13:v13112297. [PMID: 34835103 PMCID: PMC8619410 DOI: 10.3390/v13112297] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 11/03/2021] [Accepted: 11/12/2021] [Indexed: 02/06/2023] Open
Abstract
Ebola virus disease (EVD) is a serious global health concern because case fatality rates are approximately 50% due to recent widespread outbreaks in Africa. Well-defined nonhuman primate (NHP) models for different routes of Ebola virus exposure are needed to test the efficacy of candidate countermeasures. In this natural history study, four rhesus macaques were challenged via aerosol with a target titer of 1000 plaque-forming units per milliliter of Ebola virus. The course of disease was split into the following stages for descriptive purposes: subclinical, clinical, and decompensated. During the subclinical stage, high levels of venous partial pressure of carbon dioxide led to respiratory acidemia in three of four of the NHPs, and all developed lymphopenia. During the clinical stage, all animals had fever, viremia, and respiratory alkalosis. The decompensatory stage involved coagulopathy, cytokine storm, and liver and renal injury. These events were followed by hypotension, elevated lactate, metabolic acidemia, shock and mortality similar to historic intramuscular challenge studies. Viral loads in the lungs of aerosol-exposed animals were not distinctly different compared to previous intramuscularly challenged studies. Differences in the aerosol model, compared to intramuscular model, include an extended subclinical stage, shortened clinical stage, and general decompensated stage. Therefore, the shortened timeframe for clinical detection of the aerosol-induced disease can impair timely therapeutic administration. In summary, this nonhuman primate model of aerosol-induced EVD characterizes early disease markers and additional details to enable countermeasure development.
Collapse
Affiliation(s)
- Isaac Downs
- US Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, Frederick, MD 21702, USA; (J.C.J.); (F.R.); (D.D.); (D.L.S.); (N.A.T.); (H.L.E.); (W.D.P.); (J.T.); (E.Z.); (P.R.F.); (S.C.J.); (E.L.T.); (N.K.J.); (A.H.); (A.P.C.)
- Correspondence: ; Tel.: +1-301-619-0369
| | - Joshua C. Johnson
- US Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, Frederick, MD 21702, USA; (J.C.J.); (F.R.); (D.D.); (D.L.S.); (N.A.T.); (H.L.E.); (W.D.P.); (J.T.); (E.Z.); (P.R.F.); (S.C.J.); (E.L.T.); (N.K.J.); (A.H.); (A.P.C.)
- Moderna, Inc., Cambridge, MA 02139, USA
| | - Franco Rossi
- US Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, Frederick, MD 21702, USA; (J.C.J.); (F.R.); (D.D.); (D.L.S.); (N.A.T.); (H.L.E.); (W.D.P.); (J.T.); (E.Z.); (P.R.F.); (S.C.J.); (E.L.T.); (N.K.J.); (A.H.); (A.P.C.)
| | - David Dyer
- US Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, Frederick, MD 21702, USA; (J.C.J.); (F.R.); (D.D.); (D.L.S.); (N.A.T.); (H.L.E.); (W.D.P.); (J.T.); (E.Z.); (P.R.F.); (S.C.J.); (E.L.T.); (N.K.J.); (A.H.); (A.P.C.)
| | - David L. Saunders
- US Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, Frederick, MD 21702, USA; (J.C.J.); (F.R.); (D.D.); (D.L.S.); (N.A.T.); (H.L.E.); (W.D.P.); (J.T.); (E.Z.); (P.R.F.); (S.C.J.); (E.L.T.); (N.K.J.); (A.H.); (A.P.C.)
| | - Nancy A. Twenhafel
- US Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, Frederick, MD 21702, USA; (J.C.J.); (F.R.); (D.D.); (D.L.S.); (N.A.T.); (H.L.E.); (W.D.P.); (J.T.); (E.Z.); (P.R.F.); (S.C.J.); (E.L.T.); (N.K.J.); (A.H.); (A.P.C.)
| | - Heather L. Esham
- US Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, Frederick, MD 21702, USA; (J.C.J.); (F.R.); (D.D.); (D.L.S.); (N.A.T.); (H.L.E.); (W.D.P.); (J.T.); (E.Z.); (P.R.F.); (S.C.J.); (E.L.T.); (N.K.J.); (A.H.); (A.P.C.)
| | - William D. Pratt
- US Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, Frederick, MD 21702, USA; (J.C.J.); (F.R.); (D.D.); (D.L.S.); (N.A.T.); (H.L.E.); (W.D.P.); (J.T.); (E.Z.); (P.R.F.); (S.C.J.); (E.L.T.); (N.K.J.); (A.H.); (A.P.C.)
| | - John Trefry
- US Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, Frederick, MD 21702, USA; (J.C.J.); (F.R.); (D.D.); (D.L.S.); (N.A.T.); (H.L.E.); (W.D.P.); (J.T.); (E.Z.); (P.R.F.); (S.C.J.); (E.L.T.); (N.K.J.); (A.H.); (A.P.C.)
- Defense Threat Reduction Agency, Fort Belvoir, VA 22060, USA
| | - Elizabeth Zumbrun
- US Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, Frederick, MD 21702, USA; (J.C.J.); (F.R.); (D.D.); (D.L.S.); (N.A.T.); (H.L.E.); (W.D.P.); (J.T.); (E.Z.); (P.R.F.); (S.C.J.); (E.L.T.); (N.K.J.); (A.H.); (A.P.C.)
| | - Paul R. Facemire
- US Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, Frederick, MD 21702, USA; (J.C.J.); (F.R.); (D.D.); (D.L.S.); (N.A.T.); (H.L.E.); (W.D.P.); (J.T.); (E.Z.); (P.R.F.); (S.C.J.); (E.L.T.); (N.K.J.); (A.H.); (A.P.C.)
| | - Sara C. Johnston
- US Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, Frederick, MD 21702, USA; (J.C.J.); (F.R.); (D.D.); (D.L.S.); (N.A.T.); (H.L.E.); (W.D.P.); (J.T.); (E.Z.); (P.R.F.); (S.C.J.); (E.L.T.); (N.K.J.); (A.H.); (A.P.C.)
| | - Erin L. Tompkins
- US Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, Frederick, MD 21702, USA; (J.C.J.); (F.R.); (D.D.); (D.L.S.); (N.A.T.); (H.L.E.); (W.D.P.); (J.T.); (E.Z.); (P.R.F.); (S.C.J.); (E.L.T.); (N.K.J.); (A.H.); (A.P.C.)
| | - Nathan K. Jansen
- US Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, Frederick, MD 21702, USA; (J.C.J.); (F.R.); (D.D.); (D.L.S.); (N.A.T.); (H.L.E.); (W.D.P.); (J.T.); (E.Z.); (P.R.F.); (S.C.J.); (E.L.T.); (N.K.J.); (A.H.); (A.P.C.)
| | - Anna Honko
- US Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, Frederick, MD 21702, USA; (J.C.J.); (F.R.); (D.D.); (D.L.S.); (N.A.T.); (H.L.E.); (W.D.P.); (J.T.); (E.Z.); (P.R.F.); (S.C.J.); (E.L.T.); (N.K.J.); (A.H.); (A.P.C.)
- Investigator at National Emerging Infectious Diseases Laboratories, Boston University School of Medicine, Boston, MA 02118, USA
| | - Anthony P. Cardile
- US Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, Frederick, MD 21702, USA; (J.C.J.); (F.R.); (D.D.); (D.L.S.); (N.A.T.); (H.L.E.); (W.D.P.); (J.T.); (E.Z.); (P.R.F.); (S.C.J.); (E.L.T.); (N.K.J.); (A.H.); (A.P.C.)
| |
Collapse
|
7
|
Gu H, Jan Fada B. Specificity in Ubiquitination Triggered by Virus Infection. Int J Mol Sci 2020; 21:E4088. [PMID: 32521668 PMCID: PMC7313089 DOI: 10.3390/ijms21114088] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 06/03/2020] [Accepted: 06/05/2020] [Indexed: 02/06/2023] Open
Abstract
Ubiquitination is a prominent posttranslational modification, in which the ubiquitin moiety is covalently attached to a target protein to influence protein stability, interaction partner and biological function. All seven lysine residues of ubiquitin, along with the N-terminal methionine, can each serve as a substrate for further ubiquitination, which effectuates a diverse combination of mono- or poly-ubiquitinated proteins with linear or branched ubiquitin chains. The intricately composed ubiquitin codes are then recognized by a large variety of ubiquitin binding domain (UBD)-containing proteins to participate in the regulation of various pathways to modulate the cell behavior. Viruses, as obligate parasites, involve many aspects of the cell pathways to overcome host defenses and subjugate cellular machineries. In the virus-host interactions, both the virus and the host tap into the rich source of versatile ubiquitination code in order to compete, combat, and co-evolve. Here, we review the recent literature to discuss the role of ubiquitin system as the infection progresses in virus life cycle and the importance of ubiquitin specificity in the regulation of virus-host relation.
Collapse
Affiliation(s)
- Haidong Gu
- Department of Biological Sciences, Wayne State University, Detroit, MI 48202, USA;
| | | |
Collapse
|