1
|
Jimale YA, Jesse FFA, Paul BT, Chung ELT, Zakaria A, Azhar NA, Mohd Lila MA. Seroprevalence and contributing factors of transboundary animal diseases in sheep and goats: a study in Peninsular Malaysia. Trop Anim Health Prod 2024; 56:212. [PMID: 39002035 DOI: 10.1007/s11250-024-04061-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 06/20/2024] [Indexed: 07/15/2024]
Abstract
Diseases caused by small ruminant lentiviruses, Mycobacterium avium ssp. paratuberculosis (MAP), Schmallenberg virus, and peste des petits ruminants virus (PPR) is globally recognised as serious threats to the ruminant industry due to their potential to spread rapidly across boundaries. Despite their global distribution and negative impacts on ruminant production, there is a gap in knowledge of the current trends in their epidemiology among sheep and goat populations in Peninsular Malaysia. This study was therefore designed to fill the gap of knowledge concerning the seroprevalence and contributing factors of CAEV, paratuberculosis, SBV, and PPRV among small ruminants from selected flocks in Selangor, Negeri Sembilan, and Pahang states in Peninsular Malaysia. A cross-sectional study design was used to collect animal data and blood samples for serological assays simultaneously. The ID Screen (ID.VET, France) indirect ELISA screening tests were used to detect serum antibodies directed against CAEV/MVV (VISNAS Ver 0922), paratuberculosis (PARAS Ver 0516), SBV (SBVC Ver 1114) and PPRV (PPRC Ver 0821). There was 45.4% (95% CI = 40.74-50.74), 6.8% (95% CI = 4.66-9.69), 27.8% (95% CI = 23.35-32.77), and 2.6% (95% CI = 1.11-0.51) true seroprevalence for CAEV, paratuberculosis, SBV, and PPR, respectively. Geographical location and species were the risk factors for CAEV and paratuberculosis, while the management system and age of small ruminants were the risk factors for SBV. The present study is the first to document a large-scale seroprevalence of MAP and PPR infection among sheep and goat flocks in Peninsular Malaysia. The presence of PPRV and MAP antibodies among small ruminant flocks is signalling current or previous exposure to the pathogens or cross reactions with similar antigens. This finding further suggests the potential for future outbreaks of these devastating diseases among sheep and goats in Malaysia. The high seroprevalence of CAEV and SBV among small ruminants indicates high levels of exposure to the viruses in the environment, which is a potential threat to production.
Collapse
Affiliation(s)
- Yonis Ahmed Jimale
- Department of Veterinary Clinical Studies, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang, Selangor, 43400, Malaysia
| | - Faez Firdaus Abdullah Jesse
- Department of Veterinary Clinical Studies, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang, Selangor, 43400, Malaysia.
| | - Bura Thlama Paul
- Department of Animal Science and Fisheries, Faculty of Agriculture and Forestry Science, Universiti Putra Malaysia Campus Bintulu Sarawak, Sarawak, Malaysia
- Veterinary Teaching Hospital, Faculty of Veterinary Medicine, University of Maiduguri 600230, Borno State, Nigeria
| | - Eric Lim Teik Chung
- Department of Animal Science, Faculty of Agriculture, Universiti Putra Malaysia, Serdang, Selangor, 43400, Malaysia
| | - Aida Zakaria
- Department of Veterinary Clinical Studies, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang, Selangor, 43400, Malaysia
| | - Nur Amira Azhar
- Department of Veterinary Clinical Studies, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang, Selangor, 43400, Malaysia
| | - Mohd Azmi Mohd Lila
- Department of Veterinary Pathology and Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang, Selangor, 43400, Malaysia
| |
Collapse
|
2
|
Hollevoet A, De Waele T, Peralta D, Tuyttens F, De Poorter E, Shahid A. Goats on the Move: Evaluating Machine Learning Models for Goat Activity Analysis Using Accelerometer Data. Animals (Basel) 2024; 14:1977. [PMID: 38998089 PMCID: PMC11240644 DOI: 10.3390/ani14131977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/13/2024] [Accepted: 06/25/2024] [Indexed: 07/14/2024] Open
Abstract
Putting sensors on the bodies of animals to automate animal activity recognition and gain insight into their behaviors can help improve their living conditions. Although previous hard-coded algorithms failed to classify complex time series obtained from accelerometer data, recent advances in deep learning have improved the task of animal activity recognition for the better. However, a comparative analysis of the generalizing capabilities of various models in combination with different input types has yet to be addressed. This study experimented with two techniques for transforming the segmented accelerometer data to make them more orientation-independent. The methods included calculating the magnitude of the three-axis accelerometer vector and calculating the Discrete Fourier Transform for both sets of three-axis data as the vector magnitude. Three different deep learning models were trained on this data: a Multilayer Perceptron, a Convolutional Neural Network, and an ensemble merging both called a hybrid Convolutional Neural Network. Besides mixed cross-validation, every model and input type combination was assessed on a goat-wise leave-one-out cross-validation set to evaluate its generalizing capability. Using orientation-independent data transformations gave promising results. A hybrid Convolutional Neural Network with L2-norm as the input combined the higher classification accuracy of a Convolutional Neural Network with the lower standard deviation of a Multilayer Perceptron. Most of the misclassifications occurred for behaviors that display similar accelerometer traces and minority classes, which could be improved in future work by assembling larger and more balanced datasets.
Collapse
Affiliation(s)
- Arthur Hollevoet
- IDLab, Department of Information Technology, Ghent University-imec, Technologiepark-Zwijnaarde 126, B-9052 Ghent, Belgium; (A.H.); (D.P.); (E.D.P.); (A.S.)
| | - Timo De Waele
- IDLab, Department of Information Technology, Ghent University-imec, Technologiepark-Zwijnaarde 126, B-9052 Ghent, Belgium; (A.H.); (D.P.); (E.D.P.); (A.S.)
| | - Daniel Peralta
- IDLab, Department of Information Technology, Ghent University-imec, Technologiepark-Zwijnaarde 126, B-9052 Ghent, Belgium; (A.H.); (D.P.); (E.D.P.); (A.S.)
| | - Frank Tuyttens
- Faculty of Veterinary Medicine, Ghent University, D8, Heidestraat 19, B-9820 Merelbeke, Belgium;
- Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Burgemeester Van Gansberghelaan 92, B-9820 Merelbeke, Belgium
| | - Eli De Poorter
- IDLab, Department of Information Technology, Ghent University-imec, Technologiepark-Zwijnaarde 126, B-9052 Ghent, Belgium; (A.H.); (D.P.); (E.D.P.); (A.S.)
| | - Adnan Shahid
- IDLab, Department of Information Technology, Ghent University-imec, Technologiepark-Zwijnaarde 126, B-9052 Ghent, Belgium; (A.H.); (D.P.); (E.D.P.); (A.S.)
| |
Collapse
|
3
|
Bouzalas I, Apostolidi ED, Scalas D, Davidopoulou E, Chassalevris T, Rosati S, Colitti B. A Combined Approach for the Characterization of Small Ruminant Lentivirus Strains Circulating in the Islands and Mainland of Greece. Animals (Basel) 2024; 14:1119. [PMID: 38612358 PMCID: PMC11010947 DOI: 10.3390/ani14071119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/04/2024] [Accepted: 04/05/2024] [Indexed: 04/14/2024] Open
Abstract
Small ruminant lentiviruses are a group of viruses infecting goat and sheep worldwide. These viruses exhibit an extraordinary degree of genetic and antigenic variability that severely influence in vivo and in vitro features, as well as diagnostic test results. Small ruminant farming is the most important animal farming business in Greece, with a high impact on the Greek primary economy. Although SRLV infection and its impact on animal production are well established in the country, little is known about the circulating SRLV strains and their prevalence. The aim of this study was to characterize SRLVs circulating in Greece with a combined serological and molecular approach, using the bulk milk matrix collected from 60 farms in different municipalities. This study allowed us to estimate a seroprevalence of around 52% at the herd level. The B1, B2 and A3 subtypes and a novel A viral cluster were identified. Moreover, the amplicon sequencing method allowed us to identify more than one viral subtype in a sample. These results again confirm the high variability of these viruses and highlight the importance of the constant monitoring of viral evolution, in particular in antigens of diagnostic interest.
Collapse
Affiliation(s)
- Ilias Bouzalas
- Hellenic Agricultural Organization—DEMETER, Veterinary Research Institute, Campus of Thermi, 57001 Thessaloniki, Greece; (I.B.); (E.D.A.); (T.C.)
| | - Evangelia D. Apostolidi
- Hellenic Agricultural Organization—DEMETER, Veterinary Research Institute, Campus of Thermi, 57001 Thessaloniki, Greece; (I.B.); (E.D.A.); (T.C.)
| | - Daniela Scalas
- Department of Veterinary Sciences, University of Turin, L. Braccini 2, 10095 Torino, Italy; (D.S.); (S.R.)
| | | | - Taxiarchis Chassalevris
- Hellenic Agricultural Organization—DEMETER, Veterinary Research Institute, Campus of Thermi, 57001 Thessaloniki, Greece; (I.B.); (E.D.A.); (T.C.)
| | - Sergio Rosati
- Department of Veterinary Sciences, University of Turin, L. Braccini 2, 10095 Torino, Italy; (D.S.); (S.R.)
| | - Barbara Colitti
- Department of Veterinary Sciences, University of Turin, L. Braccini 2, 10095 Torino, Italy; (D.S.); (S.R.)
| |
Collapse
|
4
|
Souza SCR, Pinheiro RR, Peixoto RM, de Sousa ALM, Andrioli A, Lima AMC, Mendes BKM, Magalhães NMDA, Amaral GP, Teixeira MFDS. In vivo evaluation of the antiretroviral activity of Melia azedarach against small ruminant lentiviruses in goat colostrum and milk. Braz J Microbiol 2024; 55:875-887. [PMID: 38010582 PMCID: PMC10920544 DOI: 10.1007/s42770-023-01174-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 10/31/2023] [Indexed: 11/29/2023] Open
Abstract
This study aimed to evaluate in vivo the use of the extract from the leaves of Melia azedarach in the ethyl acetate fraction at a concentration of 150 µg/mL as an antiretroviral treatment against small ruminant lentiviruses (SRLV) in goat colostrum, and milk with a 90-min action. Two groups of six kids were treated with the extract. One group received three supplies of colostrum from does naturally positive for SRLV, treated with the ethyl acetate fraction of M. azedarach (EAF-MA) for three days, while the other group consumed milk from does also carrying the virus with the respective extract twice a day for five days. After undergoing treatment, all animals began to receive thermized milk until weaning (60 days) and were monitored for six months using nested polymerase chain reaction (nPCR) and western blot (WB) tests. The study revealed cumulative percentages of positive animals in WB or nPCR in the milk group of 66.66% on the seventh day, 83.33% in the following week, and 100% at 120 days, while the colostrum group showed values of 66.66% at 14 days, 83.33% at 90 days, and 100% at 120 days. Variation and intermittency were observed in viral detection, but all animals tested positive in WB or nPCR at some point. A potential delay in infection was observed, which was more significant in the colostrum group. The need for the combination of serological and molecular tests for a more efficient detection of the disease is also emphasized.
Collapse
Affiliation(s)
| | | | | | | | | | - Ana Milena César Lima
- Regional Scientific Development Fellowship of the National Council for Scientific and Technological Development (DCR-CNPq/FUNCAP), Level C, Embrapa Goats & Sheep, Sobral, Ceará, Brazil
| | | | | | - Gabriel Paula Amaral
- Graduate Program in Animal Science, Vale Do Acaraú State University, Sobral, Ceará, Brazil
| | | |
Collapse
|
5
|
Olech M. The genetic variability of small-ruminant lentiviruses and its impact on tropism, the development of diagnostic tests and vaccines and the effectiveness of control programmes. J Vet Res 2023; 67:479-502. [PMID: 38130459 PMCID: PMC10730557 DOI: 10.2478/jvetres-2023-0064] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 11/13/2023] [Indexed: 12/23/2023] Open
Abstract
Introduction Maedi-visna virus and caprine arthritis encephalitis virus are two closely related lentiviruses which cause multisystemic, progressive and persistent infection in goats and sheep. Because these viruses frequently cross the species barrier, they are considered to be one genetic group called small-ruminant lentiviruses (SRLV). They have in vivo tropism mainly for monocytes and macrophages and organ tropism with unknown mechanisms. Typical clinical signs are pneumonia in sheep, arthritis in goats, and mastitis in both species. Infection with SRLV cannot currently be treated or prevented, and control programmes are the only approaches to avoiding its spread. These programmes rely mainly on annual serological testing and elimination of positive animals. However, the high genetic and antigenic variability of SRLV complicate their early and definitive diagnosis. The objective of this review is to summarise the current knowledge of SRLV genetic variation and its implications for tropism, the development of diagnostic tests and vaccines and the effectiveness of control and eradication programmes. Material and Methods Subject literature was selected from the PubMed and the Google Scholar databases. Results The high genetic diversity of SRLV affects the performance of diagnostic tools and therefore control programmes. For the early and definitive diagnosis of SRLV infection, a combination of serological and molecular tests is suggested. Testing by PCR can also be considered for sub-yearling animals. There are still significant gaps in our knowledge of the epidemiology, immunology and biology of SRLV and their impact on animal production and welfare. Conclusion This information may aid selection of the most effective SRLV spread reduction measures.
Collapse
Affiliation(s)
- Monika Olech
- Department of Pathology, National Veterinary Research Institute, 24-100Puławy, Poland
| |
Collapse
|
6
|
Olech M, Hodor D, Toma C, Negoescu A, Taulescu M. First Molecular Characterization of Small Ruminant Lentiviruses Detected in Romania. Animals (Basel) 2023; 13:3718. [PMID: 38067069 PMCID: PMC10705781 DOI: 10.3390/ani13233718] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 11/27/2023] [Accepted: 11/29/2023] [Indexed: 09/10/2024] Open
Abstract
Small ruminant lentiviruses (SRLVs) are a group of retroviruses that cause multisystem chronic diseases in goats and sheep and lead to production losses in these animals, negatively affecting animal health and welfare. Although molecular characterization of SRLV field isolates has been performed in many countries, there is currently no information on SRLV genotypes circulating in sheep and goats in Romania. Therefore, the main objective of this study was to conduct a molecular and phylogenetic analysis of SRLVs from Romania and determine the degree of genetic relatedness of the obtained sequences to other known SRLV reference strains. A total of 81 sheep lung tissue samples and 41 sheep lung lymph node samples were tested using nested real-time PCR, and samples positive for real-time PCR were used to amplify an 800 bp gag-pol fragment and an overlapping 625 bp fragment of the gag gene. Pairwise DNA distance and phylogenetic analysis showed that the Romanian SRLV strains were closely related to the A2 and A3 strains based on gag-pol sequences and to the A3 and A17 subtypes based on gag sequences. No recombination events were found. Our results revealed that the Romanian sequences have similar epitope patterns to other existing subtypes, although E/K and R/K mutations in epitope 3 were found only in the Romanian sequences, which may have potential value in serological diagnosis. This study is the first report on the genetic characterization of SRLV strains circulating in Romania and provides new information on SRLV heterogeneity. Further detailed studies should be conducted to better understand the divergence of SRLV Romanian strains.
Collapse
Affiliation(s)
- Monika Olech
- Department of Pathology, National Veterinary Research Institute, 24-100 Puławy, Poland
| | - Dragoş Hodor
- Department of Veterinary Pathology, University of Agricultural Sciences and Veterinary Medicine, 3-5 Calea Manastur, 400372 Cluj-Napoca, Romania; (D.H.); (C.T.); (A.N.); (M.T.)
| | - Corina Toma
- Department of Veterinary Pathology, University of Agricultural Sciences and Veterinary Medicine, 3-5 Calea Manastur, 400372 Cluj-Napoca, Romania; (D.H.); (C.T.); (A.N.); (M.T.)
| | - Andrada Negoescu
- Department of Veterinary Pathology, University of Agricultural Sciences and Veterinary Medicine, 3-5 Calea Manastur, 400372 Cluj-Napoca, Romania; (D.H.); (C.T.); (A.N.); (M.T.)
| | - Marian Taulescu
- Department of Veterinary Pathology, University of Agricultural Sciences and Veterinary Medicine, 3-5 Calea Manastur, 400372 Cluj-Napoca, Romania; (D.H.); (C.T.); (A.N.); (M.T.)
| |
Collapse
|
7
|
Jacob-Ferreira J, Coelho AC, Grau Vila A, Lacasta D, Quintas H. Small Ruminant Lentivirus Infection in Sheep and Goats in North Portugal: Seroprevalence and Risk Factors. Pathogens 2023; 12:829. [PMID: 37375519 DOI: 10.3390/pathogens12060829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/07/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023] Open
Abstract
Small ruminant lentiviruses (SRLVs) are transmitted among ovine and caprine species. This disease is a severe problem for small ruminant production, not only for animals' well-being but also for flocks' efficiency. The main aim of this research was to quantify the seroprevalence and associated risk factors for SRLV infection in the northern region of Portugal. Samples were collected from a total of 150 flocks, of which 129 (86.0%; 95% CI: 80.67%-91.33%) had at least one seropositive animal. Out of 2607 individual blood samples, 1074 (41.2%) were positive for SRLVs. Risk factors associated with SRLV infection were species (caprine), age (>2 years old), flock size (>100 animals), production system (intensive), food production system (milk), type of activity (professional), participation in livestock competitions (yes), replacement young ewe bought (yes), and natural feeding management (yes). This knowledge empowers the implementation of effective preventive measures. Overall, biosecurity measures should be promoted and implemented with the main aim of reducing viral transmission and reducing the prevalence of this disease. We recognise that government authorities should promote and audit voluntary control and eradication programs in small ruminant flocks in the region studied.
Collapse
Affiliation(s)
- João Jacob-Ferreira
- Animal and Veterinary Research Centre, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Mountain Research Center (CIMO), Polytechnic Institute of Bragança (IPB), Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Ana Cláudia Coelho
- Animal and Veterinary Research Centre, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| | - Ana Grau Vila
- Servicio de Sanidad Animal, Dirección General de Producción Agropecuaria e Infraestructuras Agrarias, Consejería de Agricultura y Ganadería, Junta de Castilla y León, 47014 Valladolid, Spain
| | - Delia Lacasta
- Animal Pathology Department, Instituto Agroalimentario de Aragón-IA2, Universidad de Zaragoza-CITA, Veterinary Faculty of Zaragoza C/Miguel Servet 177, 50013 Zaragoza, Spain
| | - Hélder Quintas
- Mountain Research Center (CIMO), Polytechnic Institute of Bragança (IPB), Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| |
Collapse
|
8
|
Potârniche AV, Czopowicz M, Szaluś-Jordanow O, Moroz-Fik A, Mickiewicz M, Biernacka K, Witkowski L, Markowska-Daniel I, Bagnicka E, Cerbu C, Olah D, Trif E, Spinu M, Kaba J. Serological testing of an equal-volume milk sample - a new method to estimate the seroprevalence of small ruminant lentivirus infection? BMC Vet Res 2023; 19:43. [PMID: 36759821 PMCID: PMC9912530 DOI: 10.1186/s12917-023-03599-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 01/31/2023] [Indexed: 02/11/2023] Open
Abstract
BACKGROUND In cattle attempts to evaluate within-herd prevalence of various infectious and parasitic diseases by bulk-tank milk (BTM) testing with ELISA have been made with moderate success. The fact that BTM is composed of variable and unknown volumes of milk from individual lactating animals weakens the relationship between numerical result of the ELISA and the within-herd prevalence. We carried out a laboratory experimental study to evaluate if a pooled milk sample created by mixing an equal volume of individual milk samples from seropositive and seronegative goats, henceforth referred to as an equal-volume milk sample (EVMS), would allow for accurate estimation of within-herd seroprevalence of caprine arthritis-encephalitis (CAE) using 3 different commercial ELISAs. By mixing randomly selected milk samples from seronegative and seropositive goats, 193 EVMS were created - 93 made of seronegative samples and 100 with the proportion of seropositive individual milk samples (EVMS%POS) ranging from 1 to 100%. EVMS%POS could be considered as a proxy for the within-herd seroprevalence. Then, OD of EVMS (ODEVMS) of the 193 EVMS was measured using 3 commercial ELISAs for CAE - 2 indirect and 1 competitive. RESULTS The cut-off values of ODEVMS indicating SRLV infection were determined. The regression functions were developed to link ODEVMS with EVMS%POS. A significant monotonic relationship between ODEVMS measured with 2 commercial indirect ELISAs and EVMS%POS was identified. Two regression models developed on this basis described approximately 90% of variability and allowed to estimate EVMS%POS, when it was below 50%. High ODEVMS indicated EVMS%POS of > 50%. CONCLUSION Our study introduces the concept of serological testing of EVMS as a method of detecting SRLV-infected herds and estimating the proportion of strongly seropositive goats. Further field studies are warranted to assess practical benefits of EVMS serological testing.
Collapse
Affiliation(s)
- Adrian-Valentin Potârniche
- Department of Infectious Diseases and Preventive Medicine, Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Calea Manastur 3-5, 400372 Cluj-Napoca, Romania
| | - Michał Czopowicz
- Division of Veterinary Epidemiology and Economics, Institute of Veterinary Medicine, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159C, 02-776 Warsaw, Poland
| | - Olga Szaluś-Jordanow
- Department of Small Animal Diseases with Clinic, Institute of Veterinary Medicine, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159C, 02-776 Warsaw, Poland
| | - Agata Moroz-Fik
- Division of Veterinary Epidemiology and Economics, Institute of Veterinary Medicine, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159C, 02-776 Warsaw, Poland
| | - Marcin Mickiewicz
- Division of Veterinary Epidemiology and Economics, Institute of Veterinary Medicine, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159C, 02-776 Warsaw, Poland
| | - Kinga Biernacka
- Division of Veterinary Epidemiology and Economics, Institute of Veterinary Medicine, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159C, 02-776 Warsaw, Poland
| | - Lucjan Witkowski
- Division of Veterinary Epidemiology and Economics, Institute of Veterinary Medicine, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159C, 02-776 Warsaw, Poland
| | - Iwona Markowska-Daniel
- Division of Veterinary Epidemiology and Economics, Institute of Veterinary Medicine, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159C, 02-776 Warsaw, Poland
| | - Emilia Bagnicka
- Institute of Genetics and Animal Biotechnology, Polish Academy of Sciences, Postępu 36A, 05-552 Jastrzębiec, Magdalenka Poland
| | - Constantin Cerbu
- Department of Infectious Diseases and Preventive Medicine, Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Calea Manastur 3-5, 400372 Cluj-Napoca, Romania
| | - Diana Olah
- Department of Infectious Diseases and Preventive Medicine, Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Calea Manastur 3-5, 400372 Cluj-Napoca, Romania
| | - Emilia Trif
- Department of Infectious Diseases and Preventive Medicine, Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Calea Manastur 3-5, 400372 Cluj-Napoca, Romania
| | - Marina Spinu
- Department of Infectious Diseases and Preventive Medicine, Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Calea Manastur 3-5, 400372 Cluj-Napoca, Romania
| | - Jarosław Kaba
- Division of Veterinary Epidemiology and Economics, Institute of Veterinary Medicine, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159C, 02-776 Warsaw, Poland
| |
Collapse
|
9
|
Genetic Characterization of Small Ruminant Lentiviruses (SRLVs) Circulating in Naturally Infected Sheep in Central Italy. Viruses 2022; 14:v14040686. [PMID: 35458416 PMCID: PMC9032261 DOI: 10.3390/v14040686] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/22/2022] [Accepted: 03/24/2022] [Indexed: 12/21/2022] Open
Abstract
Small ruminant lentiviruses (SRLVs) represent a very heterogeneous group of ss-RNA viruses that infect sheep and goats worldwide. They cause important, deleterious effects on animal production and limit the animal trade. SRLVs show a high genetic variability due to high mutation rate and frequent recombination events. Indeed, five genotypes (A–E) and several subtypes have been detected. The aim of this work was to genetically characterize SRLVs circulating in central Italy. On this basis, a phylogenetic study on the gag-pol genetic region of 133 sheep, collected from 19 naturally infected flocks, was conducted. In addition, to evaluate the frequency of mutation and the selective pressure on this region, a WebLogo 3 analysis was performed, and the dN/dS ratio was computed. The results showed that 26 samples out of 133 were clustered in genotype A and 106 samples belonged to genotype B, as follows: A9 (n = 8), A11 (n = 10), A24 (n = 7), B1 (n = 2), B2 (n = 59), and B3 (n = 45). No recombination events were found. Mutations were localized mainly in the VR-2 region, and the dN/dS ratio of 0.028 indicated the existence of purifying selection. Since the genetic diversity of SRLVs could make serological identification difficult, it is important to perform molecular characterization to ensure a more reliable diagnosis, to maintain flock health status, and for the application of local and national control programs.
Collapse
|
10
|
Schaer J, Cvetnic Z, Sukalic T, Dörig S, Grisiger M, Iscaro C, Feliziani F, Pfeifer F, Origgi F, Zanoni RG, Abril CE. Evaluation of Serological Methods and a New Real-Time Nested PCR for Small Ruminant Lentiviruses. Pathogens 2022; 11:pathogens11020129. [PMID: 35215072 PMCID: PMC8875174 DOI: 10.3390/pathogens11020129] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/05/2022] [Accepted: 01/14/2022] [Indexed: 12/04/2022] Open
Abstract
Small ruminant lentiviruses (SRLVs), i.e., CAEV and MVV, cause insidious infections with life-long persistence and a slowly progressive disease, impairing both animal welfare and productivity in affected herds. The complex diagnosis of SRLVs currently combines serological methods including whole-virus and peptide-based ELISAs and Immunoblot. To improve the current diagnostic protocol, we analyzed 290 sera of animals originating from different European countries in parallel with three commercial screening ELISAs, Immunoblot as a confirmatory assay and five SU5 peptide ELISAs for genotype differentiation. A newly developed nested real-time PCR was carried out for the detection and genotype differentiation of the virus. Using a heat-map display of the combined results, the drawbacks of the current techniques were graphically visualized and quantified. The immunoblot and the SU5-ELISAs exhibited either unsatisfactory sensitivity or insufficient reliability in the differentiation of the causative viral genotype, respectively. The new truth standard was the concordance of the results of two out of three screening ELISAs and the PCR results for serologically false negative samples along with genotype differentiation. Whole-virus antigen-based ELISA showed the highest sensitivity (92.2%) and specificity (98.9%) among the screening tests, whereas PCR exhibited a sensitivity of 75%.
Collapse
Affiliation(s)
- Jessica Schaer
- Institute of Virology and Immunology IVI, in Cooperation with the Vetsuisse-Faculty of the University of Bern, 3012 Bern, Switzerland; (J.S.); (R.G.Z.)
| | - Zeljko Cvetnic
- Regional Veterinary Department Križevci, Croatian Veterinary Institute, Zakmandijeva 10, 48260 Križevci, Croatia; (Z.C.); (T.S.)
| | - Tomislav Sukalic
- Regional Veterinary Department Križevci, Croatian Veterinary Institute, Zakmandijeva 10, 48260 Križevci, Croatia; (Z.C.); (T.S.)
| | - Sven Dörig
- Beratungs-und Gesundheitsdienst für Kleinwiederkäuer (BGK/SSPR), 3362 Niederoenz, Switzerland;
| | | | - Carmen Iscaro
- National Reference Laboratory for Ruminant Retroviruses, Istituto Zooprofilattico, Sperimentale dell’Umbria e delle Marche Togo Rosati, 06126 Perugia, Italy; (C.I.); (F.F.)
| | - Francesco Feliziani
- National Reference Laboratory for Ruminant Retroviruses, Istituto Zooprofilattico, Sperimentale dell’Umbria e delle Marche Togo Rosati, 06126 Perugia, Italy; (C.I.); (F.F.)
| | - Folke Pfeifer
- Tierseuchenkasse/Tiergesundheitsdienst Sachsen-Anhalt, 39116 Magdeburg, Germany;
| | - Francesco Origgi
- Institute of Veterinary Pathology, Vetsuisse-Faculty of the University of Bern, 3012 Bern, Switzerland;
| | - Reto Giacomo Zanoni
- Institute of Virology and Immunology IVI, in Cooperation with the Vetsuisse-Faculty of the University of Bern, 3012 Bern, Switzerland; (J.S.); (R.G.Z.)
| | - Carlos Eduardo Abril
- Institute of Virology and Immunology IVI, in Cooperation with the Vetsuisse-Faculty of the University of Bern, 3012 Bern, Switzerland; (J.S.); (R.G.Z.)
- Correspondence: ; Tel.: +41-31-631-2423
| |
Collapse
|
11
|
Bazzucchi M, Pierini I, Gobbi P, Pirani S, Torresi C, Iscaro C, Feliziani F, Giammarioli M. Genomic Epidemiology and Heterogeneity of SRLV in Italy from 1998 to 2019. Viruses 2021; 13:v13122338. [PMID: 34960606 PMCID: PMC8706641 DOI: 10.3390/v13122338] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/12/2021] [Accepted: 11/19/2021] [Indexed: 01/28/2023] Open
Abstract
Small ruminant lentiviruses (SRLV) are viruses that retro-transcribe RNA to DNA and show high rates of genetic variability. SRLV affect animals with strains specific for each host species (sheep or goats), resulting in a series of clinical manifestations depending on the virulence of the strain, the host’s genetic background and farm production system. The aim of this work was to present an up-to-date overview of the genomic epidemiology and genetic diversity of SRLV in Italy over time (1998–2019). In this study, we investigated 219 SRLV samples collected from 17 different Italian regions in 178 geographically distinct herds by CEREL. Our genetic study was based on partial sequencing of the gag-pol gene (800 bp) and phylogenetic analysis. We identified new subtypes with high heterogeneity, new clusters and recombinant forms. The genetic diversity of Italian SRLV strains may have diagnostic and immunological implications that affect the performance of diagnostic tools. Therefore, it is extremely important to increase the control of genomic variants to improve the control measures.
Collapse
Affiliation(s)
- Moira Bazzucchi
- Istituto Zooprofilattico Sperimentale Umbrita-Marche “Togo Rosati”, 06126 Perugia, Italy; (M.B.); (I.P.); (P.G.); (S.P.); (C.T.); (C.I.); (F.F.)
- Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia Romagna “Bruno Ubertini”, 27100 Pavia, Italy
| | - Ilaria Pierini
- Istituto Zooprofilattico Sperimentale Umbrita-Marche “Togo Rosati”, 06126 Perugia, Italy; (M.B.); (I.P.); (P.G.); (S.P.); (C.T.); (C.I.); (F.F.)
| | - Paola Gobbi
- Istituto Zooprofilattico Sperimentale Umbrita-Marche “Togo Rosati”, 06126 Perugia, Italy; (M.B.); (I.P.); (P.G.); (S.P.); (C.T.); (C.I.); (F.F.)
| | - Silvia Pirani
- Istituto Zooprofilattico Sperimentale Umbrita-Marche “Togo Rosati”, 06126 Perugia, Italy; (M.B.); (I.P.); (P.G.); (S.P.); (C.T.); (C.I.); (F.F.)
| | - Claudia Torresi
- Istituto Zooprofilattico Sperimentale Umbrita-Marche “Togo Rosati”, 06126 Perugia, Italy; (M.B.); (I.P.); (P.G.); (S.P.); (C.T.); (C.I.); (F.F.)
| | - Carmen Iscaro
- Istituto Zooprofilattico Sperimentale Umbrita-Marche “Togo Rosati”, 06126 Perugia, Italy; (M.B.); (I.P.); (P.G.); (S.P.); (C.T.); (C.I.); (F.F.)
| | - Francesco Feliziani
- Istituto Zooprofilattico Sperimentale Umbrita-Marche “Togo Rosati”, 06126 Perugia, Italy; (M.B.); (I.P.); (P.G.); (S.P.); (C.T.); (C.I.); (F.F.)
| | - Monica Giammarioli
- Istituto Zooprofilattico Sperimentale Umbrita-Marche “Togo Rosati”, 06126 Perugia, Italy; (M.B.); (I.P.); (P.G.); (S.P.); (C.T.); (C.I.); (F.F.)
- Correspondence:
| |
Collapse
|
12
|
Aalberts M, Peterson K, Moll L, Vellema P, van Maanen C. Evaluation of five SRLV ELISAs for fitness for purpose in sheep and goat accreditation schemes in the Netherlands. Small Rumin Res 2021. [DOI: 10.1016/j.smallrumres.2021.106452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
13
|
Kalogianni AI, Stavropoulos I, Chaintoutis SC, Bossis I, Gelasakis AI. Serological, Molecular and Culture-Based Diagnosis of Lentiviral Infections in Small Ruminants. Viruses 2021; 13:1711. [PMID: 34578292 PMCID: PMC8473411 DOI: 10.3390/v13091711] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/22/2021] [Accepted: 08/25/2021] [Indexed: 02/01/2023] Open
Abstract
Small ruminant lentiviruses (SRLVs) infections lead to chronic diseases and remarkable economic losses undermining health and welfare of animals and the sustainability of farms. Early and definite diagnosis of SRLVs infections is the cornerstone for any control and eradication efforts; however, a "gold standard" test and/or diagnostic protocols with extensive applicability have yet to be developed. The main challenges preventing the development of a universally accepted diagnostic tool with sufficient sensitivity, specificity, and accuracy to be integrated in SRLVs control programs are the genetic variability of SRLVs associated with mutations, recombination, and cross-species transmission and the peculiarities of small ruminants' humoral immune response regarding late seroconversion, as well as intermittent and epitope-specific antibody production. The objectives of this review paper were to summarize the available serological and molecular assays for the diagnosis of SRLVs, to highlight their diagnostic performance emphasizing on advantages and drawbacks of their application, and to discuss current and future perspectives, challenges, limitations and impacts regarding the development of reliable and efficient tools for the diagnosis of SRLVs infections.
Collapse
Affiliation(s)
- Aphrodite I. Kalogianni
- Laboratory of Anatomy and Physiology of Farm Animals, Department of Animal Science, School of Animal Biosciences, Agricultural University of Athens (AUA), Iera Odos 75 Str., 11855 Athens, Greece
| | - Ioannis Stavropoulos
- Laboratory of Animal Husbandry, Department of Agricultural Sciences, School of Agriculture, Forestry and Natural Resources, Aristotle University of Thessaloniki (AUTh), 54124 Thessaloniki, Greece; (Ι.S.); (I.B.)
| | - Serafeim C. Chaintoutis
- Diagnostic Laboratory, School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki (AUTh), 11 Stavrou Voutyra Str., 54627 Thessaloniki, Greece;
| | - Ioannis Bossis
- Laboratory of Animal Husbandry, Department of Agricultural Sciences, School of Agriculture, Forestry and Natural Resources, Aristotle University of Thessaloniki (AUTh), 54124 Thessaloniki, Greece; (Ι.S.); (I.B.)
| | - Athanasios I. Gelasakis
- Laboratory of Anatomy and Physiology of Farm Animals, Department of Animal Science, School of Animal Biosciences, Agricultural University of Athens (AUA), Iera Odos 75 Str., 11855 Athens, Greece
| |
Collapse
|
14
|
Potărniche AV, Czopowicz M, Szaluś-Jordanow O, Moroz A, Mickiewicz M, Witkowski L, Markowska-Daniel I, Bagnicka E, Cerbu C, Olah D, Spinu M, Kaba J. Diagnostic accuracy of three commercial immunoenzymatic assays for small ruminant lentivirus infection in goats performed on individual milk samples. Prev Vet Med 2021; 191:105347. [PMID: 33862543 DOI: 10.1016/j.prevetmed.2021.105347] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/21/2021] [Accepted: 04/06/2021] [Indexed: 10/21/2022]
Abstract
Caprine arthritis-encephalitis (CAE) caused by small ruminant lentivirus (SRLV) infection is one of the most widespread and devastating diseases of goats. Serological methods, mainly immunoenzymatic assays (ELISA), are the mainstay of CAE diagnostics. Even though blood is still the most commonly tested material, animal welfare issues and increasing costs of veterinary service prompt the development of serological methods based on milk testing. Several different types of ELISAs for CAE are available on the market. All of them perform well on serum, however their diagnostic accuracy for testing milk has not been so far compared. Therefore, we carried out the study in 5 dairy goat herds in Poland whose previous epidemiological situation regarding CAE was known. Paired serum and milk samples were collected from all adult females (n = 420) and tested with 3 commercial ELISAs - indirect ELISA based on the whole-virus antigen (wELISA), indirect ELISA based on the recombined transmembrane and capsid protein (TM/CA-ELISA), and competitive ELISA based on the surface glycoprotein (SU-ELISA). Milk was tested as lactoserum at dilution of 1/2 in wELISA and TM/CA-ELISA, and undiluted in SU-ELISA. The true status of goats was based on the composite reference standard comprising the results of all three ELISAs done on serum and the true prevalence of SRLV infection in the herd of origin. 243 (57.9 %) goats were classified as truly positive and 177 (42.1 %) goats as truly negative. Diagnostic accuracy was evaluated using the area under the ROC curve (AUROC) as well as sensitivity (Se) and specificity (Sp) for a range of cut-off values. AUROC was 98.8 % (CI 95 %: 97.5 %, 100 %) for wELISA, 97.9 % (CI 95 %: 96.5 %, 99.2 %) for TM/CA-ELISA, and 91.7 % (CI 95 %: 88.9 %, 94.5 %) for SU-ELISA. At the cut-off values recommended by the manufacturers both indirect ELISAs were highly sensitive (89.3 % and 91.4 %, respectively) and highly specific (98.3 % and 95.5 %, respectively), whereas SU-ELISA had only moderate Se (71.2 %) at comparably high Sp (96.6 %). Nevertheless, the optimal cut-off values were lower than those recommended by manufacturers for serum - sample-to-positive control serum ratio (S/P%) of 10 % for wELISA, S/P% of 80 % for TM/CA-ELISA, and percentage inhibition of 23 % for SU-ELISA. Concluding, the study shows that wELISA and TM/CA-ELISA may be interchangeably used for testing individual goat milk samples for SRLV infection. Diagnostic sensitivity and specificity of these ELISAs appear not to be lower on milk than on serum. SU-ELISA is considerably less sensitive on milk samples than indirect ELISAs.
Collapse
Affiliation(s)
- Adrian-Valentin Potărniche
- Department of Infectious Diseases and Preventive Medicine, Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Calea Manastur 3-5, 400372, Cluj-Napoca, Romania
| | - Michał Czopowicz
- Division of Veterinary Epidemiology and Economics, Institute of Veterinary Medicine, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159c, 02-776, Warsaw, Poland.
| | - Olga Szaluś-Jordanow
- Department of Small Animal Diseases with Clinic, Institute of Veterinary Medicine, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159c, 02-776, Warsaw, Poland
| | - Agata Moroz
- Division of Veterinary Epidemiology and Economics, Institute of Veterinary Medicine, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159c, 02-776, Warsaw, Poland
| | - Marcin Mickiewicz
- Division of Veterinary Epidemiology and Economics, Institute of Veterinary Medicine, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159c, 02-776, Warsaw, Poland
| | - Lucjan Witkowski
- Division of Veterinary Epidemiology and Economics, Institute of Veterinary Medicine, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159c, 02-776, Warsaw, Poland
| | - Iwona Markowska-Daniel
- Division of Veterinary Epidemiology and Economics, Institute of Veterinary Medicine, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159c, 02-776, Warsaw, Poland
| | - Emilia Bagnicka
- Institute of Genetics and Animal Biotechnology, Polish Academy of Sciences, Postępu 36A, Jastrzębiec, 05-552, Magdalenka, Poland
| | - Constantin Cerbu
- Department of Infectious Diseases and Preventive Medicine, Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Calea Manastur 3-5, 400372, Cluj-Napoca, Romania
| | - Diana Olah
- Department of Infectious Diseases and Preventive Medicine, Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Calea Manastur 3-5, 400372, Cluj-Napoca, Romania
| | - Marina Spinu
- Department of Infectious Diseases and Preventive Medicine, Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Calea Manastur 3-5, 400372, Cluj-Napoca, Romania
| | - Jarosław Kaba
- Division of Veterinary Epidemiology and Economics, Institute of Veterinary Medicine, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159c, 02-776, Warsaw, Poland
| |
Collapse
|
15
|
Vinha KT, Silva TIBD. Seropositivity for Maedi-Visna virus in sheep in Porto Acre city - Western Amazon, Brazil. CIÊNCIA ANIMAL BRASILEIRA 2020. [DOI: 10.1590/1809-6891v21e-59173] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Abstract Lentivirosis of small ruminants (LVPR) are chronic and degenerative infectious diseases, caused by Lentivirus, associated with numerous losses such as: drop in meat and milk production, predisposition to secondary infections, expenses with veterinary assistance and, even, early disposal of animals. In the northern region of Brazil, the epidemiological situation is poorly understood. Thus, this study aimed to determine the seropositivity of sheep for Lentivirus in Porto Acre city, Western Amazon, Brazil. 122 blood samples from sheep were collected and as a diagnostic method, agarose gel immunodiffusion was used, using the p28 protein of the capsid as antigen. The seropositivity of the sheep to the test was 8.2% (10/122). In 80% (4/5) of the investigated properties, the presence of seropositive animals was detected. It is worth noting that the acquisition of small ruminants from other states likely represented a risk to sheep health in the municipality of Porto Acre, Western Amazon, Brazil. It is concluded that there is a need for more systematic investigations on the prevalence of LVPR in the state of Acre.
Collapse
|