1
|
Al-Odat OS, Elbezanti WO, Gowda K, Srivastava SK, Amin SG, Jonnalagadda SC, Budak-Alpdogan T, Pandey MK. KS18, a Mcl-1 inhibitor, improves the effectiveness of bortezomib and overcomes resistance in refractory multiple myeloma by triggering intrinsic apoptosis. Front Pharmacol 2024; 15:1436786. [PMID: 39411073 PMCID: PMC11473443 DOI: 10.3389/fphar.2024.1436786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 09/16/2024] [Indexed: 10/19/2024] Open
Abstract
Despite a record number of clinical studies investigating various anti-myeloma treatments, the 5-year survival rate for multiple myeloma (MM) patients in the US is only 55%, and almost all patients relapse. Poor patient outcomes demonstrate that myeloma cells are "born to survive" which means they can adapt and evolve following treatment. Thus, new therapeutic approaches to combat survival mechanisms and target treatment resistance are required. Importantly, Mcl-1, anti-apoptotic protein, is required for the development of MM and treatment resistance. This study looks at the possibility of KS18, a selective Mcl-1 inhibitor, to treat MM and overcome resistance. Our investigation demonstrates that KS18 effectively induces cell death in MM by dual regulatory mechanisms targeting the Mcl-1 protein at both transcriptional and post-translational levels. Specifically, KS18 suppresses Mcl-1 activation via STAT-3 pathway and promotes Mcl-1 phosphorylation/ubiquitination/proteasome-dependent protein degradation (UPS). Significantly, KS18 triggered caspase-dependent apoptosis in MM patient samples and bortezomib-resistant cells, synergizing with venetoclax to boost apoptosis. KS18 promises to overcome bortezomib and venetoclax resistance and re-sensitize myeloma cells to chemotherapy. Furthermore, the study shows the tremendous impact of KS18 in inhibiting colony formation in bortezomib-resistant cells and demonstrates significant tumor shrinkage in KS18-treated NSG mice without notable toxicity signs after 4 weeks of therapy with a single acceptable dose each week, indicating its powerful anti-neoplastic and anti-resistance characteristics. This study strongly implies that KS18 may treat MM and provide new hope to patients who are experiencing recurrence or resistance.
Collapse
Affiliation(s)
- Omar S. Al-Odat
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ, United States
- Department of Chemistry and Biochemistry, College of Science and Mathematics, Rowan University, Glassboro, NJ, United States
| | - Weam Othman Elbezanti
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ, United States
- Department of Surgery, Cooper University Health Care, Camden, NJ, United States
| | - Krishne Gowda
- Department of Pharmacology, Penn State Hershey Cancer Institute, Penn State College of Medicine, Hershey, PA, United States
| | | | - Shantu G. Amin
- Department of Pharmacology, Penn State Hershey Cancer Institute, Penn State College of Medicine, Hershey, PA, United States
| | - Subash C. Jonnalagadda
- Department of Chemistry and Biochemistry, College of Science and Mathematics, Rowan University, Glassboro, NJ, United States
| | - Tulin Budak-Alpdogan
- Department of Hematology, Cooper University Health Care, Camden, NJ, United States
| | - Manoj K. Pandey
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ, United States
| |
Collapse
|
2
|
Rezaei S, Timani KA, He JJ. Metformin Treatment Leads to Increased HIV Transcription and Gene Expression through Increased CREB Phosphorylation and Recruitment to the HIV LTR Promoter. Aging Dis 2024; 15:831-850. [PMID: 37450926 PMCID: PMC10917544 DOI: 10.14336/ad.2023.0705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 07/05/2023] [Indexed: 07/18/2023] Open
Abstract
Antiretroviral therapy has effectively suppressed HIV infection and replication and prolonged the lifespan of HIV-infected individuals. In the meantime, various complications including type 2 diabetes associated with the long-term antiviral therapy have shown steady increases. Metformin has been the front-line anti-hyperglycemic drug of choice and the most widely prescribed medication for the treatment of type 2 diabetes. However, little is known about the effects of Metformin on HIV infection and replication. In this study, we showed that Metformin treatment enhanced HIV gene expression and transcription in HIV-transfected 293T and HIV-infected Jurkat and human PBMC. Moreover, we demonstrated that Metformin treatment resulted in increased CREB expression and phosphorylation, and TBP expression. Furthermore, we showed that Metformin treatment increased the recruitment of phosphorylated CREB and TBP to the HIV LTR promoter. Lastly, we showed that inhibition of CREB phosphorylation/activation significantly abrogated Metformin-enhanced HIV gene expression. Taken together, these results demonstrated that Metformin treatment increased HIV transcription, gene expression, and production through increased CREB phosphorylation and recruitment to the HIV LTR promoter. These findings may help design the clinical management plan and HIV cure strategy of using Metformin to treat type 2 diabetes, a comorbidity with an increasing prevalence, in people living with HIV.
Collapse
Affiliation(s)
- Sahar Rezaei
- Department of Microbiology and Immunology, Rosalind Franklin University, Chicago Medical School, North Chicago, IL 60064, USA.
- Center for Cancer Cell Biology, Immunology and Infection, Rosalind Franklin University, North Chicago, IL 60064, USA.
- School of Graduate and Postdoctoral Studies, Rosalind Franklin University, North Chicago, IL 60064, USA.
| | - Khalid A Timani
- Department of Microbiology and Immunology, Rosalind Franklin University, Chicago Medical School, North Chicago, IL 60064, USA.
- Center for Cancer Cell Biology, Immunology and Infection, Rosalind Franklin University, North Chicago, IL 60064, USA.
- School of Graduate and Postdoctoral Studies, Rosalind Franklin University, North Chicago, IL 60064, USA.
| | - Johnny J He
- Department of Microbiology and Immunology, Rosalind Franklin University, Chicago Medical School, North Chicago, IL 60064, USA.
- Center for Cancer Cell Biology, Immunology and Infection, Rosalind Franklin University, North Chicago, IL 60064, USA.
- School of Graduate and Postdoctoral Studies, Rosalind Franklin University, North Chicago, IL 60064, USA.
| |
Collapse
|
3
|
Araida J, Ohka S, Soeda M, Nishizawa D, Hasegawa J, Nakayama K, Ebata Y, Ogai Y, Fukuda KI, Ikeda K. rs12411980 single-nucleotide polymorphism related to PRTFDC1 expression is significantly associated with phantom tooth pain. Mol Pain 2024; 20:17448069241272215. [PMID: 39093623 PMCID: PMC11348367 DOI: 10.1177/17448069241272215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 06/21/2024] [Accepted: 06/26/2024] [Indexed: 08/04/2024] Open
Abstract
Phantom tooth pain (PTP) is one type of non-odontogenic neuropathic toothache, which rarely occurs after appropriate pulpectomy or tooth extraction. The cause of PTP is unknown. We investigated pain-related genetic factors that are associated with PTP. Four pain-associated genes, including G protein-coupled receptor 158 (GPR158) and phosphoribosyl transferase domain containing 1 (PRTFDC1), are adjacent to each other on the human genome. Some of these four genes or their genomic region may be related to PTP. We statistically analyzed associations between single-nucleotide polymorphisms (SNPs) in the genomic region and PTP in patients with PTP (PTP group), other orofacial pain (OFP group), and healthy control subjects. We then performed a database search of expression quantitative trait loci (eQTLs). For the seven SNPs that were significantly associated with PTP even after Bonferroni correction, we focused on the rs12411980 tag SNP (p = 9.42 × 10-4). Statistical analyses of the PTP group and healthy subject groups (group labels: NOC and TD) revealed that the rate of the GG genotype of the rs12411980 SNP was significantly higher in the PTP group than in the healthy subject groups (PTP group vs. NOC group: p = 2.92 × 10-4, PTP group vs. TD group: p = 5.46 × 10-4; percentage of GG: 30% in PTP group, 12% in NOC group, 11% in TD group). These results suggest that the GG genotype of the rs12411980 SNP is more susceptible to PTP. The rs2765697 SNP that is in strong linkage disequilibrium with the rs12411980 SNP is an eQTL that is associated with higher PRTFDC1 expression in the minor allele homozygotes in the healthy subject groups of the rs2765697 SNP. Thus, PRTFDC1 expression similarly increases in the minor allele homozygotes (GG genotype) in the healthy subject groups of the rs12411980 SNP, which would lead to greater susceptibility to PTP.
Collapse
Affiliation(s)
- Jun Araida
- Addictive Substance Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
- Department of Oral Health and Clinical Science, Tokyo Dental College, Tokyo, Japan
| | - Seii Ohka
- Addictive Substance Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Moe Soeda
- Department of Oral Health and Clinical Science, Tokyo Dental College, Tokyo, Japan
| | - Daisuke Nishizawa
- Addictive Substance Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Junko Hasegawa
- Addictive Substance Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Kyoko Nakayama
- Addictive Substance Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Yuko Ebata
- Addictive Substance Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Yasukazu Ogai
- Social Psychiatry and Mental Health, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Ken-ichi Fukuda
- Department of Oral Health and Clinical Science, Tokyo Dental College, Tokyo, Japan
| | - Kazutaka Ikeda
- Addictive Substance Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
- Department of Neuropsychopharmacology, National Institute of Mental Health, National Center of Neurology and Psychiatry, Kodaira, Japan
| |
Collapse
|
4
|
Elbezanti WO, Al-Odat OS, Chitren R, Singh JK, Srivastava SK, Gowda K, Amin S, Robertson GP, Nemmara VV, Jonnalagadda SC, Budak-Alpdogan T, Pandey MK. Development of a novel Bruton's tyrosine kinase inhibitor that exerts anti-cancer activities potentiates response of chemotherapeutic agents in multiple myeloma stem cell-like cells. Front Pharmacol 2022; 13:894535. [PMID: 36160379 PMCID: PMC9500300 DOI: 10.3389/fphar.2022.894535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 08/16/2022] [Indexed: 11/13/2022] Open
Abstract
Despite recent improvements in multiple myeloma (MM) treatment, MM remains an incurable disease and most patients experience a relapse. The major reason for myeloma recurrence is the persistent stem cell-like population. It has been demonstrated that overexpression of Bruton's tyrosine kinase (BTK) in MM stem cell-like cells is correlated with drug resistance and poor prognosis. We have developed a novel small BTK inhibitor, KS151, which is unique compared to other BTK inhibitors. Unlike ibrutinib, and the other BTK inhibitors such as acalabrutinib, orelabrutinib, and zanubrutinib that covalently bind to the C481 residue in the BTK kinase domain, KS151 can inhibit BTK activities without binding to C481. This feature of KS151 is important because C481 becomes mutated in many patients and causes drug resistance. We demonstrated that KS151 inhibits in vitro BTK kinase activities and is more potent than ibrutinib. Furthermore, by performing a semi-quantitative, sandwich-based array for 71-tyrosine kinase phosphorylation, we found that KS151 specifically inhibits BTK. Our western blotting data showed that KS151 inhibits BTK signaling pathways and is effective against bortezomib-resistant cells as well as MM stem cell-like cells. Moreover, KS151 potentiates the apoptotic response of bortezomib, lenalidomide, and panobinostat in both MM and stem cell-like cells. Interestingly, KS151 inhibits stemness markers and is efficient in inhibiting Nanog and Gli1 stemness markers even when MM cells were co-cultured with bone marrow stromal cells (BMSCs). Overall, our results show that we have developed a novel BTK inhibitor effective against the stem cell-like population, and potentiates the response of chemotherapeutic agents.
Collapse
Affiliation(s)
- Weam Othman Elbezanti
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ, United States
- Department of Hematology, MD Anderson Cancer Center at Cooper, Cooper Health University, Camden, NJ, United States
| | - Omar S. Al-Odat
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ, United States
- Department of Chemistry and Biochemistry, College of Science and Mathematics, Rowan University, Glassboro, NJ, United States
| | - Robert Chitren
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ, United States
- Department of Chemistry and Biochemistry, College of Science and Mathematics, Rowan University, Glassboro, NJ, United States
| | | | | | - Krishne Gowda
- Department of Pharmacology, Penn State Hershey Cancer Institute, Penn State College of Medicine, Hershey, PA, United States
| | - Shantu Amin
- Department of Pharmacology, Penn State Hershey Cancer Institute, Penn State College of Medicine, Hershey, PA, United States
| | - Gavin P. Robertson
- Department of Pharmacology, Penn State Hershey Cancer Institute, Penn State College of Medicine, Hershey, PA, United States
| | - Venkatesh V. Nemmara
- Department of Chemistry and Biochemistry, College of Science and Mathematics, Rowan University, Glassboro, NJ, United States
| | - Subash C. Jonnalagadda
- Department of Chemistry and Biochemistry, College of Science and Mathematics, Rowan University, Glassboro, NJ, United States
| | - Tulin Budak-Alpdogan
- Department of Hematology, MD Anderson Cancer Center at Cooper, Cooper Health University, Camden, NJ, United States
| | - Manoj K. Pandey
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ, United States
| |
Collapse
|
5
|
Ta TM, Malik S, Anderson EM, Jones AD, Perchik J, Freylikh M, Sardo L, Klase ZA, Izumi T. Insights Into Persistent HIV-1 Infection and Functional Cure: Novel Capabilities and Strategies. Front Microbiol 2022; 13:862270. [PMID: 35572626 PMCID: PMC9093714 DOI: 10.3389/fmicb.2022.862270] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 02/21/2022] [Indexed: 12/23/2022] Open
Abstract
Although HIV-1 replication can be efficiently suppressed to undetectable levels in peripheral blood by combination antiretroviral therapy (cART), lifelong medication is still required in people living with HIV (PLWH). Life expectancies have been extended by cART, but age-related comorbidities have increased which are associated with heavy physiological and economic burdens on PLWH. The obstacle to a functional HIV cure can be ascribed to the formation of latent reservoir establishment at the time of acute infection that persists during cART. Recent studies suggest that some HIV reservoirs are established in the early acute stages of HIV infection within multiple immune cells that are gradually shaped by various host and viral mechanisms and may undergo clonal expansion. Early cART initiation has been shown to reduce the reservoir size in HIV-infected individuals. Memory CD4+ T cell subsets are regarded as the predominant cellular compartment of the HIV reservoir, but monocytes and derivative macrophages or dendritic cells also play a role in the persistent virus infection. HIV latency is regulated at multiple molecular levels in transcriptional and post-transcriptional processes. Epigenetic regulation of the proviral promoter can profoundly regulate the viral transcription. In addition, transcriptional elongation, RNA splicing, and nuclear export pathways are also involved in maintaining HIV latency. Although most proviruses contain large internal deletions, some defective proviruses may induce immune activation by expressing viral proteins or producing replication-defective viral-like particles. In this review article, we discuss the state of the art on mechanisms of virus persistence in the periphery and tissue and summarize interdisciplinary approaches toward a functional HIV cure, including novel capabilities and strategies to measure and eliminate the infected reservoirs and induce immune control.
Collapse
Affiliation(s)
- Tram M. Ta
- Department of Biological Sciences, Misher College of Arts and Sciences, University of the Sciences in Philadelphia, Philadelphia, PA, United States
| | - Sajjaf Malik
- Department of Biological Sciences, Misher College of Arts and Sciences, University of the Sciences in Philadelphia, Philadelphia, PA, United States
| | - Elizabeth M. Anderson
- Office of the Assistant Secretary for Health, Region 3, U.S. Department of Health and Human Services, Washington, DC, United States
| | - Amber D. Jones
- Department of Biological Sciences, Misher College of Arts and Sciences, University of the Sciences in Philadelphia, Philadelphia, PA, United States,Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Jocelyn Perchik
- Department of Biological Sciences, Misher College of Arts and Sciences, University of the Sciences in Philadelphia, Philadelphia, PA, United States
| | - Maryann Freylikh
- Department of Biological Sciences, Misher College of Arts and Sciences, University of the Sciences in Philadelphia, Philadelphia, PA, United States
| | - Luca Sardo
- Department of Infectious Disease and Vaccines, Merck & Co., Inc., Kenilworth, NJ, United States
| | - Zackary A. Klase
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, United States,Center for Neuroimmunology and CNS Therapeutics, Institute of Molecular Medicine and Infectious Diseases, Drexel University of Medicine, Philadelphia, PA, United States
| | - Taisuke Izumi
- Department of Biological Sciences, Misher College of Arts and Sciences, University of the Sciences in Philadelphia, Philadelphia, PA, United States,*Correspondence: Taisuke Izumi,
| |
Collapse
|
6
|
Lin A, Elbezanti WO, Schirling A, Ahmed A, Van Duyne R, Cocklin S, Klase Z. Alprazolam Prompts HIV-1 Transcriptional Reactivation and Enhances CTL Response Through RUNX1 Inhibition and STAT5 Activation. Front Neurol 2021; 12:663793. [PMID: 34367046 PMCID: PMC8339301 DOI: 10.3389/fneur.2021.663793] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 06/17/2021] [Indexed: 12/02/2022] Open
Abstract
The HIV-1 pandemic is a significant challenge to the field of medicine. Despite advancements in antiretroviral (ART) development, 38 million people worldwide still live with this disease without a cure. A significant barrier to the eradication of HIV-1 lies in the persistently latent pool that establishes early in the infection. The “shock and kill” strategy relies on the discovery of a latency-reversing agent (LRA) that can robustly reactivate the latent pool and not limit immune clearance. We have found that a benzodiazepine (BDZ), that is commonly prescribed for panic and anxiety disorder, to be an ideal candidate for latency reversal. The BDZ Alprazolam functions as an inhibitor of the transcription factor RUNX1, which negatively regulates HIV-1 transcription. In addition to the displacement of RUNX1 from the HIV-1 5′LTR, Alprazolam potentiates the activation of STAT5 and its recruitment to the viral promoter. The activation of STAT5 in cytotoxic T cells may enable immune activation which is independent of the IL-2 receptor. These findings have significance for the potential use of Alprazolam in a curative strategy and to addressing the neuroinflammation associated with neuroHIV-1.
Collapse
Affiliation(s)
- Angel Lin
- Department of Biological Sciences, University of the Sciences, Philadelphia, PA, United States.,Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Weam Othman Elbezanti
- Department of Biological Sciences, University of the Sciences, Philadelphia, PA, United States.,Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA, United States
| | - Alexis Schirling
- Department of Biological Sciences, University of the Sciences, Philadelphia, PA, United States.,HIV-1 Dynamics and Replication Program, National Cancer Institute, Frederick, MD, United States
| | - Adel Ahmed
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Rachel Van Duyne
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Simon Cocklin
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Zachary Klase
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, United States.,Center for Neuroimmunology and CNS Therapeutics, Institute of Molecular Medicine and Infectious Diseases, Drexel University College of Medicine, Philadelphia, PA, United States
| |
Collapse
|