1
|
Andersen DK, Fischer GA, Combrink L. The Alligator and the Mosquito: North American Crocodilians as Amplifiers of West Nile Virus in Changing Climates. Microorganisms 2024; 12:1898. [PMID: 39338572 PMCID: PMC11433929 DOI: 10.3390/microorganisms12091898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/06/2024] [Accepted: 09/09/2024] [Indexed: 09/30/2024] Open
Abstract
In an age of emerging zoonoses, it is important to understand the intricate system of vectors and reservoirs, or hosts, and their relation to humans. West Nile Virus (WNV) has been detected in a myriad of nonhuman hosts. Transmission of the virus to humans is reliant on amplified seroprevalence within the host, which occurs primarily in birds. However, recent studies have found that other animal groups, including crocodilians, can obtain seroprevalence amplification to levels that make them competent hosts able to transmit WNV to mosquitoes, which can then transmit to humans. Climate change could exacerbate this transmission risk by shifting the distributions of mosquito vectors towards novel geographic ranges. Here, we use maximum entropy models to map the current and future distributions of three mosquito vector species and four crocodilian species in North America to determine the emerging risk of WNV outbreaks associated with changing climates and WNV associated with crocodilians in North America. From our models, we determined that one mosquito species in particular, Culex quinquefasciatus, will increase its distribution across the ranges of all crocodilian species in all tested climate change scenarios. This poses a potential risk to public health for people visiting and living near crocodilian farms and high-density natural crocodilian populations.
Collapse
Affiliation(s)
| | | | - Leigh Combrink
- School of Natural Resources and the Environment, University of Arizona, Tucson, AZ 85721, USA;
| |
Collapse
|
2
|
Slape RL, Milic NL. Exploring the most common lesion of Australian farmed saltwater crocodile (Crocodylus porosus) belly skin in the Northern Territory. Vet J 2024; 306:106174. [PMID: 38879075 DOI: 10.1016/j.tvjl.2024.106174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 06/10/2024] [Accepted: 06/12/2024] [Indexed: 06/20/2024]
Abstract
This is the first descriptive study to characterise and identify the most common lesions on harvested Australian saltwater crocodiles (Crocodylus porosus). 88 skins were examined over a 17-month period as part of normal farming practices, 2901 lesions identified, with scale location, location of the lesion on the scale, and characteristics (contour, keratin normality, translucency and colour) recorded. The study determined that linear lesions accounted for 68.25 % of lesions followed by foci lesions 17.24 %. Lesions were distributed on the upper proportion of the belly skin (77.8 %) and along the midline (72 %). The most common lesion identified was a single translucent linear lesion across the scale that otherwise appeared normal (58.95 %). While there is extensive research into pathogenic agents, further research is recommended to explore further causation of linear lesions, and factors that may contribute to their prevention. Given the subjective nature of crocodile skin grading, it is recommended future research into lesions is required to ensure the sustainability and profitability of the industry.
Collapse
Affiliation(s)
- Rhiannon L Slape
- Faculty of Health, Charles Darwin University, Darwin, Northern Territory 0909, Australia.
| | - Natalie L Milic
- Faculty of Health, Charles Darwin University, Darwin, Northern Territory 0909, Australia
| |
Collapse
|
3
|
Habarugira G, Harrison JJ, Moran J, Suen WW, Colmant AMG, Hobson-Peters J, Isberg SR, Bielefeldt-Ohmann H, Hall RA. A chimeric vaccine protects farmed saltwater crocodiles from West Nile virus-induced skin lesions. NPJ Vaccines 2023; 8:93. [PMID: 37369653 DOI: 10.1038/s41541-023-00688-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 05/30/2023] [Indexed: 06/29/2023] Open
Abstract
West Nile virus (WNV) causes skin lesions in farmed crocodiles leading to the depreciation of the value of their hides and significant economic losses. However, there is no commercially available vaccine designed for use in crocodilians against WNV. We tested chimeric virus vaccines composed of the non-structural genes of the insect-specific flavivirus Binjari virus (BinJV) and genes encoding the structural proteins of WNV. The BinJV/WNV chimera, is antigenically similar to wild-type WNV but replication-defective in vertebrates. Intramuscular injection of two doses of BinJV/WNV in hatchling saltwater crocodiles (Crocodylus porosus) elicited a robust neutralising antibody response and conferred protection against viremia and skin lesions after challenge with WNV. In contrast, mock-vaccinated crocodiles became viraemic and 22.2% exhibited WNV-induced lesions. This suggests that the BinJV/WNV chimera is a safe and efficacious vaccine for preventing WNV-induced skin lesions in farmed crocodilians.
Collapse
Affiliation(s)
- Gervais Habarugira
- School of Veterinary Science, The University of Queensland, Gatton, QLD, Australia
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Australia
| | - Jessica J Harrison
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Australia
| | - Jasmin Moran
- Centre for Crocodile Research, Noonamah, NT, Australia
| | - Willy W Suen
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Australia
- Australian Centre for Disease Preparedness, The Commonwealth Scientific and Industrial Research Organisation, Geelong, VIC, 3219, Australia
| | - Agathe M G Colmant
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, St Lucia, QLD, Australia
- Unité des Virus Émergents (UVE) Aix-Marseille Univ-IRD 190-Inserm 1207, Marseille, France
| | - Jody Hobson-Peters
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, St Lucia, QLD, Australia
| | | | - Helle Bielefeldt-Ohmann
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Australia.
- Australian Infectious Diseases Research Centre, The University of Queensland, St Lucia, QLD, Australia.
| | - Roy A Hall
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Australia.
- Australian Infectious Diseases Research Centre, The University of Queensland, St Lucia, QLD, Australia.
| |
Collapse
|
4
|
Khare B, Kuhn RJ. The Japanese Encephalitis Antigenic Complex Viruses: From Structure to Immunity. Viruses 2022; 14:2213. [PMID: 36298768 PMCID: PMC9607441 DOI: 10.3390/v14102213] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 09/30/2022] [Accepted: 10/04/2022] [Indexed: 11/09/2022] Open
Abstract
In the last three decades, several flaviviruses of concern that belong to different antigenic groups have expanded geographically. This has resulted in the presence of often more than one virus from a single antigenic group in some areas, while in Europe, Africa and Australia, additionally, multiple viruses belonging to the Japanese encephalitis (JE) serogroup co-circulate. Morphological heterogeneity of flaviviruses dictates antibody recognition and affects virus neutralization, which influences infection control. The latter is further impacted by sequential infections involving diverse flaviviruses co-circulating within a region and their cross-reactivity. The ensuing complex molecular virus-host interplay leads to either cross-protection or disease enhancement; however, the molecular determinants and mechanisms driving these outcomes are unclear. In this review, we provide an overview of the epidemiology of four JE serocomplex viruses, parameters affecting flaviviral heterogeneity and antibody recognition, host immune responses and the current knowledge of the cross-reactivity involving JE serocomplex flaviviruses that leads to differential clinical outcomes, which may inform future preventative and therapeutic interventions.
Collapse
Affiliation(s)
- Baldeep Khare
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Richard J. Kuhn
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
- Purdue Institute of Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
5
|
Abstract
Flaviviruses are positive-sense single-stranded RNA viruses, including some well-known human pathogens such as Zika, dengue, and yellow fever viruses, which are primarily associated with mosquito and tick vectors. The vast majority of flavivirus research has focused on terrestrial environments; however, recent findings indicate that a range of flaviviruses are also present in aquatic environments, both marine and freshwater. These flaviviruses are found in various hosts, including fish, crustaceans, molluscs, and echinoderms. Although the effects of aquatic flaviviruses on the hosts they infect are not all known, some have been detected in farmed species and may have detrimental effects on the aquaculture industry. Exploration of the evolutionary history through the discovery of the Wenzhou shark flavivirus in both a shark and crab host is of particular interest since the potential dual-host nature of this virus may indicate that the invertebrate-vertebrate relationship seen in other flaviviruses may have a more profound evolutionary root than previously expected. Potential endogenous viral elements and the range of novel aquatic flaviviruses discovered thus shed light on virus origins and evolutionary history and may indicate that, like terrestrial life, the origins of flaviviruses may lie in aquatic environments.
Collapse
Affiliation(s)
- Megan J. Lensink
- Cluster of Microbial Ecology, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
| | - Yiqiao Li
- Clinical and Epidemiological Virology, Rega Institute for Medical Research, Department of Microbiology and Immunology, KU Leuven, Leuven, Belgium
| | - Sebastian Lequime
- Cluster of Microbial Ecology, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
6
|
Arthropod-Borne Virus Surveillance as a Tool to Study the Australian Mosquito Virome. Viruses 2022; 14:v14091882. [PMID: 36146689 PMCID: PMC9502171 DOI: 10.3390/v14091882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 08/23/2022] [Accepted: 08/24/2022] [Indexed: 12/05/2022] Open
Abstract
Mosquitoes (n = 4381 in 198 pools) were collected in March and April 2018 to survey the presence of West Nile virus Kunjin strain in mosquito populations around crocodile farms in the Darwin region of the Northern Territory (NT) of Australia. While no Kunjin virus was detected in these mosquitoes, we applied our viral replicative intermediates screening system termed monoclonal antibodies to viral RNA intermediates in cells or MAVRIC to this set of samples. This resulted in the detection of 28 pools with virus replicating in C6/36 mosquito cells and the identification of three insect viruses from three distinct virus classes. We demonstrate the persistence of the insect-specific flavivirus Palm Creek virus in Coquillettidia xanthogaster mosquitoes from Darwin over almost a decade, with limited genetic drift. We also detected a novel Hubei macula-like virus 3 strain in samples from two mosquito genera, suggesting the virus, for which the sequence was originally detected in spiders and soybean thrips, might be involved in a horizontal transmission cycle between arthropods and plants. Overall, these data demonstrate the strength of the optimized MAVRIC system and contribute to our general knowledge of the mosquito virome and insect viruses.
Collapse
|
7
|
Kurucz N, McMahon JL, Warchot A, Hewitson G, Barcelon J, Moore F, Moran J, Harrison JJ, Colmant AMG, Staunton KM, Ritchie SA, Townsend M, Steiger DM, Hall RA, Isberg SR, Hall-Mendelin S. Nucleic Acid Preservation Card Surveillance Is Effective for Monitoring Arbovirus Transmission on Crocodile Farms and Provides a One Health Benefit to Northern Australia. Viruses 2022; 14:v14061342. [PMID: 35746812 PMCID: PMC9227548 DOI: 10.3390/v14061342] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 06/09/2022] [Accepted: 06/09/2022] [Indexed: 01/15/2023] Open
Abstract
The Kunjin strain of West Nile virus (WNVKUN) is a mosquito-transmitted flavivirus that can infect farmed saltwater crocodiles in Australia and cause skin lesions that devalue the hides of harvested animals. We implemented a surveillance system using honey-baited nucleic acid preservation cards to monitor WNVKUN and another endemic flavivirus pathogen, Murray Valley encephalitis virus (MVEV), on crocodile farms in northern Australia. The traps were set between February 2018 and July 2020 on three crocodile farms in Darwin (Northern Territory) and one in Cairns (North Queensland) at fortnightly intervals with reduced trapping during the winter months. WNVKUN RNA was detected on all three crocodile farms near Darwin, predominantly between March and May of each year. Two of the NT crocodile farms also yielded the detection of MVE viral RNA sporadically spread between April and November in 2018 and 2020. In contrast, no viral RNA was detected on crocodile farms in Cairns during the entire trapping period. The detection of WNVKUN and MVEV transmission by FTATM cards on farms in the Northern Territory generally correlated with the detection of their transmission to sentinel chicken flocks in nearby localities around Darwin as part of a separate public health surveillance program. While no isolates of WNVKUN or MVEV were obtained from mosquitoes collected on Darwin crocodile farms immediately following the FTATM card detections, we did isolate another flavivirus, Kokobera virus (KOKV), from Culex annulirostris mosquitoes. Our studies support the use of the FTATM card system as a sensitive and accurate method to monitor the transmission of WNVKUN and other arboviruses on crocodile farms to enable the timely implementation of mosquito control measures. Our detection of MVEV transmission and isolation of KOKV from mosquitoes also warrants further investigation of their potential role in causing diseases in crocodiles and highlights a “One Health” issue concerning arbovirus transmission to crocodile farm workers. In this context, the introduction of FTATM cards onto crocodile farms appears to provide an additional surveillance tool to detect arbovirus transmission in the Darwin region, allowing for a more timely intervention of vector control by relevant authorities.
Collapse
Affiliation(s)
- Nina Kurucz
- Medical Entomology, Centre for Disease Control, Public Health Unit, NT Health, Darwin, NT 0811, Australia; (N.K.); (A.W.)
| | - Jamie Lee McMahon
- Public Health Virology, Forensic and Scientific Services, Queensland Health, Coopers Plains, QLD 4108, Australia; (J.L.M.); (G.H.); (J.B.); (F.M.)
| | - Allan Warchot
- Medical Entomology, Centre for Disease Control, Public Health Unit, NT Health, Darwin, NT 0811, Australia; (N.K.); (A.W.)
| | - Glen Hewitson
- Public Health Virology, Forensic and Scientific Services, Queensland Health, Coopers Plains, QLD 4108, Australia; (J.L.M.); (G.H.); (J.B.); (F.M.)
| | - Jean Barcelon
- Public Health Virology, Forensic and Scientific Services, Queensland Health, Coopers Plains, QLD 4108, Australia; (J.L.M.); (G.H.); (J.B.); (F.M.)
| | - Frederick Moore
- Public Health Virology, Forensic and Scientific Services, Queensland Health, Coopers Plains, QLD 4108, Australia; (J.L.M.); (G.H.); (J.B.); (F.M.)
| | - Jasmin Moran
- Centre for Crocodile Research, Noonamah, NT 0837, Australia;
| | - Jessica J. Harrison
- School of Chemistry and Molecular Biosciences, University of Queensland, St. Lucia, QLD 4072, Australia; (J.J.H.); (A.M.G.C.); (R.A.H.)
| | - Agathe M. G. Colmant
- School of Chemistry and Molecular Biosciences, University of Queensland, St. Lucia, QLD 4072, Australia; (J.J.H.); (A.M.G.C.); (R.A.H.)
| | - Kyran M. Staunton
- Australian Institute of Tropical Health and Medicine, James Cook University, Smithfield, QLD 4878, Australia; (K.M.S.); (S.A.R.); (M.T.); (D.M.S.)
| | - Scott A. Ritchie
- Australian Institute of Tropical Health and Medicine, James Cook University, Smithfield, QLD 4878, Australia; (K.M.S.); (S.A.R.); (M.T.); (D.M.S.)
| | - Michael Townsend
- Australian Institute of Tropical Health and Medicine, James Cook University, Smithfield, QLD 4878, Australia; (K.M.S.); (S.A.R.); (M.T.); (D.M.S.)
| | - Dagmar Meyer Steiger
- Australian Institute of Tropical Health and Medicine, James Cook University, Smithfield, QLD 4878, Australia; (K.M.S.); (S.A.R.); (M.T.); (D.M.S.)
| | - Roy A. Hall
- School of Chemistry and Molecular Biosciences, University of Queensland, St. Lucia, QLD 4072, Australia; (J.J.H.); (A.M.G.C.); (R.A.H.)
- Australian Infectious Diseases Centre, University of Queensland, St. Lucia, QLD 4072, Australia
| | - Sally R. Isberg
- Centre for Crocodile Research, Noonamah, NT 0837, Australia;
- Correspondence: (S.R.I.); (S.H.-M.)
| | - Sonja Hall-Mendelin
- Public Health Virology, Forensic and Scientific Services, Queensland Health, Coopers Plains, QLD 4108, Australia; (J.L.M.); (G.H.); (J.B.); (F.M.)
- Correspondence: (S.R.I.); (S.H.-M.)
| |
Collapse
|
8
|
Habarugira G, Moran J, Harrison JJ, Isberg SR, Hobson-Peters J, Hall RA, Bielefeldt-Ohmann H. Evidence of Infection with Zoonotic Mosquito-Borne Flaviviruses in Saltwater Crocodiles (Crocodylus porosus) in Northern Australia. Viruses 2022; 14:v14051106. [PMID: 35632847 PMCID: PMC9144604 DOI: 10.3390/v14051106] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/18/2022] [Accepted: 05/19/2022] [Indexed: 11/16/2022] Open
Abstract
The risk of flavivirus infections among the crocodilian species was not recognised until West Nile virus (WNV) was introduced into the Americas. The first outbreaks caused death and substantial economic losses in the alligator farming industry. Several other WNV disease episodes have been reported in crocodilians in other parts of the world, including Australia and Africa. Considering that WNV shares vectors with other flaviviruses, crocodilians are highly likely to also be exposed to flaviviruses other than WNV. A serological survey for flaviviral infections was conducted on saltwater crocodiles (Crocodylus porosus) at farms in the Northern Territory, Australia. Five hundred serum samples, collected from three crocodile farms, were screened using a pan-flavivirus-specific blocking ELISA. The screening revealed that 26% (n = 130/500) of the animals had antibodies to flaviviruses. Of these, 31.5% had neutralising antibodies to WNVKUN (Kunjin strain), while 1.5% had neutralising antibodies to another important flavivirus pathogen, Murray Valley encephalitis virus (MVEV). Of the other flaviviruses tested for, Fitzroy River virus (FRV) was the most frequent (58.5%) in which virus neutralising antibodies were detected. Our data indicate that farmed crocodiles in the Northern Territory are exposed to a range of potentially zoonotic flaviviruses, in addition to WNVKUN. While these flaviviruses do not cause any known diseases in crocodiles, there is a need to investigate whether infected saltwater crocodiles can develop a viremia to sustain the transmission cycle or farmed crocodilians can be used as sentinels to monitor the dynamics of arboviral infections in tropical areas.
Collapse
Affiliation(s)
- Gervais Habarugira
- School of Veterinary Science, The University of Queensland, Gatton, QLD 4343, Australia;
| | - Jasmin Moran
- Centre for Crocodile Research, Noonamah, NT 0837, Australia; (J.M.); (S.R.I.)
| | - Jessica J. Harrison
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia; (J.J.H.); (J.H.-P.); (R.A.H.)
- Australian Infectious Diseases Research Centre, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Sally R. Isberg
- Centre for Crocodile Research, Noonamah, NT 0837, Australia; (J.M.); (S.R.I.)
| | - Jody Hobson-Peters
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia; (J.J.H.); (J.H.-P.); (R.A.H.)
- Australian Infectious Diseases Research Centre, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Roy A. Hall
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia; (J.J.H.); (J.H.-P.); (R.A.H.)
- Australian Infectious Diseases Research Centre, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Helle Bielefeldt-Ohmann
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia; (J.J.H.); (J.H.-P.); (R.A.H.)
- Australian Infectious Diseases Research Centre, The University of Queensland, St Lucia, QLD 4072, Australia
- Correspondence:
| |
Collapse
|
9
|
Byas AD, Gallichotte EN, Hartwig AE, Porter SM, Gordy PW, Felix TA, Bowen RA, Ebel GD, Bosco-Lauth AM. American alligators are capable of West Nile virus amplification, mosquito infection and transmission. Virology 2022; 568:49-55. [PMID: 35114499 PMCID: PMC8866202 DOI: 10.1016/j.virol.2022.01.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 01/17/2022] [Accepted: 01/19/2022] [Indexed: 10/19/2022]
Abstract
West Nile virus (WNV) overwintering is poorly understood and likely multifactorial. Interest in alligators as a potential amplifying host arose when it was shown that they develop viremias theoretically sufficient to infect mosquitoes. We examined potential ways in which alligators may contribute to the natural ecology of WNV. We experimentally demonstrated that alligators are capable of WNV amplification with subsequent mosquito infection and transmission capability, that WNV-infected mosquitoes readily infect alligators and that water can serve as a source of infection for alligators but does not easily serve as in intermediate means for transmission between birds and alligators. These findings indicate potential mechanisms for maintenance of WNV outside of the primary bird-mosquito transmission cycle.
Collapse
Affiliation(s)
- Alex D. Byas
- Colorado State University, Microbiology, Immunology & Pathology Department, Fort Collins, CO, USA
| | - Emily N. Gallichotte
- Colorado State University, Microbiology, Immunology & Pathology Department, Fort Collins, CO, USA
| | - Airn E. Hartwig
- Colorado State University, Biomedical Sciences Department, Fort Collins, CO, USA
| | - Stephanie M. Porter
- Colorado State University, Microbiology, Immunology & Pathology Department, Fort Collins, CO, USA
| | - Paul W. Gordy
- Colorado State University, Biomedical Sciences Department, Fort Collins, CO, USA
| | - Todd A. Felix
- United States Department of Agriculture, Animal and Plant Health Inspection Service, Wildlife Services, Lakewood, CO, USA
| | - Richard A. Bowen
- Colorado State University, Biomedical Sciences Department, Fort Collins, CO, USA
| | - Gregory D. Ebel
- Colorado State University, Microbiology, Immunology & Pathology Department, Fort Collins, CO, USA
| | | |
Collapse
|
10
|
D'Amore C, Grimaldi P, Ascione T, Conti V, Sellitto C, Franci G, Kafil SH, Pagliano P. West Nile Virus diffusion in temperate regions and climate change. A systematic review. LE INFEZIONI IN MEDICINA 2022; 31:20-30. [PMID: 36908379 PMCID: PMC9994819 DOI: 10.53854/liim-3101-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 02/02/2023] [Indexed: 03/07/2023]
Abstract
West Nile virus (WNV) is a member of the Japanese encephalitis serocomplex, which was first described in 1937 as neurotropic virus in Uganda in 1937. Subsequently, WNV was identified in the rest of the old-world and from 1999 in North America. Birds are the primary hosts, and WNV is maintained in a bird-mosquito-bird cycle, with pigs as amplifying hosts and humans and horses as incidental hosts. WNV transmission is warranted by mosquitoes, usually of the Culex spp., with a tendency to spill over when mosquitoes' populations build up. Other types of transmissions have been described in endemic areas, as trough transplanted organs and transfused blood, placenta, maternal milk, and in some occupational settings. WNV infections in North America and Europe are generally reported during the summer and autumn. Extreme climate phenomena and soil degradation are important events which contribute to expansion of mosquito population and consequently to the increasing number of infections. Draught plays a pivotal role as it makes foul water standing in city drains and catch basins richer of organic material. The relationship between global warming and WNV in climate areas is depicted by investigations on 16,298 WNV cases observed in the United States during the period 2001-2005 that showed that a 5°C increase in mean maximum weekly temperature was associated with a 32-50% higher incidence of WNV infection. In Europe, during the 2022 season, an increase of WNV cases was observed in Mediterranean countries where 1,041 cases were reported based on ECDC data. This outbreak can be associated to the climate characteristics reported during this period and to the introduction of a new WNV-1 lineage. In conclusion, current climate change is causing an increase of mosquito circulation that supports the widest spread of some vector-borne virus including WNV diffusion in previously non-permissible areas. This warrant public health measures to control vectors circulation to reduce WNV and to screen blood and organ donations.
Collapse
Affiliation(s)
- Chiara D'Amore
- Department of Infectious Diseases, AOU "San Giovanni di Dio e Ruggi D'Aragona", Salerno, Italy
| | - Pierantonio Grimaldi
- Department of Mental Health and Public Medicine, Section of Infectious Diseases, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Tiziana Ascione
- Service of Infectious Diseases, AORN "A. Cardarelli", Naples, Italy
| | - Valeria Conti
- Clinical Pharmacology Unit. Department of Medicine, Surgery, and Dentistry, "Scuola Medica Salernitana", University of Salerno, Baronissi, Italy
| | - Carmine Sellitto
- Clinical Pharmacology Unit. Department of Medicine, Surgery, and Dentistry, "Scuola Medica Salernitana", University of Salerno, Baronissi, Italy
| | - Gianluigi Franci
- Clinical Microbiology Unit. Department of Medicine, Surgery, and Dentistry, "Scuola Medica Salernitana", University of Salerno, Baronissi, Italy
| | - Samadi Hossein Kafil
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Pasquale Pagliano
- Unit of Infectious Diseases, Department of Medicine, Surgery and Dentistry, "Scuola Medica Salernitana", University of Salerno, Baronissi, Italy
| |
Collapse
|
11
|
Saiz JC, Martín-Acebes MA, Blázquez AB, Escribano-Romero E, Poderoso T, Jiménez de Oya N. Pathogenicity and virulence of West Nile virus revisited eight decades after its first isolation. Virulence 2021; 12:1145-1173. [PMID: 33843445 PMCID: PMC8043182 DOI: 10.1080/21505594.2021.1908740] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
West Nile virus (WNV) is a flavivirus which transmission cycle is maintained between mosquitoes and birds, although it occasionally causes sporadic outbreaks in horses and humans that can result in serious diseases and even death. Since its first isolation in Africa in 1937, WNV had been considered a neglected pathogen until its recent spread throughout Europe and the colonization of America, regions where it continues to cause outbreaks with severe neurological consequences in humans and horses. Although our knowledge about the characteristics and consequences of the virus has increased enormously lately, many questions remain to be resolved. Here, we thoroughly update our knowledge of different aspects of the WNV life cycle: virology and molecular classification, host cell interactions, transmission dynamics, host range, epidemiology and surveillance, immune response, clinical presentations, pathogenesis, diagnosis, prophylaxis (antivirals and vaccines), and prevention, and we highlight those aspects that are still unknown and that undoubtedly require further investigation.
Collapse
Affiliation(s)
- Juan-Carlos Saiz
- Department of Biotechnology, National Institute for Agricultural and Food Research and Technology (INIA), Madrid, Spain
| | - Miguel A Martín-Acebes
- Department of Biotechnology, National Institute for Agricultural and Food Research and Technology (INIA), Madrid, Spain
| | - Ana B Blázquez
- Department of Biotechnology, National Institute for Agricultural and Food Research and Technology (INIA), Madrid, Spain
| | - Estela Escribano-Romero
- Department of Biotechnology, National Institute for Agricultural and Food Research and Technology (INIA), Madrid, Spain
| | - Teresa Poderoso
- Molecular Virology Group, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Nereida Jiménez de Oya
- Department of Biotechnology, National Institute for Agricultural and Food Research and Technology (INIA), Madrid, Spain
| |
Collapse
|
12
|
West Nile Virus: An Update on Pathobiology, Epidemiology, Diagnostics, Control and "One Health" Implications. Pathogens 2020; 9:pathogens9070589. [PMID: 32707644 PMCID: PMC7400489 DOI: 10.3390/pathogens9070589] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 07/16/2020] [Accepted: 07/16/2020] [Indexed: 02/06/2023] Open
Abstract
West Nile virus (WNV) is an important zoonotic flavivirus responsible for mild fever to severe, lethal neuroinvasive disease in humans, horses, birds, and other wildlife species. Since its discovery, WNV has caused multiple human and animal disease outbreaks in all continents, except Antarctica. Infections are associated with economic losses, mainly due to the cost of treatment of infected patients, control programmes, and loss of animals and animal products. The pathogenesis of WNV has been extensively investigated in natural hosts as well as in several animal models, including rodents, lagomorphs, birds, and reptiles. However, most of the proposed pathogenesis hypotheses remain contentious, and much remains to be elucidated. At the same time, the unavailability of specific antiviral treatment or effective and safe vaccines contribute to the perpetuation of the disease and regular occurrence of outbreaks in both endemic and non-endemic areas. Moreover, globalisation and climate change are also important drivers of the emergence and re-emergence of the virus and disease. Here, we give an update of the pathobiology, epidemiology, diagnostics, control, and “One Health” implications of WNV infection and disease.
Collapse
|