1
|
Koeda S, Onouchi M, Mori N, Pohan NS, Nagano AJ, Kesumawati E. A recessive gene pepy-1 encoding Pelota confers resistance to begomovirus isolates of PepYLCIV and PepYLCAV in Capsicum annuum. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2021; 134:2947-2964. [PMID: 34081151 DOI: 10.1007/s00122-021-03870-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 05/24/2021] [Indexed: 05/25/2023]
Abstract
A begomovirus resistance gene pepy-1, which encodes the messenger RNA surveillance factor Pelota, was identified in pepper (C. annuum) through map-based cloning and functional characterization. Pepper yellow leaf curl disease caused by begomoviruses seriously affects pepper (Capsicum spp.) production in a number of regions around the world. Ty genes of tomato, which confer resistance to the tomato yellow leaf curl virus, are the only begomovirus resistance genes cloned to date. In this study, we focused on the identification of begomovirus resistance genes in Capsicum annuum. BaPep-5 was identified as a novel source of resistance against pepper yellow leaf curl Indonesia virus (PepYLCIV) and pepper yellow leaf curl Aceh virus (PepYLCAV). A single recessive locus, which we named as pepper yellow leaf curl disease virus resistance 1 (pepy-1), responsible for PepYLCAV resistance in BaPep-5 was identified on chromosome 5 in an F2 population derived from a cross between BaPep-5 and the begomovirus susceptible accession BaPep-4. In the target region spanning 34 kb, a single candidate gene, the messenger RNA surveillance factor Pelota, was identified. Whole-genome resequencing of BaPep-4 and BaPep-5 and comparison of their genomic DNA sequences revealed a single nucleotide polymorphism (A to G) located at the splice site of the 9th intron of CaPelota in BaPep-5, which caused the insertion of the 9th intron into the transcript, resulting in the addition of 28 amino acids to CaPelota protein without causing a frameshift. Virus-induced gene silencing of CaPelota in the begomovirus susceptible pepper No.218 resulted in the gain of resistance against PepYLCIV, a phenotype consistent with BaPep-5. The DNA marker developed in this study will greatly facilitate marker-assisted breeding of begomovirus resistance in peppers.
Collapse
Affiliation(s)
- Sota Koeda
- Graduate School of Agriculture, Kindai University, Nara, Nara, 631-8505, Japan.
| | - Mika Onouchi
- Graduate School of Agriculture, Kindai University, Nara, Nara, 631-8505, Japan
| | - Namiko Mori
- Graduate School of Agriculture, Kindai University, Nara, Nara, 631-8505, Japan
| | - Nadya Syafira Pohan
- Graduate School of Agriculture, Kindai University, Nara, Nara, 631-8505, Japan
| | - Atsushi J Nagano
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata, 997-0017, Japan
- Faculty of Agriculture, Ryukoku University, Otsu, Shiga, 520-2914, Japan
| | - Elly Kesumawati
- Faculty of Agriculture, Syiah Kuala University, Banda Aceh, Aceh , 23111, Indonesia
| |
Collapse
|
2
|
Devendran R, Kumar M, Ghosh D, Yogindran S, Karim MJ, Chakraborty S. Capsicum-infecting begomoviruses as global pathogens: host-virus interplay, pathogenesis, and management. Trends Microbiol 2021; 30:170-184. [PMID: 34215487 DOI: 10.1016/j.tim.2021.05.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 05/21/2021] [Accepted: 05/25/2021] [Indexed: 01/28/2023]
Abstract
Whitefly-transmitted begomoviruses are among the major threats to the cultivation of Capsicum spp. (Family: Solanaceae) worldwide. Capsicum-infecting begomoviruses (CIBs) have a broad host range and are commonly found in mixed infections, which, in turn, fuels the emergence of better-adapted species through intraspecies and interspecies recombination. Virus-encoded proteins hijack host factors to breach the well-coordinated antiviral response of plants. Epigenetic modifications of histones associated with viral minichromosomes play a critical role in this molecular arms race. Moreover, the association of DNA satellites further enhances the virulence of CIBs as the subviral agents aid the helper viruses to circumvent plant antiviral defense and facilitate expansion of their host range and disease development. The objective of this review is to provide a comprehensive overview on various aspects of CIBs such as their emergence, epidemiology, mechanism of pathogenesis, and the management protocols being employed for combating them.
Collapse
Affiliation(s)
- Ragunathan Devendran
- Molecular Virology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Manish Kumar
- Molecular Virology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Dibyendu Ghosh
- Molecular Virology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Sneha Yogindran
- Molecular Virology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Mir Jishan Karim
- Molecular Virology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Supriya Chakraborty
- Molecular Virology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India.
| |
Collapse
|
3
|
Construction of Infectious Clones of Begomoviruses: Strategies, Techniques and Applications. BIOLOGY 2021; 10:biology10070604. [PMID: 34209952 PMCID: PMC8301103 DOI: 10.3390/biology10070604] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 06/21/2021] [Accepted: 06/24/2021] [Indexed: 11/24/2022]
Abstract
Simple Summary Begomovirus has a wide host range and threatens a significant amount of economic damage to many important crops such as tomatoes, beans, cassava, squash and cotton. There are many efforts directed at controlling this disease including the use of insecticides to control the insect vector as well as screening the resistant varieties. The use of synthetic virus or infectious clones approaches has allowed plant virologists to characterize and exploit the genome virus at the molecular and biological levels. By exploiting the DNA of the virus using the infectious clones strategy, the viral genome can be manipulated at specific regions to study functional genes for host–virus interactions. Thus, this review will provide an overview of the strategy to construct infectious clones of Begomovirus. The significance of established infectious clones in Begomovirus study will also be discussed. Abstract Begomovirus has become a potential threat to the agriculture sector. It causes significant losses to several economically important crops. Given this considerable loss, the development of tools to study viral genomes and function is needed. Infectious clones approaches and applications have allowed the direct exploitation of virus genomes. Infectious clones of DNA viruses are the critical instrument for functional characterization of the notable and newly discovered virus. Understanding of structure and composition of viruses has contributed to the evolution of molecular plant pathology. Therefore, this review provides extensive guidelines on the strategy to construct infectious clones of Begomovirus. Also, this technique’s impacts and benefits in controlling and understanding the Begomovirus infection will be discussed.
Collapse
|
4
|
Kavalappara SR, Milner H, Konakalla NC, Morgan K, Sparks AN, McGregor C, Culbreath AK, Wintermantel WM, Bag S. High Throughput Sequencing-Aided Survey Reveals Widespread Mixed Infections of Whitefly-Transmitted Viruses in Cucurbits in Georgia, USA. Viruses 2021; 13:v13060988. [PMID: 34073397 PMCID: PMC8230054 DOI: 10.3390/v13060988] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 05/18/2021] [Accepted: 05/24/2021] [Indexed: 01/08/2023] Open
Abstract
Viruses transmitted by the sweet potato whitefly (Bemisia tabaci) have been detrimental to the sustainable production of cucurbits in the southeastern USA. Surveys were conducted in the fall of 2019 and 2020 in Georgia, a major cucurbit-producing state of the USA, to identify the viruses infecting cucurbits and their distribution. Symptomatic samples were collected and small RNA libraries were prepared and sequenced from three cantaloupes, four cucumbers, and two yellow squash samples. An analysis of the sequences revealed the presence of the criniviruses cucurbit chlorotic yellows virus (CCYV), cucurbit yellow stunting disorder virus (CYSDV), and the begomovirus cucurbit leaf crumple virus (CuLCrV). CuLCrV was detected in 76%, CCYV in 60%, and CYSDV in 43% of the total samples (n = 820) tested. The level of mixed infections was high in all the cucurbits, with most plants tested being infected with at least two of these viruses. Near-complete genome sequences of two criniviruses, CCYV and CYSDV, were assembled from the small RNA sequences. An analysis of the coding regions showed low genetic variability among isolates from different hosts. In phylogenetic analysis, the CCYV isolates from Georgia clustered with Asian isolates, while CYSDV isolates clustered with European and USA isolates. This work enhances our understanding of the distribution of viruses on cucurbits in South Georgia and will be useful to develop strategies for managing the complex of whitefly-transmitted viruses in the region.
Collapse
Affiliation(s)
- Saritha Raman Kavalappara
- Department of Plant Pathology, University of Georgia, Tifton, GA 31793, USA; (S.R.K.); (H.M.); (N.C.K.); (K.M.); (A.K.C.)
| | - Hayley Milner
- Department of Plant Pathology, University of Georgia, Tifton, GA 31793, USA; (S.R.K.); (H.M.); (N.C.K.); (K.M.); (A.K.C.)
| | - Naga Charan Konakalla
- Department of Plant Pathology, University of Georgia, Tifton, GA 31793, USA; (S.R.K.); (H.M.); (N.C.K.); (K.M.); (A.K.C.)
| | - Kaelyn Morgan
- Department of Plant Pathology, University of Georgia, Tifton, GA 31793, USA; (S.R.K.); (H.M.); (N.C.K.); (K.M.); (A.K.C.)
| | - Alton N. Sparks
- Department of Entomology, University of Georgia, Tifton, GA 31793, USA;
| | - Cecilia McGregor
- Department of Horticulture, University of Georgia, Athens, GA 30602, USA;
| | - Albert K. Culbreath
- Department of Plant Pathology, University of Georgia, Tifton, GA 31793, USA; (S.R.K.); (H.M.); (N.C.K.); (K.M.); (A.K.C.)
| | - William M. Wintermantel
- United States Department of Agriculture-Agricultural Research Service, Salinas, CA 93905, USA
- Correspondence: (W.M.W.); (S.B.)
| | - Sudeep Bag
- Department of Plant Pathology, University of Georgia, Tifton, GA 31793, USA; (S.R.K.); (H.M.); (N.C.K.); (K.M.); (A.K.C.)
- Correspondence: (W.M.W.); (S.B.)
| |
Collapse
|
5
|
Romay G, Chirinos DT, Castro R, Espinoza W, Bragard C. Muntingia yellow spot virus: a novel New World begomovirus infecting Muntingia calabura L. Arch Virol 2021; 166:1759-1762. [PMID: 33745066 DOI: 10.1007/s00705-021-05039-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 03/13/2021] [Indexed: 10/21/2022]
Abstract
The whole genome sequence of a begomovirus (family Geminiviridae) infecting Muntingia calabura L. (family Muntingiaceae) from the province of Guayas in Ecuador was determined in this work. The major symptom observed on this plant species was yellow spots on leaves. The nucleotide sequences of three DNA-A clones and one DNA-B clone were compared to those of other begomoviruses. The DNA-A clones displayed the highest similarity to isolates of pepper leafroll virus (PepLRV), with 87.4 to 88.1% sequence identity. Likewise, the DNA-B clone showed the highest similarity (79.3-79.6% sequence identity) to PepLRV isolates. According to the demarcation criteria for begomovirus species, the begomovirus described in this work, for which we propose the name "muntingia yellow spot virus", represents a novel species. To our best knowledge, this is the first report of a begomovirus infecting a plant of the family Muntingiaceae.
Collapse
Affiliation(s)
- Gustavo Romay
- Applied Microbiology, Phytopathology, UCLouvain, Earth and Life Institute, Croix du Sud 2-L07.05.03, 1348, Louvain-la-Neuve, Belgium.
| | - Dorys T Chirinos
- Facultad de Ingeniería Agronómica, Universidad Técnica de Manabí, Manabí, Ecuador
| | - Rossana Castro
- Facultad de Ciencias Agrarias, Universidad Agraria del Ecuador, Guayas, Ecuador
| | - Winston Espinoza
- Facultad de Ciencias Agrarias, Universidad Agraria del Ecuador, Guayas, Ecuador
| | - Claude Bragard
- Applied Microbiology, Phytopathology, UCLouvain, Earth and Life Institute, Croix du Sud 2-L07.05.03, 1348, Louvain-la-Neuve, Belgium
| |
Collapse
|
6
|
Shahid MS, Sattar MN, Iqbal Z, Raza A, Al-Sadi AM. Next-Generation Sequencing and the CRISPR-Cas Nexus: A Molecular Plant Virology Perspective. Front Microbiol 2021; 11:609376. [PMID: 33584572 PMCID: PMC7874184 DOI: 10.3389/fmicb.2020.609376] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 12/14/2020] [Indexed: 12/12/2022] Open
Abstract
In recent years, next-generation sequencing (NGS) and contemporary Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-CRISPR-associated (Cas) technologies have revolutionized the life sciences and the field of plant virology. Both these technologies offer an unparalleled platform for sequencing and deciphering viral metagenomes promptly. Over the past two decades, NGS technologies have improved enormously and have impacted plant virology. NGS has enabled the detection of plant viruses that were previously undetectable by conventional approaches, such as quarantine and archeological plant samples, and has helped to track the evolutionary footprints of viral pathogens. The CRISPR-Cas-based genome editing (GE) and detection techniques have enabled the development of effective approaches to virus resistance. Different versions of CRISPR-Cas have been employed to successfully confer resistance against diverse plant viruses by directly targeting the virus genome or indirectly editing certain host susceptibility factors. Applications of CRISPR-Cas systems include targeted insertion and/or deletion, site-directed mutagenesis, induction/expression/repression of the gene(s), epigenome re-modeling, and SNPs detection. The CRISPR-Cas toolbox has been equipped with precision GE tools to engineer the target genome with and without double-stranded (ds) breaks or donor templates. This technique has also enabled the generation of transgene-free genetically engineered plants, DNA repair, base substitution, prime editing, detection of small molecules, and biosensing in plant virology. This review discusses the utilities, advantages, applications, bottlenecks of NGS, and CRISPR-Cas in plant virology.
Collapse
Affiliation(s)
- Muhammad Shafiq Shahid
- Department of Plant Sciences, College of Agricultural and Marine Sciences, Sultan Qaboos University, Muscat, Oman
| | | | - Zafar Iqbal
- Central Laboratories, King Faisal University, Hofuf, Saudi Arabia
| | - Amir Raza
- Department of Plant Sciences, College of Agricultural and Marine Sciences, Sultan Qaboos University, Muscat, Oman
| | - Abdullah M. Al-Sadi
- Department of Plant Sciences, College of Agricultural and Marine Sciences, Sultan Qaboos University, Muscat, Oman
| |
Collapse
|
7
|
Dos Reis LDNA, Boiteux LS, Fonseca MEN, Pereira-Carvalho RDC. Tomato yellow vein streak virus and Tomato golden vein virus: a reappraisal of the classification status of two South American Begomovirus species based upon genome-wide pairwise identity of multiple isolates. Virus Genes 2020; 57:127-131. [PMID: 33211226 DOI: 10.1007/s11262-020-01810-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 11/06/2020] [Indexed: 11/25/2022]
Abstract
Tomato yellow vein streak virus (ToYVSV) and tomato golden vein virus (TGVV) are begomoviruses reported infecting tomatoes and other hosts across South America. However, their close phylogenetic relationship has generated uncertainties about their taxonomic status and nomenclature. In fact, genomic DNA-A identity levels of isolates reported with an identical virus name may range from 89-100%. In view of the potential inaccuracy regarding the classification status of these viruses (strains vs. distinct species), we carried out a comprehensive set of analyses employing all 45 available isolates with complete DNA-A sequences with either ToYVSV or TGVV designation. Two clear-cut clusters were identified and they were consistent with the current criteria for Begomovirus species demarcation. Moreover, our reappraisal confirmed a large array of misnamed isolates and recognized a distinctive set of virus species-specific genomic, biological, and ecological features. Hence, the present work gives support to the notion that these viruses are closely-related, but they are distinct and valid Begomovirus species. From the breeding standpoint, this information will be useful in guiding germplasm screening strategies searching for sources of large-spectrum resistance to isolates of both viruses.
Collapse
Affiliation(s)
| | - Leonardo S Boiteux
- Departamento de Fitopatologia, Universidade de Brasília (UnB), Brasília-DF, Brazil
- National Center for Vegetable Crops Research (CNPH), Embrapa Vegetable Crops (Hortaliças), Brasília-DF, Brazil
| | - Maria Esther N Fonseca
- National Center for Vegetable Crops Research (CNPH), Embrapa Vegetable Crops (Hortaliças), Brasília-DF, Brazil
| | | |
Collapse
|