1
|
Sharma R, Pandey S, Prasad M, Prasad A. Catalase regulation during plant-virus-vector interaction. PHYSIOLOGIA PLANTARUM 2024; 176:e14580. [PMID: 39403868 DOI: 10.1111/ppl.14580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 10/03/2024] [Accepted: 10/08/2024] [Indexed: 11/02/2024]
Abstract
Plant-virus-host interaction is a complex process involving several players. A constant arms race between the hosts and viruses has led to their co-evolution. Reactive oxygen species (ROS) are important signaling molecules that regulate plant growth, development, and stress responses. Barley yellow dwarf virus (BYDV) has a wide host range and infects several plant species such as barley, rice, oats, wheat, etc. A recent study by Tian et al. (2024) has highlighted that the movement protein (MP) of BYDV is involved in manipulation of the host ROS pathway to promote viral multiplication as well as transmission. The findings display the multifaceted role of a viral protein that is otherwise involved in movement. The limited coding ability of viruses is compensated by their proteins having multiple roles in the modulation of several different host molecular pathways. This is one of the key reasons for viruses being successful pathogens despite their limited coding ability.
Collapse
Affiliation(s)
- Rohit Sharma
- Department of Botany, Kurukshetra University, Kurukshetra, India
| | - Saurabh Pandey
- Department of Agriculture, Guru Nanak Dev University, Amritsar, India
| | - Manoj Prasad
- Department of Genetics, University of Delhi South Campus, New Delhi, India
- National Institute of Plant Genome Research, New Delhi, India
| | - Ashish Prasad
- Department of Botany, Kurukshetra University, Kurukshetra, India
| |
Collapse
|
2
|
Shahmohammadi N, Khan F, Jin G, Kwon M, Lee D, Kim Y. Tomato Spotted Wilt Virus Suppresses the Antiviral Response of the Insect Vector, Frankliniella occidentalis, by Elevating an Immunosuppressive C18 Oxylipin Level Using Its Virulent Factor, NSs. Cells 2024; 13:1377. [PMID: 39195265 DOI: 10.3390/cells13161377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/13/2024] [Accepted: 08/19/2024] [Indexed: 08/29/2024] Open
Abstract
Orthotospovirus tomatomaculae (tomato spotted wilt virus, TSWV) is transmitted by the western flower thrips, Frankliniella occidentalis. Epoxyoctadecamonoenoic acids (EpOMEs) function as immune-suppressive factors, particularly in insects infected by viral pathogens. These oxylipins are produced by cytochrome P450 monooxygenases (CYPs) and are degraded by soluble epoxide hydrolase (sEH). In this study, we tested the hypothesis that TSWV modulates the EpOME level in the thrips to suppress antiviral responses and enhance its replication. TSWV infection significantly elevated both 9,10-EpOME and 12,13-EpOME levels. Following TSWV infection, the larvae displayed apoptosis in the midgut along with the upregulated expression of four caspase genes. However, the addition of EpOME to the viral treatment notably reduced apoptosis and downregulated caspase gene expressions, which led to a marked increase in TSWV titers. The CYP and sEH genes of F. occidentalis were identified, and their expression manipulation using RNA interference (RNAi) treatments led to significant alternations in the insect's immune responses and TSWV viral titers. To ascertain which viral factor influences the host EpOME levels, specialized RNAi treatments targeting genes encoded by TSWV were administered to larvae infected with TSWV. These treatments demonstrated that NSS expression is pivotal in manipulating the genes involved in EpOME metabolism. These results indicate that NSs of TSWV are crucially linked with the elevation of host insect EpOME levels and play a key role in suppressing the antiviral responses of F. occidentalis.
Collapse
Affiliation(s)
- Niayesh Shahmohammadi
- Department of Plant Medicals, Andong National University, Andong 36729, Republic of Korea
| | - Falguni Khan
- Department of Plant Medicals, Andong National University, Andong 36729, Republic of Korea
| | - Gahyeon Jin
- Department of Plant Medicals, Andong National University, Andong 36729, Republic of Korea
| | - Minji Kwon
- Industry Academy Cooperation Foundation, Andong National University, Andong 36729, Republic of Korea
| | - Donghee Lee
- Industry Academy Cooperation Foundation, Andong National University, Andong 36729, Republic of Korea
| | - Yonggyun Kim
- Department of Plant Medicals, Andong National University, Andong 36729, Republic of Korea
| |
Collapse
|
3
|
Han J, Cui M, Withycombe J, Schmidtbauer M, Chiginsky J, Neher OT, Strausbaugh CA, Majumdar R, Nalam VJ, Nachappa P. Beet curly top virus affects vector biology: the first transcriptome analysis of the beet leafhopper. J Gen Virol 2024; 105. [PMID: 39073409 DOI: 10.1099/jgv.0.002012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2024] Open
Abstract
Curly top disease, caused by beet curly top virus (BCTV), is among the most serious viral diseases affecting sugar beets in western USA. The virus is exclusively transmitted by the beet leafhopper (BLH, Circulifer tenellus) in a circulative and non-propagative manner. Despite the growing knowledge on virus-vector interactions, our understanding of the molecular interactions between BCTV and BLH is hampered by limited information regarding the virus impact on the vector and the lack of genomic and transcriptomic resources for BLH. This study unveils the significant impact of BCTV on both the performance and transcriptome response of BLHs. Viruliferous BLHs had higher fecundity than non-viruliferous counterparts, which was evident by upregulation of differentially expressed transcripts (DETs) associated with development, viability and fertility of germline and embryos in viruliferous insects. Conversely, most DETs associated with muscle movement and locomotor activities were downregulated in viruliferous insects, implying potential behavioural modifications by BCTV. Additionally, a great proportion of DETs related to innate immunity and detoxification were upregulated in viruliferous insects. Viral infection also induced notable alterations in primary metabolisms, including energy metabolism, namely glucosidases, lipid digestion and transport, and protein degradation, along with other cellular functions, particularly in chromatin remodelling and DNA repair. This study represents the first comprehensive transcriptome analysis for BLH. The presented findings provide new insights into the multifaceted effects of viral infection on various biological processes in BLH, offering a foundation for future investigations into the complex virus-vector relationship and potential management strategies for curly top disease.
Collapse
Affiliation(s)
- Jinlong Han
- Department of Agricultural Biology, Colorado State University, Fort Collins, CO, USA
| | - Meihua Cui
- Department of Agricultural Biology, Colorado State University, Fort Collins, CO, USA
| | - Jordan Withycombe
- Department of Agricultural Biology, Colorado State University, Fort Collins, CO, USA
| | - Max Schmidtbauer
- Department of Agricultural Biology, Colorado State University, Fort Collins, CO, USA
| | - Judith Chiginsky
- Department of Agricultural Biology, Colorado State University, Fort Collins, CO, USA
| | | | | | | | - Vamsi J Nalam
- Department of Agricultural Biology, Colorado State University, Fort Collins, CO, USA
| | - Punya Nachappa
- Department of Agricultural Biology, Colorado State University, Fort Collins, CO, USA
| |
Collapse
|
4
|
Naveed H, Islam W, Jafir M, Andoh V, Chen L, Chen K. A Review of Interactions between Plants and Whitefly-Transmitted Begomoviruses. PLANTS (BASEL, SWITZERLAND) 2023; 12:3677. [PMID: 37960034 PMCID: PMC10648457 DOI: 10.3390/plants12213677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 10/22/2023] [Accepted: 10/23/2023] [Indexed: 11/15/2023]
Abstract
The transmission of plant viruses from infected to healthy host plants is a process in which insects play a major role, using various transmission strategies. Environmental factors have an impact on the transmission of viruses and the subsequent development of infections or diseases. When viruses are successful, plant virus diseases can reach epidemic proportions. Many plants across different regions are vulnerable to viral infections transmitted by the whitefly vector. Begomoviruses, which are transmitted by whiteflies, represent a significant threat to agriculture worldwide. The review highlights the mechanisms of virus acquisition and transmission by whiteflies and explores the factors influencing these interactions. Understanding the impacts of these changes is crucial for managing the spread of pests and mitigating damage to crops. It underscores the need for continued research to elucidate the mechanisms driving plant-insect-virus interactions and to identify new approaches for sustainable pest management.
Collapse
Affiliation(s)
- Hassan Naveed
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China;
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, China;
| | - Waqar Islam
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China;
| | - Muhammad Jafir
- Department of Ecology, School of Resources and Environmental Engineering, Anhui University, Hefei 230601, China;
| | - Vivian Andoh
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China;
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, China;
| | - Liang Chen
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, China;
| | - Keping Chen
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China;
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, China;
| |
Collapse
|
5
|
Gao DM, Qiao JH, Gao Q, Zhang J, Zang Y, Xie L, Zhang Y, Wang Y, Fu J, Zhang H, Han C, Wang XB. A plant cytorhabdovirus modulates locomotor activity of insect vectors to enhance virus transmission. Nat Commun 2023; 14:5754. [PMID: 37717061 PMCID: PMC10505171 DOI: 10.1038/s41467-023-41503-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 09/07/2023] [Indexed: 09/18/2023] Open
Abstract
Transmission of many plant viruses relies on phloem-feeding insect vectors. However, how plant viruses directly modulate insect behavior is largely unknown. Barley yellow striate mosaic virus (BYSMV) is transmitted by the small brown planthopper (SBPH, Laodelphax striatellus). Here, we show that BYSMV infects the central nervous system (CNS) of SBPHs, induces insect hyperactivity, and prolongs phloem feeding duration. The BYSMV accessory protein P6 interacts with the COP9 signalosome subunit 5 (LsCSN5) of SBPHs and suppresses LsCSN5-regulated de-neddylation from the Cullin 1 (CUL1), hereby inhibiting CUL1-based E3 ligases-mediated degradation of the circadian clock protein Timeless (TIM). Thus, virus infection or knockdown of LsCSN5 compromises TIM oscillation and induces high insect locomotor activity for transmission. Additionally, expression of BYSMV P6 in the CNS of transgenic Drosophila melanogaster disturbs circadian rhythm and induces high locomotor activity. Together, our results suggest the molecular mechanisms whereby BYSMV modulates locomotor activity of insect vectors for transmission.
Collapse
Affiliation(s)
- Dong-Min Gao
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Ji-Hui Qiao
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Qiang Gao
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
- Ministry of Agriculture and Rural Affairs Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Jiawen Zhang
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Ying Zang
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Liang Xie
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Yan Zhang
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Ying Wang
- Ministry of Agriculture and Rural Affairs Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Jingyan Fu
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Hua Zhang
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Chenggui Han
- Ministry of Agriculture and Rural Affairs Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Xian-Bing Wang
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
6
|
Krieger C, Halter D, Baltenweck R, Cognat V, Boissinot S, Maia-Grondard A, Erdinger M, Bogaert F, Pichon E, Hugueney P, Brault V, Ziegler-Graff V. An Aphid-Transmitted Virus Reduces the Host Plant Response to Its Vector to Promote Its Transmission. PHYTOPATHOLOGY 2023; 113:1745-1760. [PMID: 37885045 DOI: 10.1094/phyto-12-22-0454-fi] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
The success of virus transmission by vectors relies on intricate trophic interactions between three partners, the host plant, the virus, and the vector. Despite numerous studies that showed the capacity of plant viruses to manipulate their host plant to their benefit, and potentially of their transmission, the molecular mechanisms sustaining this phenomenon has not yet been extensively analyzed at the molecular level. In this study, we focused on the deregulations induced in Arabidopsis thaliana by an aphid vector that were alleviated when the plants were infected with turnip yellows virus (TuYV), a polerovirus strictly transmitted by aphids in a circulative and nonpropagative mode. By setting up an experimental design mimicking the natural conditions of virus transmission, we analyzed the deregulations in plants infected with TuYV and infested with aphids by a dual transcriptomic and metabolomic approach. We observed that the virus infection alleviated most of the gene deregulations induced by the aphids in a noninfected plant at both time points analyzed (6 and 72 h) with a more pronounced effect at the later time point of infestation. The metabolic composition of the infected and infested plants was altered in a way that could be beneficial for the vector and the virus transmission. Importantly, these substantial modifications observed in infected and infested plants correlated with a higher TuYV transmission efficiency. This study revealed the capacity of TuYV to alter the plant nutritive content and the defense reaction against the aphid vector to promote the viral transmission.
Collapse
Affiliation(s)
- Célia Krieger
- Institut de biologie moléculaire des plantes, CNRS, Université de Strasbourg, 67084 Strasbourg, France
| | - David Halter
- INRAE, Université de Strasbourg, SVQV UMR1131, 68000 Colmar, France
| | | | - Valérie Cognat
- Institut de biologie moléculaire des plantes, CNRS, Université de Strasbourg, 67084 Strasbourg, France
| | | | | | - Monique Erdinger
- INRAE, Université de Strasbourg, SVQV UMR1131, 68000 Colmar, France
| | - Florent Bogaert
- INRAE, Université de Strasbourg, SVQV UMR1131, 68000 Colmar, France
| | - Elodie Pichon
- INRAE, Université de Strasbourg, SVQV UMR1131, 68000 Colmar, France
| | | | - Véronique Brault
- INRAE, Université de Strasbourg, SVQV UMR1131, 68000 Colmar, France
| | - Véronique Ziegler-Graff
- Institut de biologie moléculaire des plantes, CNRS, Université de Strasbourg, 67084 Strasbourg, France
| |
Collapse
|
7
|
Gallan DZ, Penteriche AB, Henrique MO, Silva-Filho MC. Sugarcane multitrophic interactions: Integrating belowground and aboveground organisms. Genet Mol Biol 2022; 46:e20220163. [PMID: 36512714 DOI: 10.1590/1678-4685-gmb-2022-0163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 10/03/2022] [Indexed: 12/14/2022] Open
Abstract
Sugarcane is a crop of major importance used mainly for sugar and biofuel production, and many additional applications of its byproducts are being developed. Sugarcane cultivation is plagued by many insect pests and pathogens that reduce sugarcane yields overall. Recently emerging studies have shown complex multitrophic interactions in cultivated areas, such as the induction of sugarcane defense-related proteins by insect herbivory that function against fungal pathogens that commonly appear after mechanical damage. Fungi and viruses infecting sugarcane also modulate insect behavior, for example, by causing changes in volatile compounds responsible for insect attraction or repelling natural vector enemies via a mechanism that increases pathogen dissemination from infected plants to healthy ones. Interestingly, the fungus Fusarium verticillioides is capable of being vertically transmitted to insect offspring, ensuring its persistence in the field. Understanding multitrophic complexes is important to develop better strategies for controlling pathosystems affecting sugarcane and other important crops and highlights the importance of not only studying binary interactions but also adding as many variables as possible to effectively translate laboratory research to real-life conditions.
Collapse
Affiliation(s)
- Diego Z Gallan
- Universidade de São Paulo, Escola Superior de Agricultura Luiz de Queiroz, Departamento de Genética, Piracicaba, SP, Brazil
| | - Augusto B Penteriche
- Universidade de São Paulo, Escola Superior de Agricultura Luiz de Queiroz, Departamento de Genética, Piracicaba, SP, Brazil
| | - Maressa O Henrique
- Universidade de São Paulo, Escola Superior de Agricultura Luiz de Queiroz, Departamento de Genética, Piracicaba, SP, Brazil
| | - Marcio C Silva-Filho
- Universidade de São Paulo, Escola Superior de Agricultura Luiz de Queiroz, Departamento de Genética, Piracicaba, SP, Brazil
| |
Collapse
|
8
|
Li T, Wei Y, Zhao C, Li S, Gao S, Zhang Y, Wu Y, Lu C. Facultative symbionts are potential agents of symbiont-mediated RNAi in aphids. Front Microbiol 2022; 13:1020461. [PMID: 36504780 PMCID: PMC9727308 DOI: 10.3389/fmicb.2022.1020461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 11/07/2022] [Indexed: 11/24/2022] Open
Abstract
Aphids are major crop pests, and they can be controlled through the application of the promising RNA interference (RNAi) techniques. However, chemical synthesis yield of dsRNA for RNAi is low and costly. Another sustainable aphid pest control strategy takes advantage of symbiont-mediated RNAi (SMR), which can generate dsRNA by engineered microbes. Aphid host the obligate endosymbiont Buchnera aphidicola and various facultative symbionts that not only have a wide host range but are also vertically and horizontally transmitted. Thus, we described the potential of facultative symbionts in aphid pest control by SMR. We summarized the community and host range of these facultative symbionts, and then reviewed their probable horizontal transmitted routes and ecological functions. Moreover, recent advances in the cultivation and genetic engineering of aphid facultative symbionts were discussed. In addition, current legislation of dsRNA-based pest control strategies and their safety assessments were reviewed.
Collapse
Affiliation(s)
- Tong Li
- Institute of Plant Protection, Henan Key Laboratory of Crop Pest Control/Key Laboratory of Integrated Pest Management on Crops in Southern Region of North China, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Yongjun Wei
- School of Pharmaceutical Sciences, Laboratory of Synthetic Biology, Zhengzhou University, Zhengzhou, China
| | - Chenchen Zhao
- Henan International Laboratory for Green Pest Control /College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Shaojian Li
- Institute of Plant Protection, Henan Key Laboratory of Crop Pest Control/Key Laboratory of Integrated Pest Management on Crops in Southern Region of North China, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Suxia Gao
- Institute of Plant Protection, Henan Key Laboratory of Crop Pest Control/Key Laboratory of Integrated Pest Management on Crops in Southern Region of North China, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Yuanchen Zhang
- College of Biological and Food Engineering, Anyang Institute of Technology, Anyang, China
| | - Yuqing Wu
- Institute of Plant Protection, Henan Key Laboratory of Crop Pest Control/Key Laboratory of Integrated Pest Management on Crops in Southern Region of North China, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Chuantao Lu
- Institute of Plant Protection, Henan Key Laboratory of Crop Pest Control/Key Laboratory of Integrated Pest Management on Crops in Southern Region of North China, Henan Academy of Agricultural Sciences, Zhengzhou, China,Chuantao Lu
| |
Collapse
|
9
|
Tao M, Wan Y, Zheng X, Qian K, Merchant A, Xu B, Zhang Y, Zhou X, Wu Q. Tomato spotted wilt orthotospovirus shifts sex ratio toward males in the western flower thrips, Frankliniella occidentalis, by down-regulating a FSCB-like gene. PEST MANAGEMENT SCIENCE 2022; 78:5014-5023. [PMID: 36054039 DOI: 10.1002/ps.7125] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 08/01/2022] [Accepted: 08/13/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Plant viruses can facilitate their transmission by modulating the sex ratios of their insect vectors. Previously, we found that exposure to tomato spotted wilt orthotospovirus (TSWV) in the western flower thrips, Frankliniella occidentalis, led to a male-biased sex ratio in the offspring. TSWV, a generalist pathogen with a broad host range, is transmitted primarily by F. occidentalis in a circulative-propagative manner. Here, we integrated proteomic tools with RNAi to comprehensively investigate the genetic basis underlying the shift in vector sex ratio induced by the virus. RESULTS Proteomic analysis exhibited 104 differentially expressed proteins between F. occidentalis adult males with and without TSWV. The expression of the fiber sheath CABYR-binding-like (FSCB) protein, namely FoFSCB-like, a sperm-specific protein associated with sperm capacitation and motility, was decreased by 46%. The predicted FoFSCB-like protein includes 10 classic Pro-X-X-Pro motifs and 42 phosphorylation sites, which are key features for sperm capacitation. FoFSCB-like expression was gradually increased during the development and peaked at the pupal stage. After exposure to TSWV, FoFSCB-like expression was substantially down-regulated. Nanoparticle-mediated RNAi substantially suppressed FoFSCB-like expression and led to a significant male bias in the offspring. CONCLUSION These combined results suggest that down-regulation of FoFSCB-like in virus-exposed thrips leads to a male-biased sex ratio in the offspring. This study not only advances our understanding of virus-vector interactions, but also identifies a potential target for the genetic management of F. occidentalis, the primary vector of TSWV, by manipulating male fertility. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Min Tao
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yanran Wan
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiaobin Zheng
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Kanghua Qian
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Austin Merchant
- Department of Entomology, University of Kentucky, Lexington, KY, USA
| | - Baoyun Xu
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Youjun Zhang
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xuguo Zhou
- Department of Entomology, University of Kentucky, Lexington, KY, USA
| | - Qingjun Wu
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
10
|
Decroës A, Mahillon M, Genard M, Lienard C, Lima-Mendez G, Gilmer D, Bragard C, Legrève A. Rhizomania: Hide and Seek of Polymyxa betae and the Beet Necrotic Yellow Vein Virus with Beta vulgaris. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2022; 35:989-1005. [PMID: 35816413 DOI: 10.1094/mpmi-03-22-0063-r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The molecular interactions between Polymyxa betae, the protist vector of sugar beet viruses, beet necrotic yellow vein virus (BNYVV), the causal agent of rhizomania, and Beta vulgaris have not been extensively studied. Here, the transmission of BNYVV to sugar beet by P. betae zoospores was optimized using genetically characterized organisms. Molecular interactions of aviruliferous and viruliferous protist infection on sugar beet were highlighted by transcriptomic analysis. P. betae alone induced limited gene expression changes in sugar beet, as a biotrophic asymptomatic parasite. Most differentially expressed plant genes were down-regulated and included resistance gene analogs and cell wall peroxidases. Several enzymes involved in stress regulation, such as the glutathione-S-transferases, were significantly induced. With BNYVV, the first stages of the P. betae life cycle on sugar beet were accelerated with a faster increase of relative protist DNA level and an earlier appearance of sporangia and sporosori in plants roots. A clear activation of plant defenses and the modulation of genes involved in plant cell wall metabolism were observed. The P. betae transcriptome in the presence of BNYVV revealed induction of genes possibly involved in the switch to the survival stage. The interactions were different depending on the presence or absence of the virus. P. betae alone alleviates plant defense response, playing hide-and-seek with sugar beet and allowing for their mutual development. Conversely, BNYVV manipulates plant defense and promotes the rapid invasion of plant roots by P. betae. This accelerated colonization is accompanied by the development of thick-walled resting spores, supporting the virus survival. [Formula: see text] Copyright © 2022 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Alain Decroës
- Phytopathology-Applied Microbiology, Earth and Life Institute, UCLouvain, Louvain-la-Neuve, 1348, Belgium
| | | | - Margaux Genard
- Phytopathology-Applied Microbiology, Earth and Life Institute, UCLouvain, Louvain-la-Neuve, 1348, Belgium
| | - Charlotte Lienard
- Phytopathology-Applied Microbiology, Earth and Life Institute, UCLouvain, Louvain-la-Neuve, 1348, Belgium
| | - Gipsi Lima-Mendez
- Louvain Institute of Biomolecular Science and Technology, UCLouvain, Louvain-la-Neuve, 1348, Belgium
| | - David Gilmer
- Institut de biologie moléculaire des plantes, CNRS UPR2357, Université de Strasbourg, Strasbourg, 67084, France
| | - Claude Bragard
- Phytopathology-Applied Microbiology, Earth and Life Institute, UCLouvain, Louvain-la-Neuve, 1348, Belgium
| | - Anne Legrève
- Phytopathology-Applied Microbiology, Earth and Life Institute, UCLouvain, Louvain-la-Neuve, 1348, Belgium
| |
Collapse
|
11
|
Li T, Li H, Wu Y, Li S, Yuan G, Xu P. Identification of a Novel Densovirus in Aphid, and Uncovering the Possible Antiviral Process During Its Infection. Front Immunol 2022; 13:905628. [PMID: 35757766 PMCID: PMC9218065 DOI: 10.3389/fimmu.2022.905628] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 05/16/2022] [Indexed: 11/13/2022] Open
Abstract
Densoviruses (DVs) are single-stranded DNA viruses and exclusively happen in invertebrates. Most of DVs reported in insects are pathogenic to their native hosts, however, no pathogenic effect of them has been examined in vertebrates. Hence, DVs are the potential agents used in pest managements. Aphids are the primary vectors of plant viruses. In this study, we identified a novel DV in Chinese Sitobion miscanthi population, provisionally named “Sitobion miscanthi densovirus” (SmDV). Taxonomically, SmDV belongs to genus Hemiambidensovirus. In S. miscanthi, SmDV is hosted in diverse cells and can be horizontally transmitted via wheat feeding. Subject to SmDV, aphids activate their intrinsic antiviral autophagy pathway. Grouped with ascorbate and aldarate metabolism, chlorophyll metabolism, p450 related drug metabolism, and retinoid metabolism, aphids form a complex immune network response to the infection of SmDV. Obviously, it works as elder aphids still alive even they contain the highest examined concentration of SmDV. This study provides a foundation for the identifications of novel DVs, and further improves the understanding of the molecular interactions between insects and DVs.
Collapse
Affiliation(s)
- Tong Li
- Institute of Plant Protection, Henan Key Laboratory of Crop Pest Control, Key Laboratory of Integrated Pest Management on Crops in Southern Region of North China, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Haichao Li
- College of Plant Protection, Henan Agricultural University, Zhengzhou, China.,Key Laboratory of Insect Developmental and Evolutionary Biology, Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Yuqing Wu
- Institute of Plant Protection, Henan Key Laboratory of Crop Pest Control, Key Laboratory of Integrated Pest Management on Crops in Southern Region of North China, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Shaojian Li
- Institute of Plant Protection, Henan Key Laboratory of Crop Pest Control, Key Laboratory of Integrated Pest Management on Crops in Southern Region of North China, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Guohui Yuan
- College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Pengjun Xu
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, China
| |
Collapse
|
12
|
Manipulation of Insect Vectors’ Host Selection Behavior by Barley Yellow Dwarf Virus Is Dependent on the Host Plant Species and Viral Co-Infection. Life (Basel) 2022; 12:life12050644. [PMID: 35629312 PMCID: PMC9142937 DOI: 10.3390/life12050644] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 04/18/2022] [Accepted: 04/25/2022] [Indexed: 11/24/2022] Open
Abstract
Previous studies have shown that vector-borne viruses can manipulate the host selection behavior of insect vectors, yet the tripartite interactions of pathogens, host plants and insect vectors have been documented only in a limited number of pathosystems. Here, we report that the host selection behavior of the insect vector of barley yellow dwarf virus-PAV (BYDV-PAV) and cereal yellow dwarf virus-RPS (CYDV-RPS) is dependent on the host plant species and viral co-infection. This study shows that a model cereal plant, Brachypodium distachyon, is a suitable host plant for examining tripartite interactions with BYDV-PAV and CYDV-RPS. We reveal that BYDV-PAV has a different effect on the host selection behavior of its insect vector depending on the host plant species. Viruliferous aphids significantly prefer non-infected plants to virus-infected wheat plants, whereas viral infection on a novel host plant, B. distachyon, is not implicated in the attraction of either viruliferous or nonviruliferous aphids. Furthermore, our findings show that multiple virus infections of wheat with BYDV-PAV and CYDV-RPS alter the preference of their vector aphid. This result indicates that BYDV-PAV acquisition alters the insect vector’s host selection, thereby varying the spread of multiple viruses.
Collapse
|
13
|
Ray S, Casteel CL. Effector-mediated plant-virus-vector interactions. THE PLANT CELL 2022; 34:1514-1531. [PMID: 35277714 PMCID: PMC9048964 DOI: 10.1093/plcell/koac058] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 02/14/2022] [Indexed: 05/30/2023]
Abstract
Hemipterans (such as aphids, whiteflies, and leafhoppers) are some of the most devastating insect pests due to the numerous plant pathogens they transmit as vectors, which are primarily viral. Over the past decade, tremendous progress has been made in broadening our understanding of plant-virus-vector interactions, yet on the molecular level, viruses and vectors have typically been studied in isolation of each other until recently. From that work, it is clear that both hemipteran vectors and viruses use effectors to manipulate host physiology and successfully colonize a plant and that co-evolutionary dynamics have resulted in effective host immune responses, as well as diverse mechanisms of counterattack by both challengers. In this review, we focus on advances in effector-mediated plant-virus-vector interactions and the underlying mechanisms. We propose that molecular synergisms in vector-virus interactions occur in cases where both the virus and vector benefit from the interaction (mutualism). To support this view, we show that mutualisms are common in virus-vector interactions and that virus and vector effectors target conserved mechanisms of plant immunity, including plant transcription factors, and plant protein degradation pathways. Finally, we outline ways to identify true effector synergisms in the future and propose future research directions concerning the roles effectors play in plant-virus-vector interactions.
Collapse
Affiliation(s)
- Swayamjit Ray
- School of Integrative Plant Science, Plant Pathology and Plant-Microbe Biology Section, Cornell University, Ithaca, New York 14850, USA
| | | |
Collapse
|
14
|
Tarazi R, Vaslin MFS. The Viral Threat in Cotton: How New and Emerging Technologies Accelerate Virus Identification and Virus Resistance Breeding. FRONTIERS IN PLANT SCIENCE 2022; 13:851939. [PMID: 35449884 PMCID: PMC9016188 DOI: 10.3389/fpls.2022.851939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 03/07/2022] [Indexed: 05/12/2023]
Abstract
Cotton (Gossypium spp. L., Malvaceae) is the world's largest source of natural fibers. Virus outbreaks are fast and economically devasting regarding cotton. Identifying new viruses is challenging as virus symptoms usually mimic nutrient deficiency, insect damage, and auxin herbicide injury. Traditional viral identification methods are costly and time-consuming. Developing new resistant cotton lines to face viral threats has been slow until the recent use of molecular virology, genomics, new breeding techniques (NBT), remote sensing, and artificial intelligence (AI). This perspective article demonstrates rapid, sensitive, and cheap technologies to identify viral diseases and propose their use for virus resistance breeding.
Collapse
Affiliation(s)
- Roberto Tarazi
- Plant Molecular Virology Laboratory, Department of Virology, Microbiology Institute, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
- Programa de Pós-graduação em Biotecnologia e Bioprocessos da UFRJ, Rio de Janeiro, Brazil
| | - Maite F. S. Vaslin
- Plant Molecular Virology Laboratory, Department of Virology, Microbiology Institute, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
- Programa de Pós-graduação em Biotecnologia e Bioprocessos da UFRJ, Rio de Janeiro, Brazil
| |
Collapse
|
15
|
Rai A, Sivalingam PN, Senthil-Kumar M. A spotlight on non-host resistance to plant viruses. PeerJ 2022; 10:e12996. [PMID: 35382007 PMCID: PMC8977066 DOI: 10.7717/peerj.12996] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 02/02/2022] [Indexed: 01/11/2023] Open
Abstract
Plant viruses encounter a range of host defenses including non-host resistance (NHR), leading to the arrest of virus replication and movement in plants. Viruses have limited host ranges, and adaptation to a new host is an atypical phenomenon. The entire genotypes of plant species which are imperceptive to every single isolate of a genetically variable virus species are described as non-hosts. NHR is the non-specific resistance manifested by an innately immune non-host due to pre-existing and inducible defense responses, which cannot be evaded by yet-to-be adapted plant viruses. NHR-to-plant viruses are widespread, but the phenotypic variation is often not detectable within plant species. Therefore, molecular and genetic mechanisms of NHR need to be systematically studied to enable exploitation in crop protection. This article comprehensively describes the possible mechanisms of NHR against plant viruses. Also, the previous definition of NHR to plant viruses is insufficient, and the main aim of this article is to sensitize plant pathologists to the existence of NHR to plant viruses and to highlight the need for immediate and elaborate research in this area.
Collapse
Affiliation(s)
- Avanish Rai
- National Institute of Plant Genome Research, New Delhi, India
| | | | | |
Collapse
|
16
|
Post-acquisition effects of viruses on vector behavior are important components of manipulation strategies. Oecologia 2020; 194:429-440. [PMID: 32996004 DOI: 10.1007/s00442-020-04763-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 09/19/2020] [Indexed: 10/23/2022]
Abstract
A growing number of studies suggest that plant viruses manipulate host plant phenotypes to increase transmission-conducive behaviors by vectors. Studies on this phenomenon frequently omit examination of interactions that occur after vectors acquire virions, which provides an incomplete understanding of the ecology of plant virus manipulation. Here, by taking a full factorial approach that considered both the infection status of the host (Montia perfoliata) and viruliferous status of the aphid (Myzus persicae), we explored the effects of a circulative, non-propagative virus (Turnip yellows virus [TuYV]) on a suite of behavior and performance metrics that are relevant for virus transmission. Our results demonstrate that viruliferous aphids exhibited an increased velocity of movement and increased activity levels in locomotor and dispersal-retention assays. They also had increased fecundity and showed a capacity to more efficiently exploit resources by taking less time to reach the phloem and ingesting more sap, regardless of plant infection status. In contrast, non-viruliferous aphids only exhibited enhanced fecundity and biomass on TuYV-infected hosts, and had overall reduced dispersal and locomotor activity relative to viruliferous aphids. In this pathosystem, post-acquisition effects were stronger and more conducive to virus transmission than the purely pre-acquisition effects mediated by virus effects on the host plant. Our study provides additional support for the hypothesis that virus manipulation of vector behavior includes both pre- and post-acquisition effects and demonstrates the importance of considering both components when studying putative virus manipulation strategies.
Collapse
|
17
|
Hyodo K, Okuno T. Hijacking of host cellular components as proviral factors by plant-infecting viruses. Adv Virus Res 2020; 107:37-86. [PMID: 32711734 DOI: 10.1016/bs.aivir.2020.04.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Plant viruses are important pathogens that cause serious crop losses worldwide. They are obligate intracellular parasites that commandeer a wide array of proteins, as well as metabolic resources, from infected host cells. In the past two decades, our knowledge of plant-virus interactions at the molecular level has exploded, which provides insights into how plant-infecting viruses co-opt host cellular machineries to accomplish their infection. Here, we review recent advances in our understanding of how plant viruses divert cellular components from their original roles to proviral functions. One emerging theme is that plant viruses have versatile strategies that integrate a host factor that is normally engaged in plant defense against invading pathogens into a viral protein complex that facilitates viral infection. We also highlight viral manipulation of cellular key regulatory systems for successful virus infection: posttranslational protein modifications for fine control of viral and cellular protein dynamics; glycolysis and fermentation pathways to usurp host resources, and ion homeostasis to create a cellular environment that is beneficial for viral genome replication. A deeper understanding of viral-infection strategies will pave the way for the development of novel antiviral strategies.
Collapse
Affiliation(s)
- Kiwamu Hyodo
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Okayama, Japan.
| | - Tetsuro Okuno
- Department of Plant Life Science, Faculty of Agriculture, Ryukoku University, Otsu, Shiga, Japan
| |
Collapse
|