1
|
Pöpperl P, Stoff M, Beineke A. Alveolar Macrophages in Viral Respiratory Infections: Sentinels and Saboteurs of Lung Defense. Int J Mol Sci 2025; 26:407. [PMID: 39796262 PMCID: PMC11721917 DOI: 10.3390/ijms26010407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 01/02/2025] [Accepted: 01/03/2025] [Indexed: 01/13/2025] Open
Abstract
Respiratory viral infections continue to cause pandemic and epidemic outbreaks in humans and animals. Under steady-state conditions, alveolar macrophages (AlvMϕ) fulfill a multitude of tasks in order to maintain tissue homeostasis. Due to their anatomic localization within the deep lung, AlvMϕ are prone to detect and react to inhaled viruses and thus play a role in the early pathogenesis of several respiratory viral infections. Here, detection of viral pathogens causes diverse antiviral and proinflammatory reactions. This fact not only makes them promising research targets, but also suggests them as potential targets for therapeutic and prophylactic approaches. This review aims to give a comprehensive overview of the current knowledge about the role of AlvMϕ in respiratory viral infections of humans and animals.
Collapse
Affiliation(s)
- Pauline Pöpperl
- Department of Pathology, University of Veterinary Medicine Hannover, 30559 Hannover, Germany
- Center for Systems Neuroscience (ZSN), 30559 Hannover, Germany
| | - Melanie Stoff
- Department of Pathology, University of Veterinary Medicine Hannover, 30559 Hannover, Germany
| | - Andreas Beineke
- Department of Pathology, University of Veterinary Medicine Hannover, 30559 Hannover, Germany
- Center for Systems Neuroscience (ZSN), 30559 Hannover, Germany
| |
Collapse
|
2
|
Anderson J, Do LAH, van Kasteren PB, Licciardi PV. The role of respiratory syncytial virus G protein in immune cell infection and pathogenesis. EBioMedicine 2024; 107:105318. [PMID: 39217853 PMCID: PMC11402919 DOI: 10.1016/j.ebiom.2024.105318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/12/2024] [Accepted: 08/17/2024] [Indexed: 09/04/2024] Open
Abstract
Severe respiratory syncytial virus (RSV) disease is a significant contributor to the global burden of disease in infants and children. The RSV attachment protein (G) has been shown to be critical in invading airway epithelial cells through its CX3C motif interacting with the host receptor CX3CR1. The ubiquitous expression of this receptor on immune cells may explain their susceptibility to RSV infection. The RSV G protein may enhance disease severity through reprogramming of normal cellular functionality leading to inhibition of antiviral responses. While existing preventives targeting the RSV fusion (F) protein are highly effective, there are no RSV therapeutics based on the G protein to limit RSV pathogenesis. Monoclonal antibodies targeting the RSV G protein administered as post-infection therapeutics in mice have been shown to improve the antiviral response, reduce viral load and limit disease severity. Further research is required to better understand how RSV infection of immune cells contributes to pathogenesis for the development of more targeted and efficacious therapeutics.
Collapse
Affiliation(s)
- Jeremy Anderson
- Infection, Immunity and Global Health, Murdoch Children's Research Institute, Melbourne, Australia; Department of Paediatrics, University of Melbourne, Melbourne, Australia.
| | - Lien Anh Ha Do
- Infection, Immunity and Global Health, Murdoch Children's Research Institute, Melbourne, Australia; Department of Paediatrics, University of Melbourne, Melbourne, Australia
| | - Puck B van Kasteren
- Center for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, the Netherlands
| | - Paul V Licciardi
- Infection, Immunity and Global Health, Murdoch Children's Research Institute, Melbourne, Australia; Department of Paediatrics, University of Melbourne, Melbourne, Australia.
| |
Collapse
|
3
|
Diao J, Liu H, Cao H, Chen W. The dysfunction of Tfh cells promotes pediatric recurrent respiratory tract infections development by interfering humoral immune responses. Heliyon 2023; 9:e20778. [PMID: 37876425 PMCID: PMC10590952 DOI: 10.1016/j.heliyon.2023.e20778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 08/06/2023] [Accepted: 10/06/2023] [Indexed: 10/26/2023] Open
Abstract
Recurrent respiratory tract infections (RRTIs) are one of the most common pediatric diseases. Although the pathogenesis of pediatric RRTIs remains unknown, ineffective B cell-dominated humoral immunity has been considered as the core mechanism. During the course of pediatric RRTIs, B cell-dominated humoral immunity has changed from "protector" of respiratory system to "bystander" of respiratory tract infections. Under physiological condition, Tfh cells are essential for B cell-dominated humoral immunity, including regulating GC formation, promoting memory B cell (MB)/plasma cell (PC) differentiation, inducting immunoglobulin (Ig) class switching, and selecting affinity-matured antibodies. However, in disease states, Tfh cells are dysfunctional, which can be reflected by phenotypes and cytokine production. Tfh cell dysfunctions can cause the disorders of B cell-dominated humoral immunity, such as promoting B cell presented apoptosis, abrogating total Ig production, reducing MB/PC populations, and delaying affinity maturation of antigens-specific antibodies. In this review, we focused on the functions of B and Tfh cells in the homeostasis of respiratory system, and specifically discussed the disorders of humoral immunity and aberrant Tfh cell responses in the disease process of pediatric RRTIs. We hoped to provide some clues for the prevention and treatment of pediatric RRTIs.
Collapse
Affiliation(s)
- Jun Diao
- Department of Pediatrics, Yueyang Hospital of Chinese Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Huosheng Liu
- Department of Acupuncture and Moxibustion, Jiading Hospital of Traditional Chinese Medicine, Shanghai, 201800, China
| | - Hui Cao
- Department of Liver Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Weibin Chen
- Department of Pediatrics, Yueyang Hospital of Chinese Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
4
|
Satitsuksanoa P, Iwasaki S, Boersma J, Bel Imam M, Schneider SR, Chang I, van de Veen W, Akdis M. B cells: The many facets of B cells in allergic diseases. J Allergy Clin Immunol 2023; 152:567-581. [PMID: 37247640 DOI: 10.1016/j.jaci.2023.05.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 03/30/2023] [Accepted: 05/16/2023] [Indexed: 05/31/2023]
Abstract
B cells play a key role in our immune system through their ability to produce antibodies, suppress a proinflammatory state, and contribute to central immune tolerance. We aim to provide an in-depth knowledge of the molecular biology of B cells, including their origin, developmental process, types and subsets, and functions. In allergic diseases, B cells are well known to induce and maintain immune tolerance through the production of suppressor cytokines such as IL-10. Similarly, B cells protect against viral infections such as severe acute respiratory syndrome coronavirus 2 that caused the recent coronavirus disease 2019 pandemic. Considering the unique and multifaceted functions of B cells, we hereby provide a comprehensive overview of the current knowledge of B-cell biology and its clinical applications in allergic diseases, organ transplantation, and cancer.
Collapse
Affiliation(s)
- Pattraporn Satitsuksanoa
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zürich, Davos, Switzerland.
| | - Sayuri Iwasaki
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zürich, Davos, Switzerland; Wageningen University & Research, Wageningen, The Netherlands
| | - Jolien Boersma
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zürich, Davos, Switzerland; Wageningen University & Research, Wageningen, The Netherlands
| | - Manal Bel Imam
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zürich, Davos, Switzerland
| | - Stephan R Schneider
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zürich, Davos, Switzerland
| | - Iris Chang
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zürich, Davos, Switzerland; Sean N. Parker Centre for Allergy and Asthma Research, Department of Medicine, Stanford University, Palo Alto, Calif
| | - Willem van de Veen
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zürich, Davos, Switzerland
| | - Mübeccel Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zürich, Davos, Switzerland.
| |
Collapse
|
5
|
Sedney CJ, Harvill ET. The Neonatal Immune System and Respiratory Pathogens. Microorganisms 2023; 11:1597. [PMID: 37375099 PMCID: PMC10301501 DOI: 10.3390/microorganisms11061597] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/02/2023] [Accepted: 06/14/2023] [Indexed: 06/29/2023] Open
Abstract
Neonates are more susceptible to some pathogens, particularly those that cause infection in the respiratory tract. This is often attributed to an incompletely developed immune system, but recent work demonstrates effective neonatal immune responses to some infection. The emerging view is that neonates have a distinctly different immune response that is well-adapted to deal with unique immunological challenges of the transition from a relatively sterile uterus to a microbe-rich world, tending to suppress potentially dangerous inflammatory responses. Problematically, few animal models allow a mechanistic examination of the roles and effects of various immune functions in this critical transition period. This limits our understanding of neonatal immunity, and therefore our ability to rationally design and develop vaccines and therapeutics to best protect newborns. This review summarizes what is known of the neonatal immune system, focusing on protection against respiratory pathogens and describes challenges of various animal models. Highlighting recent advances in the mouse model, we identify knowledge gaps to be addressed.
Collapse
Affiliation(s)
| | - Eric T. Harvill
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA;
| |
Collapse
|
6
|
Menezes dos Reis L, Berçot MR, Castelucci BG, Martins AJE, Castro G, Moraes-Vieira PM. Immunometabolic Signature during Respiratory Viral Infection: A Potential Target for Host-Directed Therapies. Viruses 2023; 15:v15020525. [PMID: 36851739 PMCID: PMC9965666 DOI: 10.3390/v15020525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/05/2023] [Accepted: 02/06/2023] [Indexed: 02/16/2023] Open
Abstract
RNA viruses are known to induce a wide variety of respiratory tract illnesses, from simple colds to the latest coronavirus pandemic, causing effects on public health and the economy worldwide. Influenza virus (IV), parainfluenza virus (PIV), metapneumovirus (MPV), respiratory syncytial virus (RSV), rhinovirus (RhV), and coronavirus (CoV) are some of the most notable RNA viruses. Despite efforts, due to the high mutation rate, there are still no effective and scalable treatments that accompany the rapid emergence of new diseases associated with respiratory RNA viruses. Host-directed therapies have been applied to combat RNA virus infections by interfering with host cell factors that enhance the ability of immune cells to respond against those pathogens. The reprogramming of immune cell metabolism has recently emerged as a central mechanism in orchestrated immunity against respiratory viruses. Therefore, understanding the metabolic signature of immune cells during virus infection may be a promising tool for developing host-directed therapies. In this review, we revisit recent findings on the immunometabolic modulation in response to infection and discuss how these metabolic pathways may be used as targets for new therapies to combat illnesses caused by respiratory RNA viruses.
Collapse
Affiliation(s)
- Larissa Menezes dos Reis
- Laboratory of Immunometabolism, Department of Genetics, Evolution, Microbiology and Immunology, University of Campinas, Campinas 13083-862, SP, Brazil
| | - Marcelo Rodrigues Berçot
- Laboratory of Immunometabolism, Department of Genetics, Evolution, Microbiology and Immunology, University of Campinas, Campinas 13083-862, SP, Brazil
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-270, SP, Brazil
| | - Bianca Gazieri Castelucci
- Laboratory of Immunometabolism, Department of Genetics, Evolution, Microbiology and Immunology, University of Campinas, Campinas 13083-862, SP, Brazil
| | - Ana Julia Estumano Martins
- Laboratory of Immunometabolism, Department of Genetics, Evolution, Microbiology and Immunology, University of Campinas, Campinas 13083-862, SP, Brazil
- Graduate Program in Genetics and Molecular Biology, Institute of Biology, University of Campinas, Campinas 13083-970, SP, Brazil
| | - Gisele Castro
- Laboratory of Immunometabolism, Department of Genetics, Evolution, Microbiology and Immunology, University of Campinas, Campinas 13083-862, SP, Brazil
| | - Pedro M. Moraes-Vieira
- Laboratory of Immunometabolism, Department of Genetics, Evolution, Microbiology and Immunology, University of Campinas, Campinas 13083-862, SP, Brazil
- Experimental Medicine Research Cluster (EMRC), University of Campinas, Campinas 13083-872, SP, Brazil
- Obesity and Comorbidities Research Center (OCRC), University of Campinas, Campinas 13083-872, SP, Brazil
- Correspondence:
| |
Collapse
|
7
|
Wang Y, Zheng J, Wang X, Yang P, Zhao D. Alveolar macrophages and airway hyperresponsiveness associated with respiratory syncytial virus infection. Front Immunol 2022; 13:1012048. [PMID: 36341376 PMCID: PMC9630648 DOI: 10.3389/fimmu.2022.1012048] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 09/27/2022] [Indexed: 11/13/2022] Open
Abstract
Respiratory syncytial virus (RSV) is a ubiquitous pathogen of viral bronchiolitis and pneumonia in children younger than 2 years of age, which is closely associated with recurrent wheezing and airway hyperresponsiveness (AHR). Alveolar macrophages (AMs) located on the surface of the alveoli cavity are the important innate immune barrier in the respiratory tract. AMs are recognized as recruited airspace macrophages (RecAMs) and resident airspace macrophages (RAMs) based on their origins and roaming traits. AMs are polarized in the case of RSV infection, forming two macrophage phenotypes termed as M1-like and M2-like macrophages. Both M1 macrophages and M2 macrophages are involved in the modulation of inflammatory responses, among which M1 macrophages are capable of pro-inflammatory responses and M2 macrophages are capable of anti-proinflammatory responses and repair damaged tissues in the acute and convalescent phases of RSV infection. Polarized AMs affect disease progression through the alteration of immune cell surface phenotypes as well as participate in the regulation of T lymphocyte differentiation and the type of inflammatory response, which are closely associated with long-term AHR. In recent years, some progress have been made in the regulatory mechanism of AM polarization caused by RSV infection, which participates in acute respiratory inflammatory response and mediating AHR in infants. Here we summarized the role of RSV-infection-mediated AM polarization associated with AHR in infants.
Collapse
Affiliation(s)
- Yuxin Wang
- Department of Pediatrics, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Junwen Zheng
- Department of Pediatrics, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xia Wang
- Department of Pediatrics, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Pu Yang
- Department of Pediatrics, Zhongnan Hospital of Wuhan University, Wuhan, China
- Children’s Digital Health and Data Center of Wuhan University, Wuhan, China
- *Correspondence: Dongchi Zhao, ; Pu Yang,
| | - Dongchi Zhao
- Department of Pediatrics, Zhongnan Hospital of Wuhan University, Wuhan, China
- Children’s Digital Health and Data Center of Wuhan University, Wuhan, China
- *Correspondence: Dongchi Zhao, ; Pu Yang,
| |
Collapse
|
8
|
Cervantes O, Talavera IC, Every E, Coler B, Li M, Li A, Li H, Adams Waldorf K. Role of hormones in the pregnancy and sex-specific outcomes to infections with respiratory viruses. Immunol Rev 2022; 308:123-148. [PMID: 35373371 PMCID: PMC9189035 DOI: 10.1111/imr.13078] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 03/04/2022] [Indexed: 01/13/2023]
Abstract
Pregnant women infected with pathogenic respiratory viruses, such as influenza A viruses (IAV) and coronaviruses, are at higher risk for mortality, hospitalization, preterm birth, and stillbirth. Several factors are likely to contribute to the susceptibility of pregnant individuals to severe lung disease including changes in pulmonary physiology, immune defenses, and effector functions of some immune cells. Pregnancy is also a physiologic state characterized by higher levels of multiple hormones that may impact the effector functions of immune cells, such as progesterone, estrogen, human chorionic gonadotropin, prolactin, and relaxin. Each of these hormones acts to support a tolerogenic immune state of pregnancy, which helps prevent fetal rejection, but may also contribute to an impaired antiviral response. In this review, we address the unique role of adaptive and innate immune cells in the control of pathogenic respiratory viruses and how pregnancy and specific hormones can impact their effector actions. We highlight viruses with sex-specific differences in infection outcomes and why pregnancy hormones may contribute to fetal protection but aid the virus at the expense of the mother's health.
Collapse
Affiliation(s)
- Orlando Cervantes
- Department of Global Health, University of Washington, Seattle, Washington, United States of America
- Department of Obstetrics and Gynecology, University of Washington, Seattle, Washington, United States of America
| | - Irene Cruz Talavera
- Department of Global Health, University of Washington, Seattle, Washington, United States of America
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Emma Every
- University of Washington School of Medicine, Spokane, Washington, United States of America
| | - Brahm Coler
- Department of Obstetrics and Gynecology, University of Washington, Seattle, Washington, United States of America
- Elson S. Floyd College of Medicine, Washington State University, Spokane, Washington, United States of America
| | - Miranda Li
- Department of Obstetrics and Gynecology, University of Washington, Seattle, Washington, United States of America
- Department of Biological Sciences, Columbia University, New York City, New York, United States of America
| | - Amanda Li
- Department of Obstetrics and Gynecology, University of Washington, Seattle, Washington, United States of America
- Case Western Reserve, Cleveland, Ohio, United States of America
| | - Hanning Li
- Department of Obstetrics and Gynecology, University of Washington, Seattle, Washington, United States of America
| | - Kristina Adams Waldorf
- Department of Global Health, University of Washington, Seattle, Washington, United States of America
- Department of Obstetrics and Gynecology, University of Washington, Seattle, Washington, United States of America
| |
Collapse
|
9
|
Honda A, Hoeksema MA, Sakai M, Lund SJ, Lakhdari O, Butcher LD, Rambaldo TC, Sekiya NM, Nasamran CA, Fisch KM, Sajti E, Glass CK, Prince LS. The Lung Microenvironment Instructs Gene Transcription in Neonatal and Adult Alveolar Macrophages. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:1947-1959. [PMID: 35354612 PMCID: PMC9012679 DOI: 10.4049/jimmunol.2101192] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 02/10/2022] [Indexed: 12/13/2022]
Abstract
Immaturity of alveolar macrophages (AMs) around birth contributes to the susceptibility of newborns to lung disease. However, the molecular features differentiating neonatal and mature, adult AMs are poorly understood. In this study, we identify the unique transcriptomes and enhancer landscapes of neonatal and adult AMs in mice. Although the core AM signature was similar, murine adult AMs expressed higher levels of genes involved in lipid metabolism, whereas neonatal AMs expressed a largely proinflammatory gene profile. Open enhancer regions identified by an assay for transposase-accessible chromatin followed by high-throughput sequencing (ATAC-seq) contained motifs for nuclear receptors, MITF, and STAT in adult AMs and AP-1 and NF-κB in neonatal AMs. Intranasal LPS activated a similar innate immune response in both neonatal and adult mice, with higher basal expression of inflammatory genes in neonates. The lung microenvironment drove many of the distinguishing gene expression and open chromatin characteristics of neonatal and adult AMs. Neonatal mouse AMs retained high expression of some proinflammatory genes, suggesting that the differences in neonatal AMs result from both inherent cell properties and environmental influences.
Collapse
Affiliation(s)
- Asami Honda
- Department of Pediatrics, University of California, San Diego, La Jolla, CA
- Rady Children's Hospital, San Diego, CA
| | - Marten A Hoeksema
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA
| | - Mashito Sakai
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA
| | - Sean J Lund
- Department of Pediatrics, University of California, San Diego, La Jolla, CA
- Rady Children's Hospital, San Diego, CA
| | - Omar Lakhdari
- Department of Pediatrics, University of California, San Diego, La Jolla, CA
- Rady Children's Hospital, San Diego, CA
| | - Lindsay D Butcher
- Department of Pediatrics, Stanford University School of Medicine, Palo Alto, CA
| | | | | | - Chanond A Nasamran
- Center for Computational Biology and Bioinformatics, University of California, San Diego, La Jolla, CA
| | - Kathleen M Fisch
- Center for Computational Biology and Bioinformatics, University of California, San Diego, La Jolla, CA
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Diego, La Jolla, CA; and
| | - Eniko Sajti
- Department of Pediatrics, University of California, San Diego, La Jolla, CA
- Rady Children's Hospital, San Diego, CA
| | - Christopher K Glass
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA
- Department of Medicine, University of California, San Diego, La Jolla, CA
| | - Lawrence S Prince
- Department of Pediatrics, Stanford University School of Medicine, Palo Alto, CA;
| |
Collapse
|
10
|
Barnes MVC, Openshaw PJM, Thwaites RS. Mucosal Immune Responses to Respiratory Syncytial Virus. Cells 2022; 11:cells11071153. [PMID: 35406717 PMCID: PMC8997753 DOI: 10.3390/cells11071153] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 03/24/2022] [Accepted: 03/25/2022] [Indexed: 11/30/2022] Open
Abstract
Despite over half a century of research, respiratory syncytial virus (RSV)-induced bronchiolitis remains a major cause of hospitalisation in infancy, while vaccines and specific therapies still await development. Our understanding of mucosal immune responses to RSV continues to evolve, but recent studies again highlight the role of Type-2 immune responses in RSV disease and hint at the possibility that it dampens Type-1 antiviral immunity. Other immunoregulatory pathways implicated in RSV disease highlight the importance of focussing on localised mucosal responses in the respiratory mucosa, as befits a virus that is essentially confined to the ciliated respiratory epithelium. In this review, we discuss studies of mucosal immune cell infiltration and production of inflammatory mediators in RSV bronchiolitis and relate these studies to observations from peripheral blood. We also discuss the advantages and limitations of studying the nasal mucosa in a disease that is most severe in the lower airway. A fresh focus on studies of RSV pathogenesis in the airway mucosa is set to revolutionise our understanding of this common and important infection.
Collapse
|
11
|
La muqueuse pulmonaire en période périnatale : un monde à comprendre pour lutter contre la sensibilité du jeune à la bronchiolite. Rev Mal Respir 2022; 39:104-107. [DOI: 10.1016/j.rmr.2022.01.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 01/05/2022] [Indexed: 11/19/2022]
|
12
|
Yang Y, Wang Y. Autocrine, Paracrine, and Endocrine Signals That Can Alter Alveolar Macrophages Function. Rev Physiol Biochem Pharmacol 2022; 186:177-198. [PMID: 36472676 DOI: 10.1007/112_2022_76] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Alveolar macrophages (AMs) are extremely versatile cells with complex functions involved in health or diseases such as pneumonia, asthma, and pulmonary alveolar proteinosis. In recent years, it has been widely identified that the different functions and states of macrophages are the results from the complex interplay between microenvironmental signals and macrophage lineage. Diverse and complicated signals to which AMs respond are mentioned when they are described individually or in a particular state of AMs. In this review, the microenvironmental signals are divided into autocrine, paracrine, and endocrine signals based on their secreting characteristics. This new perspective on classification provides a more comprehensive and systematic introduction to the complex signals around AMs and is helpful for understanding the roles of AMs affected by physiological environment. The existing possible treatments of AMs are also mentioned in it. The thorough understanding of AMs signals modulation may be contributed to the development of more effective therapies for AMs-related lung diseases.
Collapse
Affiliation(s)
- Yue Yang
- Department of Clinical Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning, People's Republic of China
| | - Yun Wang
- Department of Clinical Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning, People's Republic of China.
| |
Collapse
|
13
|
Jansen K, Cevhertas L, Ma S, Satitsuksanoa P, Akdis M, van de Veen W. Regulatory B cells, A to Z. Allergy 2021; 76:2699-2715. [PMID: 33544905 DOI: 10.1111/all.14763] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 01/29/2021] [Accepted: 02/02/2021] [Indexed: 12/13/2022]
Abstract
B cells play a central role in the immune system through the production of antibodies. During the past two decades, it has become increasingly clear that B cells also have the capacity to regulate immune responses through mechanisms that extend beyond antibody production. Several types of human and murine regulatory B cells have been reported that suppress inflammatory responses in autoimmune disease, allergy, infection, transplantation, and cancer. Key suppressive molecules associated with regulatory B-cell function include the cytokines IL-10, IL-35, and TGF-β as well as cell membrane-bound molecules such as programmed death-ligand 1, CD39, CD73, and aryl hydrocarbon receptor. Regulatory B cells can be induced by a range of different stimuli, including microbial products such as TLR4 or TLR9 ligands, inflammatory cytokines such as IL-6, IL-1β, and IFN-α, as well as CD40 ligation. This review provides an overview of our current knowledge on regulatory B cells. We discuss different types of regulatory B cells, the mechanisms through which they exert their regulatory functions, factors that lead to induction of regulatory B cells and their role in the alteration of inflammatory responses in different diseases.
Collapse
Affiliation(s)
- Kirstin Jansen
- Swiss Institute of Allergy and Asthma Research (SIAF) University of Zurich Davos Switzerland
| | - Lacin Cevhertas
- Swiss Institute of Allergy and Asthma Research (SIAF) University of Zurich Davos Switzerland
- Department of Medical Immunology Institute of Health SciencesBursa Uludag University Bursa Turkey
- Christine Kühne‐Center for Allergy Research and Education (CK‐CARE) Davos Switzerland
| | - Siyuan Ma
- Swiss Institute of Allergy and Asthma Research (SIAF) University of Zurich Davos Switzerland
- Department of Otolaryngology Head and Neck Surgery+ Beijing TongRen HospitalCapital Medical University Beijing China
| | | | - Mübeccel Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF) University of Zurich Davos Switzerland
| | - Willem van de Veen
- Swiss Institute of Allergy and Asthma Research (SIAF) University of Zurich Davos Switzerland
| |
Collapse
|
14
|
Control of IFN-I responses by the aminopeptidase IRAP in neonatal C57BL/6 alveolar macrophages during RSV infection. Mucosal Immunol 2021; 14:949-962. [PMID: 33846534 PMCID: PMC8221999 DOI: 10.1038/s41385-021-00402-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 03/03/2021] [Accepted: 03/22/2021] [Indexed: 02/04/2023]
Abstract
Respiratory Syncytial Virus (RSV) is the major cause of lower respiratory tract infection in infants, in whom, the sensing of RSV by innate immune receptors and its regulation are still poorly described. However, the severe bronchiolitis following RSV infection in neonates has been associated with a defect in type I interferons (IFN-I) production, a cytokine produced mainly by alveolar macrophages (AMs) upon RSV infection in adults. In the present study, neonatal C57BL/6 AMs mobilized very weakly the IFN-I pathway upon RSV infection in vitro and failed to restrain virus replication. However, IFN-I productions by neonatal AMs were substantially increased by the deletion of Insulin-Responsive AminoPeptidase (IRAP), a protein previously involved in the regulation of IFN-I production by dendritic cells. Moreover, neonatal IRAPKO AMs showed a higher expression of IFN-stimulated genes than their wild-type C57BL/6 counterpart. Interestingly, depletion of IRAP did not affect adult AM responses. Finally, we demonstrated that newborn IRAPKO mice infected with RSV had more IFN-I in their lungs and eliminated the virus more efficiently than WT neonates. Taken together, early-life susceptibility to RSV infection may be related to an original age-dependent suppressive function of IRAP on the IFN-I driven-antiviral responses in neonatal AMs.
Collapse
|