1
|
Maurya R, Vikal A, Narang RK, Patel P, Kurmi BD. Recent advancements and applications of ophthalmic gene therapy strategies: A breakthrough in ocular therapeutics. Exp Eye Res 2024; 245:109983. [PMID: 38942133 DOI: 10.1016/j.exer.2024.109983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 06/03/2024] [Accepted: 06/25/2024] [Indexed: 06/30/2024]
Abstract
Over the past twenty years, ocular gene therapy has primarily focused on addressing diseases linked to various genetic factors. The eye is an ideal candidate for gene therapy due to its unique characteristics, such as easy accessibility and the ability to target both corneal and retinal conditions, including retinitis pigmentosa (RP), Leber congenital amaurosis (LCA), age-related macular degeneration (AMD), and Stargardt disease. Currently, literature documents 33 clinical trials in this field, with the most promising results emerging from trials focused on LCA. These successes have catalyzed further research into other ocular conditions such as glaucoma, AMD, RP, and choroideremia. The effectiveness of gene therapy relies on the efficient delivery of genetic material to specific cells, ensuring sustained and optimal gene expression over time. Viral vectors have been widely used for this purpose, although concerns about potential risks such as immune reactions and genetic mutations have led to the development of non-viral vector systems. Preliminary laboratory research and clinical investigations have shown a connection between vector dosage and the intensity of immune response and inflammation in the eye. The method of administration significantly influences these reactions, with subretinal delivery resulting in a milder humoral response compared to the intravitreal route. This review discusses various ophthalmic diseases, including both corneal and retinal conditions, and their underlying mechanisms, highlighting recent advances and applications in ocular gene therapies.
Collapse
Affiliation(s)
- Rashmi Maurya
- Department of Pharmaceutics, ISF College of Pharmacy, GT Road, Moga, 142001, Punjab, India
| | - Akash Vikal
- Department of Pharmaceutics, ISF College of Pharmacy, GT Road, Moga, 142001, Punjab, India
| | - Raj Kumar Narang
- Department of Pharmaceutics, ISF College of Pharmacy, GT Road, Moga, 142001, Punjab, India; ISF College of Pharmacy & Research, Rattian Road, Moga, 142048, Punjab, India
| | - Preeti Patel
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, GT Road, Moga, 142001, Punjab, India
| | - Balak Das Kurmi
- Department of Pharmaceutics, ISF College of Pharmacy, GT Road, Moga, 142001, Punjab, India.
| |
Collapse
|
2
|
Lee NK, Chang JW. Manufacturing Cell and Gene Therapies: Challenges in Clinical Translation. Ann Lab Med 2024; 44:314-323. [PMID: 38361427 PMCID: PMC10961620 DOI: 10.3343/alm.2023.0382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/24/2023] [Accepted: 01/29/2024] [Indexed: 02/17/2024] Open
Abstract
The safety and efficacy of both cell and gene therapies have been demonstrated in numerous preclinical and clinical trials. Chimeric antigen receptor T (CAR-T) cell therapy, which leverages the technologies of both cell and gene therapies, has also shown great promise for treating various cancers. Advancements in pertinent fields have also highlighted challenges faced while manufacturing cell and gene therapy products. Potential problems and obstacles must be addressed to ease the clinical translation of individual therapies. Literature reviews of representative cell-based, gene-based, and cell-based gene therapies with regard to their general manufacturing processes, the challenges faced during manufacturing, and QC specifications are limited. We review the general manufacturing processes of cell and gene therapies, including those involving mesenchymal stem cells, viral vectors, and CAR-T cells. The complexities associated with the manufacturing processes and subsequent QC/validation processes may present challenges that could impede the clinical progression of the products. This article addresses these potential challenges. Further, we discuss the use of the manufacturing model and its impact on cell and gene therapy.
Collapse
Affiliation(s)
- Na Kyung Lee
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology (SAIHST), Sungkyunkwan University, Seoul, Korea
- Cell and Gene Therapy Institute (CGTI), Research Institute for Future Medicine, Samsung Medical Center, Seoul, Korea
| | - Jong Wook Chang
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology (SAIHST), Sungkyunkwan University, Seoul, Korea
- Cell and Gene Therapy Institute (CGTI), Research Institute for Future Medicine, Samsung Medical Center, Seoul, Korea
- Cell and Gene Therapy Institute, ENCell Co. Ltd., Seoul, Korea
| |
Collapse
|
3
|
Wang Z, Gong W, Yao Z, Jin K, Niu Y, Li B, Zuo Q. Mechanisms of Embryonic Stem Cell Pluripotency Maintenance and Their Application in Livestock and Poultry Breeding. Animals (Basel) 2024; 14:1742. [PMID: 38929361 PMCID: PMC11201147 DOI: 10.3390/ani14121742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 05/31/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024] Open
Abstract
Embryonic stem cells (ESCs) are remarkably undifferentiated cells that originate from the inner cell mass of the blastocyst. They possess the ability to self-renew and differentiate into multiple cell types, making them invaluable in diverse applications such as disease modeling and the creation of transgenic animals. In recent years, as agricultural practices have evolved from traditional to biological breeding, it has become clear that pluripotent stem cells (PSCs), either ESCs or induced pluripotent stem cells (iPSCs), are optimal for continually screening suitable cellular materials. However, the technologies for long-term in vitro culture or establishment of cell lines for PSCs in livestock are still immature, and research progress is uneven, which poses challenges for the application of PSCs in various fields. The establishment of a robust in vitro system for these cells is critically dependent on understanding their pluripotency maintenance mechanisms. It is believed that the combined effects of pluripotent transcription factors, pivotal signaling pathways, and epigenetic regulation contribute to maintaining their pluripotent state, forming a comprehensive regulatory network. This article will delve into the primary mechanisms underlying the maintenance of pluripotency in PSCs and elaborate on the applications of PSCs in the field of livestock.
Collapse
Affiliation(s)
- Ziyu Wang
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China; (Z.W.); (W.G.); (Z.Y.); (K.J.); (Y.N.); (B.L.)
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Wei Gong
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China; (Z.W.); (W.G.); (Z.Y.); (K.J.); (Y.N.); (B.L.)
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Zeling Yao
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China; (Z.W.); (W.G.); (Z.Y.); (K.J.); (Y.N.); (B.L.)
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Kai Jin
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China; (Z.W.); (W.G.); (Z.Y.); (K.J.); (Y.N.); (B.L.)
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Yingjie Niu
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China; (Z.W.); (W.G.); (Z.Y.); (K.J.); (Y.N.); (B.L.)
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Bichun Li
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China; (Z.W.); (W.G.); (Z.Y.); (K.J.); (Y.N.); (B.L.)
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Qisheng Zuo
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China; (Z.W.); (W.G.); (Z.Y.); (K.J.); (Y.N.); (B.L.)
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
4
|
Turuvekere Vittala Murthy N, Vlasova K, Renner J, Jozic A, Sahay G. A new era of targeting cystic fibrosis with non-viral delivery of genomic medicines. Adv Drug Deliv Rev 2024; 209:115305. [PMID: 38626860 DOI: 10.1016/j.addr.2024.115305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 03/27/2024] [Accepted: 04/09/2024] [Indexed: 04/21/2024]
Abstract
Cystic fibrosis (CF) is a complex genetic respiratory disorder that necessitates innovative gene delivery strategies to address the mutations in the gene. This review delves into the promises and challenges of non-viral gene delivery for CF therapy and explores strategies to overcome these hurdles. Several emerging technologies and nucleic acid cargos for CF gene therapy are discussed. Novel formulation approaches including lipid and polymeric nanoparticles promise enhanced delivery through the CF mucus barrier, augmenting the potential of non-viral strategies. Additionally, safety considerations and regulatory perspectives play a crucial role in navigating the path toward clinical translation of gene therapy.
Collapse
Affiliation(s)
| | - Kseniia Vlasova
- Department of Pharmaceutical Sciences, College of Pharmacy at Oregon State University, Corvallis, OR 97331, USA
| | - Jonas Renner
- Department of Pharmaceutical Sciences, College of Pharmacy at Oregon State University, Corvallis, OR 97331, USA
| | - Antony Jozic
- Department of Pharmaceutical Sciences, College of Pharmacy at Oregon State University, Corvallis, OR 97331, USA
| | - Gaurav Sahay
- Department of Pharmaceutical Sciences, College of Pharmacy at Oregon State University, Corvallis, OR 97331, USA; Department of Ophthalmology, Casey Eye Institute, Oregon Health & Science University, Portland, OR 97201, USA; Department of Biomedical Engineering, Robertson Life Sciences Building, Oregon Health & Science University, Portland, OR 97201, USA.
| |
Collapse
|
5
|
Pordanjani PM, Bolhassani A, Pouriayevali MH, Milani A, Rezaei F. Engineered dendritic cells-derived exosomes harboring HIV-1 Nef mut-Tat fusion protein and heat shock protein 70: A promising HIV-1 safe vaccine candidate. Int J Biol Macromol 2024; 270:132236. [PMID: 38768924 DOI: 10.1016/j.ijbiomac.2024.132236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 05/04/2024] [Accepted: 05/07/2024] [Indexed: 05/22/2024]
Abstract
Antigen presenting cells (APCs)-derived exosomes are nano-vesicles that can induce antigen-specific T cell responses, and possess therapeutic effects in clinical settings. Moreover, dendritic cells (DCs)-based vaccines have been developed to combat human immunodeficiency virus-1 (HIV-1) infection in preclinical and clinical trials. We investigated the immunostimulatory effects (B- and T-cells activities) of DCs- and exosomes-based vaccine constructs harboring HIV-1 Nefmut-Tat fusion protein as an antigen candidate and heat shock protein 70 (Hsp70) as an adjuvant in mice. The modified DCs and engineered exosomes harboring Nefmut-Tat protein or Hsp70 were prepared using lentiviral vectors compared to electroporation, characterized and evaluated by in vitro and in vivo immunological tests. Our data indicated that the engineered exosomes induced high levels of total IgG, IgG2a, IFN-γ, TNF-α and Granzyme B. Moreover, co-injection of exosomes harboring Hsp70 could significantly increase the secretion of antibodies, cytokines and Granzyme B. The highest levels of IFN-γ and TNF-α were observed in exosomes harboring Nefmut-Tat combined with exosomes harboring Hsp70 (Exo-Nefmut-Tat + Exo-Hsp70) regimen after single-cycle replicable (SCR) HIV-1 exposure. Generally, Exo-Nefmut-Tat + Exo-Hsp70 regimen can be considered as a promising safe vaccine candidate due to high T-cells (Th1 and CTL) activity and its maintenance against SCR HIV-1 exposure.
Collapse
Affiliation(s)
| | - Azam Bolhassani
- Department of Hepatitis and AIDS, Pasteur Institute of Iran, Tehran, Iran.
| | - Mohammad Hassan Pouriayevali
- Department of Arboviruses and Viral Hemorrhagic Fevers (National Reference Laboratory), Pasteur Institute of Iran, Tehran, Iran
| | - Alireza Milani
- Department of Hepatitis and AIDS, Pasteur Institute of Iran, Tehran, Iran; Iranian Comprehensive Hemophilia Care Center, Tehran, Iran
| | - Fatemeh Rezaei
- Department of Hepatitis and AIDS, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
6
|
Prasher P, Sharma M, Agarwal V, Singh SK, Gupta G, Dureja H, Dua K. Cationic cycloamylose based nucleic acid nanocarriers. Chem Biol Interact 2024; 395:111000. [PMID: 38614318 DOI: 10.1016/j.cbi.2024.111000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 04/02/2024] [Accepted: 04/07/2024] [Indexed: 04/15/2024]
Abstract
Nucleic acid delivery by viral and non-viral methods has been a cornerstone for the contemporary gene therapy aimed at correcting the defective genes, replacing of the missing genes, or downregulating the expression of anomalous genes is highly desirable for the management of various diseases. Ostensibly, it becomes paramount for the delivery vectors to intersect the biological barriers for accessing their destined site within the cellular environment. However, the lipophilic nature of biological membranes and their potential to limit the entry of large sized, charged, hydrophilic molecules thus presenting a sizeable challenge for the cellular integration of negatively charged nucleic acids. Furthermore, the susceptibility of nucleic acids towards the degrading enzymes (nucleases) in the lysosomes present in cytoplasm is another matter of concern for their cellular and nuclear delivery. Hence, there is a pressing need for the identification and development of cationic delivery systems which encapsulate the cargo nucleic acids where the charge facilitates their cellular entry by evading the membrane barriers, and the encapsulation shields them from the enzymatic attack in cytoplasm. Cycloamylose bearing a closed loop conformation presents a robust candidature in this regard owing to its remarkable encapsulating tendency towards nucleic acids including siRNA, CpG DNA, and siRNA. The presence of numerous hydroxyl groups on the cycloamylose periphery provides sites for its chemical modification for the introduction of cationic groups, including spermine, (3-Chloro-2 hydroxypropyl) trimethylammonium chloride (Q188), and diethyl aminoethane (DEAE). The resulting cationic cycloamylose possesses a remarkable transfection efficiency and provides stability to cargo oligonucleotides against endonucleases, in addition to modulating the undesirable side effects such as unwanted immune stimulation. Cycloamylose is known to interact with the cell membranes where they release certain membrane components such as phospholipids and cholesterol thereby resulting in membrane destabilization and permeabilization. Furthermore, cycloamylose derivatives also serve as formulation excipients for improving the efficiency of other gene delivery systems. This review delves into the various vector and non-vector-based gene delivery systems, their advantages, and limitations, eventually leading to the identification of cycloamylose as an ideal candidate for nucleic acid delivery. The synthesis of cationic cycloamylose is briefly discussed in each section followed by its application for specific delivery/transfection of a particular nucleic acid.
Collapse
Affiliation(s)
- Parteek Prasher
- Department of Chemistry, University of Petroleum & Energy Studies, Energy Acres, Dehradun, 248007, India.
| | - Mousmee Sharma
- Department of Chemistry, Uttaranchal University, Dehradun, 248007, India
| | - Vipul Agarwal
- Cluster for Advanced Macromolecular Design (CAMD), School of Chemical Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India; Faculty of Health, Australian Research Center in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW, 2007, Australia; School of Medical and Life Sciences, Sunway University, 47500 Sunway City, Malaysia
| | - Gaurav Gupta
- School of Pharmacy, Graphic Era Hill University, Dehradun, 248007, India; Centre of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman 346, United Arab Emirates
| | - Harish Dureja
- Department of Pharmaceutical Sciences, Maharishi Dayanand University, Rohtak, 124001, India
| | - Kamal Dua
- Faculty of Health, Australian Research Center in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW, 2007, Australia; Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW, 2007, Australia.
| |
Collapse
|
7
|
Zhao Y, Zheng Q, Xie J. Exploration of Gene Therapy for Alport Syndrome. Biomedicines 2024; 12:1159. [PMID: 38927366 PMCID: PMC11200676 DOI: 10.3390/biomedicines12061159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 05/04/2024] [Accepted: 05/14/2024] [Indexed: 06/28/2024] Open
Abstract
Alport syndrome is a hereditary disease caused by mutations in the genes encoding the alpha 3, alpha 4, and alpha 5 chains of type IV collagen. It is characterized by hematuria, proteinuria, progressive renal dysfunction, hearing loss, and ocular abnormalities. The main network of type IV collagen in the glomerular basement membrane is composed of α3α4α5 heterotrimer. Mutations in these genes can lead to the replacement of this network by an immature network composed of the α1α1α2 heterotrimer. Unfortunately, this immature network is unable to provide normal physical support, resulting in hematuria, proteinuria, and progressive renal dysfunction. Current treatment options for Alport syndrome include angiotensin-converting enzyme inhibitors and angiotensin receptor blockers, which aim to alleviate glomerular filtration pressure, reduce renal injury, and delay the progression of renal dysfunction. However, the effectiveness of these treatments is limited, highlighting the need for novel therapeutic strategies and medications to improve patient outcomes. Gene therapy, which involves the use of genetic material to prevent or treat diseases, holds promise for the treatment of Alport syndrome. This approach may involve the insertion or deletion of whole genes or gene fragments to restore or disrupt gene function or the editing of endogenous genes to correct genetic mutations and restore functional protein synthesis. Recombinant adeno-associated virus (rAAV) vectors have shown significant progress in kidney gene therapy, with several gene therapy drugs based on these vectors reaching clinical application. Despite the challenges posed by the structural characteristics of the kidney, the development of kidney gene therapy using rAAV vectors is making continuous progress. This article provides a review of the current achievements in gene therapy for Alport syndrome and discusses future research directions in this field.
Collapse
Affiliation(s)
- Yafei Zhao
- Department of Nephrology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; (Y.Z.); (Q.Z.)
- Institute of Nephrology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Qimin Zheng
- Department of Nephrology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; (Y.Z.); (Q.Z.)
- Institute of Nephrology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Jingyuan Xie
- Department of Nephrology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; (Y.Z.); (Q.Z.)
- Institute of Nephrology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| |
Collapse
|
8
|
Farahani MS, Hosseini-Beheshti E, Moazzeni SM, Moghadam MF. Engineered extracellular vesicles expressing ICAM-1: A promising targeted delivery system for T cell modifications. Biochim Biophys Acta Gen Subj 2024; 1868:130541. [PMID: 38103755 DOI: 10.1016/j.bbagen.2023.130541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 12/03/2023] [Accepted: 12/09/2023] [Indexed: 12/19/2023]
Abstract
BACKGROUND Extracellular vesicles (EVs) are natural nano-carriers that possess the required crucial features of an ideal biomolecular delivery system. However, using unmodified EVs may have some limitations such as low accumulation in target sites. Studies have established that engineering EVs against different cell surface markers can overcome most of these hurdles. METHODS In this study, engineered EVs expressing ICAM-1/LAMP2b fusion protein on their surfaces were produced and isolated. The uptake of isolated targeted and non-targeted EVs was evaluated by imaging and flow cytometry. To assess the ability of targeted EVs to be applied as a safe carrier, pAAVS1-Puro-GFP plasmids were encapsulated into EVs by electroporation. RESULTS The HEKT 293 cell line was successfully modified permanently by a lentiviral vector to express ICAM-1 on the surface of the derived EVs. The ELISA and western blot tests established the binding affinity of targeted EVs for recombinant LFA-1 with a remarkable difference from non-targeted EVs. Furthermore, flow cytometry results revealed noteworthy differences in the binding of LFA-1-positive, non-targeted EVs, and targeted EVs to LFA-1-negative cells. Finally, imaging and flow cytometry indicated that newly produced EVs could efficiently interact with T cells and functionally deliver loaded plasmids to them. CONCLUSION These LFA-1-targeted EVs were able to interact with T cells as their recipient cells. They can be utilized as an ideal delivery system to transfer various biomolecules to T cells, facilitating immunotherapies or other cell-based treatments.
Collapse
Affiliation(s)
- Mahboube Shahrabi Farahani
- Department of Medical Biotechnology, Faculty of Medical Science, Tarbiat Modares University, P.O.Box: 14115-331, I.R, Jalal ale Ahmad Highway, Tehran, Iran.
| | | | - Seyed Mohammad Moazzeni
- Department of Medical Immunology, Faculty of Medical Science, Tarbiat Modares University, Tehran, Iran.
| | - Mehdi Forouzandeh Moghadam
- Department of Medical Biotechnology, Faculty of Medical Science, Tarbiat Modares University, P.O.Box: 14115-331, I.R, Jalal ale Ahmad Highway, Tehran, Iran.
| |
Collapse
|
9
|
Daddacha W, Monroe D, Schlafstein A, Withers A, Thompson E, Danelia D, Luong N, Sesay F, Rath S, Usoro E, Essien M, Jung A, Jiang J, Hu J, Mahboubi B, Williams A, Steinbeck J, Yang X, Buchwald Z, Dynan W, Switchenko J, Kim B, Khan M, Jaye D, Yu D. SAMHD1 expression contributes to doxorubicin resistance and predicts survival outcomes in diffuse large B-cell lymphoma patients. NAR Cancer 2024; 6:zcae007. [PMID: 38406263 PMCID: PMC10894040 DOI: 10.1093/narcan/zcae007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 01/31/2024] [Accepted: 02/22/2024] [Indexed: 02/27/2024] Open
Abstract
Diffuse large B-cell lymphoma (DLBCL) is a commonly diagnosed, aggressive non-Hodgkin's lymphoma. While R-CHOP chemoimmunotherapy is potentially curative, about 40% of DLBCL patients will fail, highlighting the need to identify biomarkers to optimize management. SAMHD1 has a dNTPase-independent role in promoting resection to facilitate DNA double-strand break (DSB) repair by homologous recombination. We evaluated the relationship of SAMHD1 levels with sensitivity to DSB-sensitizing agents in DLBCL cells and the association of SAMHD1 expression with clinical outcomes in 79 DLBCL patients treated with definitive therapy and an independent cohort dataset of 234 DLBCL patients. Low SAMHD1 expression, Vpx-mediated, or siRNA-mediated degradation/depletion in DLBCL cells was associated with greater sensitivity to doxorubicin and PARP inhibitors. On Kaplan-Meier log-rank survival analysis, low SAMHD1 expression was associated with improved overall survival (OS), which on subset analysis remained significant only in patients with advanced stage (III-IV) and moderate to high risk (2-5 International Prognostic Index (IPI)). The association of low SAMHD1 expression with improved OS remained significant on multivariate analysis independent of other adverse factors, including IPI, and was validated in an independent cohort. Our findings suggest that SAMHD1 expression mediates doxorubicin resistance and may be an important prognostic biomarker in advanced, higher-risk DLBCL patients.
Collapse
Affiliation(s)
- Waaqo Daddacha
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Dominique Monroe
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Ashley J Schlafstein
- Department of Radiation Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Allison E Withers
- Department of Radiation Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Elizabeth B Thompson
- Department of Radiation Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Diana Danelia
- Department of Radiation Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Nho C Luong
- Department of Radiation Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Fatmata Sesay
- Department of Radiation Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Sandip K Rath
- Department of Radiation Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Edidiong R Usoro
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Mark E Essien
- Department of Radiation Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Andrew T Jung
- Department of Radiation Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Jinmeng G Jiang
- Department of Radiation Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Jiaxuan Hu
- Department of Radiation Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Bijan Mahboubi
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Arilyn Williams
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Julia E Steinbeck
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Xiaofeng Yang
- Department of Radiation Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Zachary S Buchwald
- Department of Radiation Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - William S Dynan
- Department of Radiation Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Jeffrey M Switchenko
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health and Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Baek Kim
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Mohammad K Khan
- Department of Radiation Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - David L Jaye
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - David S Yu
- Department of Radiation Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA
| |
Collapse
|
10
|
Rotte A. Development of Cell and Gene Therapies for Clinical Use in the US and EU: Summary of Regulatory Guidelines. Curr Gene Ther 2024; 25:10-21. [PMID: 38676481 DOI: 10.2174/0115665232306205240419091414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 03/24/2024] [Accepted: 04/03/2024] [Indexed: 04/29/2024]
Abstract
Recent decades have seen advancements in the management and treatment of difficultto- treat diseases such as cancer. A special class of therapeutics called cell and gene therapy has been introduced in the past 10 years. Cell and gene therapy products have strengthened the treatment options for life-threatening diseases with unmet clinical needs and also provided the possibility of a potential cure for the disease in some of the patients. Cell and gene therapy products are gaining recognition, and the interest in clinical development of cell and gene therapy products is increasing. Moreover, as the class of cell and gene therapy products is relatively new, there is a limited regulatory experience in the development, and the developers of the cell and gene therapy products can often be puzzled with an array of questions on regulations. The current review intends to provide a basic understanding of regulatory guidelines from the FDA and EMA that are applicable to cell and gene therapy products. Essentials such as which office is responsible for the evaluation of applications, which regulatory class/pathway is appropriate for development, and what are the quality, nonclinical and clinical studies that are needed to support the application are discussed in the article. In addition, a summary of regulatory designations and the post-approval requirements, such as Risk Evaluation and Mitigation Strategies (REMS) and long-term follow- up, is included in the article. Developers (referred to as 'sponsors' in this article) of cell and gene therapies can use the respective guidance documents and other specific review articles cited in this review for detailed information on the topics.
Collapse
Affiliation(s)
- Anand Rotte
- Clinical and Regulatory Affairs, Arcellx Inc, Redwood City, California, CA, USA
| |
Collapse
|
11
|
Cheng YM, Ma C, Jin K, Jin ZB. Retinal organoid and gene editing for basic and translational research. Vision Res 2023; 210:108273. [PMID: 37307693 DOI: 10.1016/j.visres.2023.108273] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/23/2023] [Accepted: 05/24/2023] [Indexed: 06/14/2023]
Abstract
The rapid evolution of two technologies has greatly transformed the basic, translational, and clinical research in the mammalian retina. One is the retinal organoid (RO) technology. Various induction methods have been created or adapted to generate species-specific, disease-specific, and experimental-targeted retinal organoids (ROs). The process of generating ROs can highly mimic the in vivo retinal development, and consequently, the ROs resemble the retina in many aspects including the molecular and cellular profiles. The other technology is the gene editing, represented by the classical CRISPR-Cas9 editing and its derivatives such as prime editing, homology independent targeted integration (HITI), base editing and others. The combination of ROs and gene editing has opened up countless possibilities in the study of retinal development, pathogenesis, and therapeutics. We review recent advances in the ROs, gene editing methodologies, delivery vectors, and related topics that are particularly relevant to retinal studies.
Collapse
Affiliation(s)
- You-Min Cheng
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing 100730 China
| | - Chao Ma
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing 100730 China
| | - Kangxin Jin
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing 100730 China.
| | - Zi-Bing Jin
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing 100730 China.
| |
Collapse
|
12
|
Wang Y, Shao W. Innate Immune Response to Viral Vectors in Gene Therapy. Viruses 2023; 15:1801. [PMID: 37766208 PMCID: PMC10536768 DOI: 10.3390/v15091801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/21/2023] [Accepted: 08/22/2023] [Indexed: 09/29/2023] Open
Abstract
Viral vectors play a pivotal role in the field of gene therapy, with several related drugs having already gained clinical approval from the EMA and FDA. However, numerous viral gene therapy vectors are currently undergoing pre-clinical research or participating in clinical trials. Despite advancements, the innate response remains a significant barrier impeding the clinical development of viral gene therapy. The innate immune response to viral gene therapy vectors and transgenes is still an important reason hindering its clinical development. Extensive studies have demonstrated that different DNA and RNA sensors can detect adenoviruses, adeno-associated viruses, and lentiviruses, thereby activating various innate immune pathways such as Toll-like receptor (TLR), cyclic GMP-AMP synthase-stimulator of interferon genes (cGAS-STING), and retinoic acid-inducible gene I-mitochondrial antiviral signaling protein (RLR-MAVS). This review focuses on elucidating the mechanisms underlying the innate immune response induced by three widely utilized viral vectors: adenovirus, adeno-associated virus, and lentivirus, as well as the strategies employed to circumvent innate immunity.
Collapse
Affiliation(s)
| | - Wenwei Shao
- Academy of Medical Engineering and Translational Medicine, Medical College, Tianjin University, Tianjin 300072, China;
| |
Collapse
|
13
|
Zeng S, Chen Y, Zhou F, Zhang T, Fan X, Chrzanowski W, Gillies MC, Zhu L. Recent advances and prospects for lipid-based nanoparticles as drug carriers in the treatment of human retinal diseases. Adv Drug Deliv Rev 2023; 199:114965. [PMID: 37315899 DOI: 10.1016/j.addr.2023.114965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 05/08/2023] [Accepted: 06/09/2023] [Indexed: 06/16/2023]
Abstract
The delivery of cures for retinal diseases remains problematic. There are four main challenges: passing through multiple barriers of the eye, the delivery to particular retinal cell types, the capability to carry different forms of therapeutic cargo and long-term therapeutic efficacy. Lipid-based nanoparticles (LBNPs) are potent to overcome these challenges due to their unique merits: amphiphilic nanoarchitectures to pass biological barriers, vary modifications with specific affinity to target cell types, flexible capacity for large and mixed types of cargos and slow-release formulations for long-term treatment. We have reviewed the latest research on the applications of LBNPs for treating retinal diseases and categorized them by different payloads. Furthermore, we identified technical barriers and discussed possible future development for LBNPs to expand the therapeutic potential in treating retinal diseases.
Collapse
Affiliation(s)
- Shaoxue Zeng
- Macula Research Group, Save Sight Institute, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia
| | - Yingying Chen
- Macula Research Group, Save Sight Institute, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia; Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Fanfan Zhou
- School of Pharmacy, The University of Sydney, Sydney, NSW 2006, Australia
| | - Ting Zhang
- Macula Research Group, Save Sight Institute, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia
| | - Xiaohui Fan
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | | | - Mark C Gillies
- Macula Research Group, Save Sight Institute, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia
| | - Ling Zhu
- Macula Research Group, Save Sight Institute, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia.
| |
Collapse
|
14
|
Li X, Le Y, Zhang Z, Nian X, Liu B, Yang X. Viral Vector-Based Gene Therapy. Int J Mol Sci 2023; 24:ijms24097736. [PMID: 37175441 PMCID: PMC10177981 DOI: 10.3390/ijms24097736] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/19/2023] [Accepted: 04/20/2023] [Indexed: 05/15/2023] Open
Abstract
Gene therapy is a technique involving the modification of an individual's genes for treating a particular disease. The key to effective gene therapy is an efficient carrier delivery system. Viral vectors that have been artificially modified to lose their pathogenicity are used widely as a delivery system, with the key advantages of their natural high transduction efficiency and stable expression. With decades of development, viral vector-based gene therapies have achieved promising clinical outcomes. Currently, the three key vector strategies are based on adeno-associated viruses, adenoviruses, and lentiviruses. However, certain challenges, such as immunotoxicity and "off-target", continue to exist. In the present review, the above three viral vectors are discussed along with their respective therapeutic applications. In addition, the major translational challenges encountered in viral vector-based gene therapies are summarized, and the possible strategies to address these challenges are also discussed.
Collapse
Affiliation(s)
- Xuedan Li
- National Engineering Technology Research Center for Combined Vaccines, Wuhan 430207, China
- Wuhan Institute of Biological Products Co., Ltd., Wuhan 430207, China
| | - Yang Le
- National Engineering Technology Research Center for Combined Vaccines, Wuhan 430207, China
- Wuhan Institute of Biological Products Co., Ltd., Wuhan 430207, China
| | - Zhegang Zhang
- National Engineering Technology Research Center for Combined Vaccines, Wuhan 430207, China
- Wuhan Institute of Biological Products Co., Ltd., Wuhan 430207, China
| | - Xuanxuan Nian
- National Engineering Technology Research Center for Combined Vaccines, Wuhan 430207, China
- Wuhan Institute of Biological Products Co., Ltd., Wuhan 430207, China
| | - Bo Liu
- National Engineering Technology Research Center for Combined Vaccines, Wuhan 430207, China
- Wuhan Institute of Biological Products Co., Ltd., Wuhan 430207, China
| | - Xiaoming Yang
- National Engineering Technology Research Center for Combined Vaccines, Wuhan 430207, China
- Wuhan Institute of Biological Products Co., Ltd., Wuhan 430207, China
- China National Biotech Group Company Limited, Beijing 100029, China
| |
Collapse
|
15
|
Ulas T, Dal MS. Gene therapy approaches for sickle cell anemia. Transfus Apher Sci 2023; 62:103677. [PMID: 36858830 DOI: 10.1016/j.transci.2023.103677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
Affiliation(s)
- Turgay Ulas
- Near East University, School of Medicine, Department of Internal Medicine, Division of Hematology, Nicosia, Cyprus.
| | - Mehmet Sinan Dal
- University of Health Science, Dr. Abdurrahman Yurtaslan Oncology Training and Research Hospital, Department of Internal Medicine, Division of Hematology and Bone Marrow Transplantation Unit, Ankara, Turkey
| |
Collapse
|
16
|
Wang W, Gao T, Luo J, Guo L, Li X, Li Y, Chen H. Size distribution analysis of residual host cell DNA fragments in lentivirus by CGE-LIF. Electrophoresis 2023; 44:462-471. [PMID: 36353919 DOI: 10.1002/elps.202200218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/02/2022] [Accepted: 11/02/2022] [Indexed: 11/12/2022]
Abstract
During the production of cell and gene therapy products, residual host cell DNA (HCD) could cause safety risks of the biological products, and the longer the residual HCD fragment, the greater the risk to the human body. For this reason, it was necessary to develop an effective method for the size distribution analysis of residual HCD fragments with high accuracy and sensitivity. In this study, capillary gel electrophoresis with laser-induced fluorescence detector (CGE-LIF) was used to analyze the size distribution of residual HCD fragments in lentivirus products. The results confirmed that lentiviral RNA genome could interfere with the size distribution analysis of residual HCD fragments. By optimizing the amount of RNase I and digestion time in sample pretreatment process, the interfere of RNA genome could be avoided. The specificity, precision, accuracy, linear range, the detection of limit (LOD), and the quantification of limit (LOQ) of CGE-LIF method were also validated. The results showed that the CGE-LIF method had a good performance both in terms of specificity and reproducibility. The intra- and inter-day relative standard deviations of migration time and corrected peak area were all less than 1% and 2%, respectively. The 200 bp DNA marker had a good linearity between 50 and 1000 pg/ml. The LOD and LOQ of 200 bp DNA marker were 2.59 and 8.64 pg/ml, respectively. In addition, this method was successfully used to analyze the size distribution analysis of residual HCD fragments in lentivirus products with different production processes.
Collapse
Affiliation(s)
| | | | - Ji Luo
- SCIEX, Beijing, P. R. China
| | | | - Xiang Li
- Division of Recombinant Biological Products, National Institutes for Food and Drug Control (NIFDC), Beijing, P. R. China
| | - Yan Li
- National Medical Products Administration (NMPA), Key Laboratory for Quality Control and Evaluation of Vaccines and Biological Products, SiChuan Institute for Drug Control, Chengdu, P. R. China
| | | |
Collapse
|
17
|
Alfonsetti M, d’Angelo M, Castelli V. Neurotrophic factor-based pharmacological approaches in neurological disorders. Neural Regen Res 2022; 18:1220-1228. [PMID: 36453397 PMCID: PMC9838155 DOI: 10.4103/1673-5374.358619] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Aging is a physiological event dependent on multiple pathways that are linked to lifespan and processes leading to cognitive decline. This process represents the major risk factor for aging-related diseases such as Alzheimer's disease, Parkinson's disease, and ischemic stroke. The incidence of all these pathologies increases exponentially with age. Research on aging biology has currently focused on elucidating molecular mechanisms leading to the development of those pathologies. Cognitive deficit and neurodegeneration, common features of aging-related pathologies, are related to the alteration of the activity and levels of neurotrophic factors, such as brain-derived neurotrophic factor, nerve growth factor, and glial cell-derived neurotrophic factor. For this reason, treatments that modulate neurotrophin levels have acquired a great deal of interest in preventing neurodegeneration and promoting neural regeneration in several neurological diseases. Those treatments include both the direct administration of neurotrophic factors and the induced expression with viral vectors, neurotrophins' binding with biomaterials or other molecules to increase their bioavailability but also cell-based therapies. Considering neurotrophins' crucial role in aging pathologies, here we discuss the involvement of several neurotrophic factors in the most common brain aging-related diseases and the most recent therapeutic approaches that provide direct and sustained neurotrophic support.
Collapse
Affiliation(s)
- Margherita Alfonsetti
- Department of Life, Health and Environmental Sciences, University of L’Aquila, L’Aquila, Italy
| | - Michele d’Angelo
- Department of Life, Health and Environmental Sciences, University of L’Aquila, L’Aquila, Italy
| | - Vanessa Castelli
- Department of Life, Health and Environmental Sciences, University of L’Aquila, L’Aquila, Italy,Correspondence to: Vanessa Castelli, .
| |
Collapse
|
18
|
Saied AA, Nascimento MSL, do Nascimento Rangel AH, Skowron K, Grudlewska‐Buda K, Dhama K, Shah J, Abdeen A, El‐Mayet FS, Ahmed H, Metwally AA. Transchromosomic bovines-derived broadly neutralizing antibodies as potent biotherapeutics to counter important emerging viral pathogens with a special focus on SARS-CoV-2, MERS-CoV, Ebola, Zika, HIV-1, and influenza A virus. J Med Virol 2022; 94:4599-4610. [PMID: 35655326 PMCID: PMC9347534 DOI: 10.1002/jmv.27907] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 05/28/2022] [Accepted: 05/31/2022] [Indexed: 11/17/2022]
Abstract
Historically, passive immunotherapy is an approved approach for protecting and treating humans against various diseases when other alternative therapeutic options are unavailable. Human polyclonal antibodies (hpAbs) can be made from convalescent human donor serum, although it is considered limited due to pandemics and the urgent requirement. Additionally, polyclonal antibodies (pAbs) could be generated from animals, but they may cause severe immunoreactivity and, once "humanized," may have lower neutralization efficiency. Transchromosomic bovines (TcBs) have been developed to address these concerns by creating robust neutralizing hpAbs, which are useful in preventing and/or curing human infections in response to hyperimmunization with vaccines holding adjuvants and/or immune stimulators over an extensive period. Unlike other animal-derived pAbs, potent hpAbs could be promptly produced from TcB in large amounts to assist against an outbreak scenario. Some of these highly efficacious TcB-derived antibodies have already neutralized and blocked diseases in clinical studies. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has numerous variants classified into variants of concern (VOCs), variants of interest (VOIs), and variants under monitoring. Although these variants possess different mutations, such as N501Y, E484K, K417N, K417T, L452R, T478K, and P681R, SAB-185 has shown broad neutralizing activity against VOCs, such as Alpha, Beta, Gamma, Delta, and Omicron variants, and VOIs, such as Epsilon, Iota, Kappa, and Lambda variants. This article highlights recent developments in the field of bovine-derived biotherapeutics, which are seen as a practical platform for developing safe and effective antivirals with broad activity, particularly considering emerging viral infections such as SARS-CoV-2, Ebola, Middle East respiratory syndrome coronavirus, Zika, human immunodeficiency virus type 1, and influenza A virus. Antibodies in the bovine serum or colostrum, which have been proved to be more protective than their human counterparts, are also reviewed.
Collapse
Affiliation(s)
- AbdulRahman A. Saied
- National Food Safety Authority (NFSA)AswanEgypt
- Ministry of Tourism and AntiquitiesAswanEgypt
| | - Manuela Sales Lima Nascimento
- Department of Microbiology and Parasitology, Biosciences CenterFederal University of Rio Grande do NorteNatalRio Grande do NorteBrazil
| | | | - Krzysztof Skowron
- Department of Microbiology, Nicolaus Copernicus University in ToruńL. Rydygier Collegium Medicum in BydgoszczBydgoszczPoland
| | - Katarzyna Grudlewska‐Buda
- Department of Microbiology, Nicolaus Copernicus University in ToruńL. Rydygier Collegium Medicum in BydgoszczBydgoszczPoland
| | - Kuldeep Dhama
- Division of PathologyICAR‐Indian Veterinary Research Institute (IVRI)IzatnagarUttar PradeshIndia
| | - Jaffer Shah
- Medical Research CenterKateb UniversityKabulAfghanistan
- New York State Department of HealthNew York CityNew YorkUSA
| | - Ahmed Abdeen
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary MedicineBenha UniversityToukhEgypt
| | - Fouad S. El‐Mayet
- Department of Virology, Faculty of Veterinary MedicineBenha UniversityToukhEgypt
| | - Hassan Ahmed
- Department of Physiology, Faculty of Veterinary MedicineSouth Valley UniversityQenaEgypt
| | - Asmaa A. Metwally
- Department of Surgery, Anesthesiology, and Radiology, Faculty of Veterinary MedicineAswan UniversityAswanEgypt
| |
Collapse
|
19
|
Daddacha W, Monroe D, Carver K, Usoro ER, Alptekin A, Xu H, Osuka S, Arbab AS, Sakamuro D. Viral Particle-Mediated SAMHD1 Depletion Sensitizes Refractory Glioblastoma to DNA-Damaging Therapeutics by Impairing Homologous Recombination. Cancers (Basel) 2022; 14:4490. [PMID: 36139652 PMCID: PMC9497202 DOI: 10.3390/cancers14184490] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/09/2022] [Accepted: 09/13/2022] [Indexed: 12/04/2022] Open
Abstract
The current standard-of-care treatment for glioblastoma includes DNA damaging agents, γ-irradiation (IR) and temozolomide (TMZ). These treatments fail frequently and there is limited alternative strategy. Therefore, identifying a new therapeutic target is urgently needed to develop a strategy that improves the efficacy of the existing treatments. Here, we report that tumor samples from GBM patients express a high level of SAMHD1, emphasizing SAMHD1's importance. The depletion of SAMHD1 using virus-like particles containing Vpx, VLP(+Vpx), sensitized two independent GBM cell lines (LN-229 and U-87) to veliparib, a well-established PARP inhibitor, and slowed cell growth in a dose-dependent manner. In the mouse GBM xenograft model, Vpx-mediated SAMHD1 depletion reduced tumor growth and SAMHD1 knockout (KO) improved survival. In combination with IR or TMZ, SAMHD1 KO and exposure to 50% growth inhibitory dose (gID50) of VLP(+Vpx) displayed a synergistic effect, resulting in impaired HR, and improved LN-229 cells' sensitivity to TMZ and IR. In conclusion, our finding demonstrates that SAMHD1 promotes GBM resistance to treatment, and it is a plausible therapeutic target to improve the efficacy of TMZ and IR in GBM. Furthermore, we show that Vpx could be a potential therapeutic tool that can be utilized to deplete SAMHD1 in GBM.
Collapse
Affiliation(s)
- Waaqo Daddacha
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
- Georgia Cancer Center, Augusta University, Augusta, GA 30912, USA
| | - Dominique Monroe
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
- Georgia Cancer Center, Augusta University, Augusta, GA 30912, USA
| | - Kristen Carver
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
- Department of Population Health Sciences, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Edidiong R. Usoro
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
- Georgia Cancer Center, Augusta University, Augusta, GA 30912, USA
| | - Ahmet Alptekin
- Georgia Cancer Center, Augusta University, Augusta, GA 30912, USA
| | - Hongyan Xu
- Department of Population Health Sciences, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Satoru Osuka
- Department of Neurosurgery, Heersink School of Medicine, The University of Alabama, Birmingham, AL 35233, USA
| | - Ali S. Arbab
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
- Georgia Cancer Center, Augusta University, Augusta, GA 30912, USA
| | - Daitoku Sakamuro
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
- Georgia Cancer Center, Augusta University, Augusta, GA 30912, USA
| |
Collapse
|
20
|
Special Issue "Lentiviral Vectors". Viruses 2022; 14:v14071492. [PMID: 35891475 PMCID: PMC9316126 DOI: 10.3390/v14071492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 07/05/2022] [Indexed: 11/17/2022] Open
|
21
|
Taliyan R, Kakoty V, Sarathlal KC, Kharavtekar SS, Karennanavar CR, Choudhary YK, Singhvi G, Riadi Y, Dubey SK, Kesharwani P. Nanocarrier mediated drug delivery as an impeccable therapeutic approach against Alzheimer's disease. J Control Release 2022; 343:528-550. [PMID: 35114208 DOI: 10.1016/j.jconrel.2022.01.044] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 01/22/2022] [Accepted: 01/25/2022] [Indexed: 12/14/2022]
Abstract
For the past several years, dementia, is one of the predominantly observed groups of symptoms in a geriatric population. Alzheimer's disease (AD) is a progressive memory related neurodegenerative disease, for which the current Food and drug administration approved therapeutics are only meant for a symptomatic management rather than targeting the root cause of AD. These therapeutics belong to two classes, Acetylcholine Esterase inhibitors and N-methyl D-aspartate antagonist. Furthermore, to facilitate neuroprotective action in AD, the drugs are majorly expected to reach the specific target area in the brain for the desired efficacy. Thus, there is a huge requirement for drug discovery and development for facilitating the entry of drugs more in brain to exert a specific action. The very first line of defense and the major limitation for the entry of drugs into the brain is the Blood Brain Barrier, followed by Blood-Cerebrospinal Fluid Barrier. More than a barrier, these mainly act as selectively permeable membranes, which allows entry of specific molecules into the brain. Furthermore, specific enzymes result in the degradation of xenobiotics. All these mechanisms pose as hurdles in the way of effective drug delivery in the brain. Thus, novel techniques need to be harbored for the facilitation of the delivery of such drugs into the brain. Nanocarriers are advantageous for facilitating the specific targeted drug treatment in AD. As nanomedicines are one of the novels and most useful approaches for AD, thus the present review mainly focuses on understanding the advanced use of nanocarriers for targeted drug delivery in the management of AD.
Collapse
Affiliation(s)
- Rajeev Taliyan
- Neuropsychopharmacology Division, Department of Pharmacy, Birla Institute of Technology and Science-Pilani, Pilani Campus, 333031, Rajasthan, India.
| | - Violina Kakoty
- Neuropsychopharmacology Division, Department of Pharmacy, Birla Institute of Technology and Science-Pilani, Pilani Campus, 333031, Rajasthan, India
| | - K C Sarathlal
- Neuropsychopharmacology Division, Department of Pharmacy, Birla Institute of Technology and Science-Pilani, Pilani Campus, 333031, Rajasthan, India
| | - Sanskruti Santosh Kharavtekar
- Neuropsychopharmacology Division, Department of Pharmacy, Birla Institute of Technology and Science-Pilani, Pilani Campus, 333031, Rajasthan, India
| | - Chandrashekar R Karennanavar
- Neuropsychopharmacology Division, Department of Pharmacy, Birla Institute of Technology and Science-Pilani, Pilani Campus, 333031, Rajasthan, India
| | | | - Gautam Singhvi
- Neuropsychopharmacology Division, Department of Pharmacy, Birla Institute of Technology and Science-Pilani, Pilani Campus, 333031, Rajasthan, India
| | - Yassine Riadi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Sunil Kumar Dubey
- Medical Research, R&D Healthcare Division, Emami Ltd, 13, BT Road, Belgharia, Kolkata 700056, India
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India.
| |
Collapse
|
22
|
Schneider N, Sundaresan Y, Gopalakrishnan P, Beryozkin A, Hanany M, Levanon EY, Banin E, Ben-Aroya S, Sharon D. Inherited retinal diseases: Linking genes, disease-causing variants, and relevant therapeutic modalities. Prog Retin Eye Res 2021; 89:101029. [PMID: 34839010 DOI: 10.1016/j.preteyeres.2021.101029] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 11/11/2021] [Accepted: 11/16/2021] [Indexed: 12/11/2022]
Abstract
Inherited retinal diseases (IRDs) are a clinically complex and heterogenous group of visual impairment phenotypes caused by pathogenic variants in at least 277 nuclear and mitochondrial genes, affecting different retinal regions, and depleting the vision of affected individuals. Genes that cause IRDs when mutated are unique by possessing differing genotype-phenotype correlations, varying inheritance patterns, hypomorphic alleles, and modifier genes thus complicating genetic interpretation. Next-generation sequencing has greatly advanced the identification of novel IRD-related genes and pathogenic variants in the last decade. For this review, we performed an in-depth literature search which allowed for compilation of the Global Retinal Inherited Disease (GRID) dataset containing 4,798 discrete variants and 17,299 alleles published in 31 papers, showing a wide range of frequencies and complexities among the 194 genes reported in GRID, with 65% of pathogenic variants being unique to a single individual. A better understanding of IRD-related gene distribution, gene complexity, and variant types allow for improved genetic testing and therapies. Current genetic therapeutic methods are also quite diverse and rely on variant identification, and range from whole gene replacement to single nucleotide editing at the DNA or RNA levels. IRDs and their suitable therapies thus require a range of effective disease modelling in human cells, granting insight into disease mechanisms and testing of possible treatments. This review summarizes genetic and therapeutic modalities of IRDs, provides new analyses of IRD-related genes (GRID and complexity scores), and provides information to match genetic-based therapies such as gene-specific and variant-specific therapies to the appropriate individuals.
Collapse
Affiliation(s)
- Nina Schneider
- Department of Ophthalmology, Hadassah Medical Center, Faculty of Medicine, The Hebrew University of Jerusalem, 91120, Israel
| | - Yogapriya Sundaresan
- Department of Ophthalmology, Hadassah Medical Center, Faculty of Medicine, The Hebrew University of Jerusalem, 91120, Israel
| | - Prakadeeswari Gopalakrishnan
- Department of Ophthalmology, Hadassah Medical Center, Faculty of Medicine, The Hebrew University of Jerusalem, 91120, Israel
| | - Avigail Beryozkin
- Department of Ophthalmology, Hadassah Medical Center, Faculty of Medicine, The Hebrew University of Jerusalem, 91120, Israel
| | - Mor Hanany
- Department of Ophthalmology, Hadassah Medical Center, Faculty of Medicine, The Hebrew University of Jerusalem, 91120, Israel
| | - Erez Y Levanon
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, 5290002, Israel
| | - Eyal Banin
- Department of Ophthalmology, Hadassah Medical Center, Faculty of Medicine, The Hebrew University of Jerusalem, 91120, Israel
| | - Shay Ben-Aroya
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, 5290002, Israel
| | - Dror Sharon
- Department of Ophthalmology, Hadassah Medical Center, Faculty of Medicine, The Hebrew University of Jerusalem, 91120, Israel.
| |
Collapse
|
23
|
Abstract
INTRODUCTION Lentiviral vectors have emerged as powerful vectors for vaccination, due to their high efficiency to transduce dendritic cells and to induce long-lasting humoral immunity, CD8+ T cells, and effective protection in numerous preclinical animal models of infection and oncology. AREAS COVERED Here, we reviewed the literature, highlighting the relevance of lentiviral vectors in vaccinology. We recapitulated both their virological and immunological aspects of lentiviral vectors. We compared lentiviral vectors to the gold standard viral vaccine vectors, i.e. adenoviral vectors, and updated the latest results in lentiviral vector-based vaccination in preclinical models. EXPERT OPINION Lentiviral vectors are non-replicative, negligibly inflammatory, and not targets of preexisting immunity in human populations. These are major characteristics to consider in vaccine development. The potential of lentiviral vectors to transduce non-dividing cells, including dendritic cells, is determinant in their strong immunogenicity. Notably, lentiviral vectors can be engineered to target antigen expression to specific host cells. The very weak inflammatory properties of these vectors allow their use in mucosal vaccination, with particular interest in infectious diseases that affect the lungs or brain, including COVID-19. Recent results in various preclinical models have reinforced the interest of these vectors in prophylaxis against infectious diseases and in onco-immunotherapy.
Collapse
Affiliation(s)
- Min-Wen Ku
- Virology Department, Institut Pasteur-TheraVectys Joint Lab, Paris, France
| | - Pierre Charneau
- Virology Department, Institut Pasteur-TheraVectys Joint Lab, Paris, France
| | - Laleh Majlessi
- Virology Department, Institut Pasteur-TheraVectys Joint Lab, Paris, France
| |
Collapse
|
24
|
Lentiviral Vectors for T Cell Engineering: Clinical Applications, Bioprocessing and Future Perspectives. Viruses 2021; 13:v13081528. [PMID: 34452392 PMCID: PMC8402758 DOI: 10.3390/v13081528] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 07/11/2021] [Accepted: 07/17/2021] [Indexed: 12/12/2022] Open
Abstract
Lentiviral vectors have played a critical role in the emergence of gene-modified cell therapies, specifically T cell therapies. Tisagenlecleucel (Kymriah), axicabtagene ciloleucel (Yescarta) and most recently brexucabtagene autoleucel (Tecartus) are examples of T cell therapies which are now commercially available for distribution after successfully obtaining EMA and FDA approval for the treatment of blood cancers. All three therapies rely on retroviral vectors to transduce the therapeutic chimeric antigen receptor (CAR) into T lymphocytes. Although these innovations represent promising new therapeutic avenues, major obstacles remain in making them readily available tools for medical care. This article reviews the biological principles as well as the bioprocessing of lentiviral (LV) vectors and adoptive T cell therapy. Clinical and engineering successes, shortcomings and future opportunities are also discussed. The development of Good Manufacturing Practice (GMP)-compliant instruments, technologies and protocols will play an essential role in the development of LV-engineered T cell therapies.
Collapse
|
25
|
Jeske AM, Boucher P, Curiel DT, Voss JE. Vector Strategies to Actualize B Cell-Based Gene Therapies. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2021; 207:755-764. [PMID: 34321286 PMCID: PMC8744967 DOI: 10.4049/jimmunol.2100340] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 05/26/2021] [Indexed: 12/29/2022]
Abstract
Recent developments in genome editing and delivery systems have opened new possibilities for B cell gene therapy. CRISPR-Cas9 nucleases have been used to introduce transgenes into B cell genomes for subsequent secretion of exogenous therapeutic proteins from plasma cells and to program novel B cell Ag receptor specificities, allowing for the generation of desirable Ab responses that cannot normally be elicited in animal models. Genome modification of B cells or their progenitor, hematopoietic stem cells, could potentially substitute Ab or protein replacement therapies that require multiple injections over the long term. To date, B cell editing using CRISPR-Cas9 has been solely employed in preclinical studies, in which cells are edited ex vivo. In this review, we discuss current B cell engineering efforts and strategies for the eventual safe and economical adoption of modified B cells into the clinic, including in vivo viral delivery of editing reagents to B cells.
Collapse
Affiliation(s)
- Amanda M Jeske
- Department of Biomedical Engineering, McKelvey School of Engineering, Washington University in Saint Louis, St. Louis, MO
- Division of Cancer Biology, Department of Radiation Oncology, School of Medicine, Washington University in Saint Louis, St. Louis, MO
| | - Paul Boucher
- Department of Biomedical Engineering, McKelvey School of Engineering, Washington University in Saint Louis, St. Louis, MO
- Division of Cancer Biology, Department of Radiation Oncology, School of Medicine, Washington University in Saint Louis, St. Louis, MO
| | - David T Curiel
- Department of Biomedical Engineering, McKelvey School of Engineering, Washington University in Saint Louis, St. Louis, MO
- Division of Cancer Biology, Department of Radiation Oncology, School of Medicine, Washington University in Saint Louis, St. Louis, MO
- Biologic Therapeutics Center, Department of Radiation Oncology, School of Medicine, Washington University in Saint Louis, St. Louis, MO; and
| | - James E Voss
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA
| |
Collapse
|
26
|
Lazow SP, Labuz DF, Kycia I, Zurakowski D, Fauza DO. Enhancement of transamniotic stem cell therapy for spina bifida by genetic engineering of donor mesenchymal stem cells with an Fgf2 transgene. J Pediatr Surg 2021; 56:1226-1232. [PMID: 33771369 DOI: 10.1016/j.jpedsurg.2021.02.036] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 02/05/2021] [Indexed: 01/04/2023]
Abstract
BACKGROUND/PURPOSE We examined whether engineered overexpression of fibroblast growth factor-2 (Fgf2) in donor mesenchymal stem cells (MSCs) could enhance spina bifida coverage induced by transamniotic stem cell therapy (TRASCET). METHODS Pregnant Sprague-Dawley dams (n = 24) exposed to retinoic acid for induction of fetal spina bifida were divided in three groups. An untreated group had no further manipulations. Two groups received volume-matched intra-amniotic injections into all fetuses (n = 157) of either amniotic fluid-derived MSCs (afMSC; n = 85) or afMSCs transduced with an Fgf2 transgene (Fgf2-afMSC; n = 72) on gestational day 17 (term=21-22 days). Defect coverage was categorized at term by histology and pan-cytokeratin immunohistochemistry. Statistical coverage comparisons were by logistic regression. RESULTS Among 84 survivors with isolated spina bifida, 71 had definitive histology. Defect coverage rates in both the afMSC (38.5%) and Fgf2-afMSC (73.3%) groups were statistically significantly higher than in the untreated group (10%; p<0.001 for both). There was a significantly higher coverage rate in the Fgf2-afMSC group compared with the afMSC group (p = 0.025). CONCLUSIONS Fgf2 overexpression in donor mesenchymal stem cells increases defect coverage rates in a rodent model of transamniotic stem cell therapy for spina bifida. Genetic engineering of donor cells is a promising strategy for the enhancement of this emerging therapy.
Collapse
Affiliation(s)
- Stefanie P Lazow
- Department of Surgery, Boston Children's Hospital/Harvard Medical School, Boston, MA 02115, USA
| | - Daniel F Labuz
- Department of Surgery, Boston Children's Hospital/Harvard Medical School, Boston, MA 02115, USA
| | - Ina Kycia
- Department of Surgery, Boston Children's Hospital/Harvard Medical School, Boston, MA 02115, USA
| | - David Zurakowski
- Department of Surgery, Boston Children's Hospital/Harvard Medical School, Boston, MA 02115, USA
| | - Dario O Fauza
- Department of Surgery, Boston Children's Hospital/Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
27
|
Toon K, Bentley EM, Mattiuzzo G. More Than Just Gene Therapy Vectors: Lentiviral Vector Pseudotypes for Serological Investigation. Viruses 2021; 13:217. [PMID: 33572589 PMCID: PMC7911487 DOI: 10.3390/v13020217] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/22/2021] [Accepted: 01/26/2021] [Indexed: 12/13/2022] Open
Abstract
Serological assays detecting neutralising antibodies are important for determining the immune responses following infection or vaccination and are also often considered a correlate of protection. The target of neutralising antibodies is usually located in the Envelope protein on the viral surface, which mediates cell entry. As such, presentation of the Envelope protein on a lentiviral particle represents a convenient alternative to handling of a potentially high containment virus or for those viruses with no established cell culture system. The flexibility, relative safety and, in most cases, ease of production of lentiviral pseudotypes, have led to their use in serological assays for many applications such as the evaluation of candidate vaccines, screening and characterization of anti-viral therapeutics, and sero-surveillance. Above all, the speed of production of the lentiviral pseudotypes, once the envelope sequence is published, makes them important tools in the response to viral outbreaks, as shown during the COVID-19 pandemic in 2020. In this review, we provide an overview of the landscape of the serological applications of pseudotyped lentiviral vectors, with a brief discussion on their production and batch quality analysis. Finally, we evaluate their role as surrogates for the real virus and possible alternatives.
Collapse
Affiliation(s)
- Kamilla Toon
- Division of Virology, National Institute for Biological Standards and Control-MHRA, Blanche Lane, South Mimms EN6 3QG, UK;
- Division of Infection and Immunity, University College London, London WC1E 6BT, UK
| | - Emma M. Bentley
- Division of Virology, National Institute for Biological Standards and Control-MHRA, Blanche Lane, South Mimms EN6 3QG, UK;
| | - Giada Mattiuzzo
- Division of Virology, National Institute for Biological Standards and Control-MHRA, Blanche Lane, South Mimms EN6 3QG, UK;
| |
Collapse
|