1
|
Banda A, Impomeni O, Singh A, Baloch AR, Hu W, Jaijyan DK. Precision in Action: The Role of Clustered Regularly Interspaced Short Palindromic Repeats/Cas in Gene Therapies. Vaccines (Basel) 2024; 12:636. [PMID: 38932365 PMCID: PMC11209408 DOI: 10.3390/vaccines12060636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 05/21/2024] [Accepted: 06/04/2024] [Indexed: 06/28/2024] Open
Abstract
Clustered Regularly Interspaced Short Palindromic Repeat (CRISPR)-associated enzyme-CAS holds great promise for treating many uncured human diseases and illnesses by precisely correcting harmful point mutations and disrupting disease-causing genes. The recent Food and Drug Association (FDA) approval of the first CRISPR-based gene therapy for sickle cell anemia marks the beginning of a new era in gene editing. However, delivering CRISPR specifically into diseased cells in vivo is a significant challenge and an area of intense research. The identification of new CRISPR/Cas variants, particularly ultra-compact CAS systems with robust gene editing activities, paves the way for the low-capacity delivery vectors to be used in gene therapies. CRISPR/Cas technology has evolved beyond editing DNA to cover a wide spectrum of functionalities, including RNA targeting, disease diagnosis, transcriptional/epigenetic regulation, chromatin imaging, high-throughput screening, and new disease modeling. CRISPR/Cas can be used to engineer B-cells to produce potent antibodies for more effective vaccines and enhance CAR T-cells for the more precise and efficient targeting of tumor cells. However, CRISPR/Cas technology has challenges, including off-target effects, toxicity, immune responses, and inadequate tissue-specific delivery. Overcoming these challenges necessitates the development of a more effective and specific CRISPR/Cas delivery system. This entails strategically utilizing specific gRNAs in conjunction with robust CRISPR/Cas variants to mitigate off-target effects. This review seeks to delve into the intricacies of the CRISPR/Cas mechanism, explore progress in gene therapies, evaluate gene delivery systems, highlight limitations, outline necessary precautions, and scrutinize the ethical considerations associated with its application.
Collapse
Affiliation(s)
- Amrutha Banda
- Department of Biology, The College of New Jersey, Ewing Township, NJ 08618, USA
| | - Olivia Impomeni
- Department of Biology, The College of New Jersey, Ewing Township, NJ 08618, USA
| | - Aparana Singh
- Department of Chemistry, National Institute of Technology Agartala, Agartala 799046, India;
| | - Abdul Rasheed Baloch
- Department of Anatomy and Neurobiology, School of Medicine, Virginia Commonwealth University, Richmond, VA 23284, USA;
| | - Wenhui Hu
- Department of Anatomy and Neurobiology, School of Medicine, Virginia Commonwealth University, Richmond, VA 23284, USA;
| | - Dabbu Kumar Jaijyan
- Department of Anatomy and Neurobiology, School of Medicine, Virginia Commonwealth University, Richmond, VA 23284, USA;
| |
Collapse
|
2
|
Dampier W, Berman R, Nonnemacher MR, Wigdahl B. Computational analysis of cas proteins unlocks new potential in HIV-1 targeted gene therapy. Front Genome Ed 2024; 5:1248982. [PMID: 38239625 PMCID: PMC10794619 DOI: 10.3389/fgeed.2023.1248982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 12/11/2023] [Indexed: 01/22/2024] Open
Abstract
Introduction: The human immunodeficiency virus type 1 (HIV-1) pandemic has been slowed with the advent of anti-retroviral therapy (ART). However, ART is not a cure and as such has pushed the disease into a chronic infection. One potential cure strategy that has shown promise is the Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/Cas gene editing system. It has recently been shown to successfully edit and/or excise the integrated provirus from infected cells and inhibit HIV-1 in vitro, ex vivo, and in vivo. These studies have primarily been conducted with SpCas9 or SaCas9. However, additional Cas proteins are discovered regularly and modifications to these known proteins are being engineered. The alternative Cas molecules have different requirements for protospacer adjacent motifs (PAMs) which impact the possible targetable regions of HIV-1. Other modifications to the Cas protein or gRNA handle impact the tolerance for mismatches between gRNA and the target. While reducing off-target risk, this impacts the ability to fully account for HIV-1 genetic variability. Methods: This manuscript strives to examine these parameter choices using a computational approach for surveying the suitability of a Cas editor for HIV-1 gene editing. The Nominate, Diversify, Narrow, Filter (NDNF) pipeline measures the safety, broadness, and effectiveness of a pool of potential gRNAs for any PAM. This technique was used to evaluate 46 different potential Cas editors for their HIV therapeutic potential. Results: Our examination revealed that broader PAMs that improve the targeting potential of editors like SaCas9 and LbCas12a have larger pools of useful gRNAs, while broader PAMs reduced the pool of useful SpCas9 gRNAs yet increased the breadth of targetable locations. Investigation of the mismatch tolerance of Cas editors indicates a 2-missmatch tolerance is an ideal balance between on-target sensitivity and off-target specificity. Of all of the Cas editors examined, SpCas-NG and SPRY-Cas9 had the highest number of overall safe, broad, and effective gRNAs against HIV. Discussion: Currently, larger proteins and wider PAMs lead to better targeting capacity. This implies that research should either be targeted towards delivering longer payloads or towards increasing the breadth of currently available small Cas editors. With the discovery and adoption of additional Cas editors, it is important for researchers in the HIV-1 gene editing field to explore the wider world of Cas editors.
Collapse
Affiliation(s)
- Will Dampier
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, United States
- Center for Molecular Virology and Gene Therapy, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Rachel Berman
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, United States
- Center for Molecular Virology and Gene Therapy, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Michael R. Nonnemacher
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, United States
- Center for Molecular Virology and Gene Therapy, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, United States
- Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, United States
| | - Brian Wigdahl
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, United States
- Center for Molecular Virology and Gene Therapy, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, United States
- Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, United States
| |
Collapse
|
3
|
Hussein M, Molina MA, Berkhout B, Herrera-Carrillo E. A CRISPR-Cas Cure for HIV/AIDS. Int J Mol Sci 2023; 24:1563. [PMID: 36675077 PMCID: PMC9863116 DOI: 10.3390/ijms24021563] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 12/28/2022] [Accepted: 01/02/2023] [Indexed: 01/14/2023] Open
Abstract
Human immunodeficiency virus (HIV) infections and HIV-induced acquired immunodeficiency syndrome (AIDS) continue to represent a global health burden. There is currently no effective vaccine, nor any cure, for HIV infections; existing antiretroviral therapy can suppress viral replication, but only as long as antiviral drugs are taken. HIV infects cells of the host immune system, and it can establish a long-lived viral reservoir, which can be targeted and edited through gene therapy. Gene editing platforms based on the clustered regularly interspaced palindromic repeat-Cas system (CRISPR-Cas) have been recognized as promising tools in the development of gene therapies for HIV infections. In this review, we evaluate the current landscape of CRISPR-Cas-based therapies against HIV, with an emphasis on the infection biology of the virus as well as the activity of host restriction factors. We discuss the potential of a combined CRISPR-Cas approach that targets host and viral genes to activate antiviral host factors and inhibit viral replication simultaneously. Lastly, we focus on the challenges and potential solutions of CRISPR-Cas gene editing approaches in achieving an HIV cure.
Collapse
Affiliation(s)
| | | | | | - Elena Herrera-Carrillo
- Laboratory of Experimental Virology, Department of Medical Microbiology, Amsterdam UMC, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| |
Collapse
|
4
|
Bhowmik R, Chaubey B. CRISPR/Cas9: a tool to eradicate HIV-1. AIDS Res Ther 2022; 19:58. [PMID: 36457057 PMCID: PMC9713993 DOI: 10.1186/s12981-022-00483-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 11/10/2022] [Indexed: 12/03/2022] Open
Abstract
The development of antiretroviral therapy (ART) has been effective in suppressing HIV replication. However, severe drug toxicities due to the therapy and its failure in targeting the integrated proviral genome have led to the introduction of a new paradigm of gene-based therapies. With its effective inhibition and high precision, clustered regularly interspaced short palindromic repeats (CRISPR)-associated protein-9 nuclease (Cas9) or CRISPR/Cas9 has emerged as an effective genome editing tool in the last decade. Mediated by guide RNAs (gRNAs), Cas9 endonuclease acts like genetic scissors that can modify specific target sites. With this concept, CRISPR/Cas9 has been used to target the integrated proviral HIV-1 genome both in in vitro as well as in vivo studies including non-human primates. The CRISPR has also been tested for targeting latent HIV-1 by modulating the proviral transcription with the help of a specialized Cas9 mutant. Overcoming the limitations of the current therapy, CRISPR has the potential to become the primary genome editing tool for eradicating HIV-1 infection. In this review, we summarize the recent advancements of CRISPR to target the proviral HIV-1 genome, the challenges and future prospects.
Collapse
Affiliation(s)
- Ruchira Bhowmik
- grid.59056.3f0000 0001 0664 9773Virology Lab, Centre for Advance Study, Department of Botany, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, 700019 India
| | - Binay Chaubey
- grid.59056.3f0000 0001 0664 9773Virology Lab, Centre for Advance Study, Department of Botany, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, 700019 India
| |
Collapse
|
5
|
Gleerup JL, Mogensen TH. CRISPR-Cas in Diagnostics and Therapy of Infectious Diseases. J Infect Dis 2022; 226:1867-1876. [PMID: 35446391 DOI: 10.1093/infdis/jiac145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 04/11/2022] [Indexed: 12/31/2022] Open
Abstract
Infectious diseases are a major threat to the global health. The rise in antimicrobial-resistant organisms, incurable chronic infections, and an increasing demand for rapid accurate diagnostics have prompted researchers to experiment with new approaches. Clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated protein (Cas) is a naturally occurring adaptive immune system in bacteria that has been developed as a tool for performing genomic alterations in any genome of interest, including humans and microbes. Accordingly, several studies have been conducted to investigate how the technology can be utilized in infectious diseases to improve diagnostics, disrupt antimicrobial resistance, and cure chronic infections. This review provides an overview of the CRISPR-Cas system and how it has been applied in studies on infectious diseases. The review also investigates the current challenges of the technology and the improvements that are needed for the platform to be adopted for clinical use in patients.
Collapse
Affiliation(s)
| | - Trine H Mogensen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark.,Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
6
|
Salimi-Jeda A, Esghaei M, Hossein Keyvani, Bokharaei-Salim F, Teimoori A, Abdoli A. Inhibition of HIV-1 replication using the CRISPR/cas9-no NLS system as a prophylactic strategy. Heliyon 2022; 8:e10483. [PMID: 36158108 PMCID: PMC9489754 DOI: 10.1016/j.heliyon.2022.e10483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 05/25/2022] [Accepted: 08/24/2022] [Indexed: 11/16/2022] Open
Abstract
Globally, it is estimated that 43 million people are living with human immunodeficiency virus type 1 (HIV-1), and there are more than 600,000 acquired immunodeficiency syndrome (AIDS)-related deaths in 2020. The only way to increase the life expectancy of these patients right now is to use combination antiretroviral therapy (cART) for the lifetime. Due to the integration of the HIV-1 DNA in lymphocytes, the replication of the virus can only be reduced by using antiretroviral drugs. If the drug is stopped, the virus will replicate and reduce the number of lymphocytes. In recent years, the clustered regularly interspaced short palindromic repeats (CRISPR)-associated endonuclease Cas9-mediated genome editing system has been considered, preventing HIV-1 replication by causing DNA double-stranded breaks (DSBs) or disrupting the integrated virus replication by targeting the provirus. In this study, we utilized the CRISPR/Cas9 without the nuclear localization signal sequence (w/o NLS) system to inhibit the VSV-G-pseudotyped HIV-1 replication by targeting the HIV-1 DNA as a prophylactic method. To this end, we designed a multiplex gRNA (guide RNA) cassette to target the pol, env, and nef/long terminal repeat (nef/LTR) regions of the HIV-1 genome and then cloned it in plasmid expressing no-NLS-Cas9 protein as an all-in-one CRISPR/Cas9 vector. Using HIV-1 pseudovirus transduction into HEK-293T cell lines, our results showed that the CRISPR/Cas9-no NLS system disrupts the pseudotyped HIV-1 DNA and significantly (P-value < 0.0001) decreases the p24 antigen shedding and viral RNA load in cell culture supernatants harvested 48h after virus transduction. Although these results revealed the potential of the CRISPR/Cas9-no NLS nuclease system as a prophylactic strategy against HIV-1 infections, due to inefficient impairments of HIV-1 DNA, further studies are required to enhance its effectiveness and application in clinical practice.
Collapse
Affiliation(s)
- Ali Salimi-Jeda
- Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Maryam Esghaei
- Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Hossein Keyvani
- Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Farah Bokharaei-Salim
- Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Ali Teimoori
- Department of Virology, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Asghar Abdoli
- Department of Hepatitis and AIDS, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
7
|
Maslennikova A, Mazurov D. Application of CRISPR/Cas Genomic Editing Tools for HIV Therapy: Toward Precise Modifications and Multilevel Protection. Front Cell Infect Microbiol 2022; 12:880030. [PMID: 35694537 PMCID: PMC9177041 DOI: 10.3389/fcimb.2022.880030] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 04/25/2022] [Indexed: 11/18/2022] Open
Abstract
Although highly active antiretroviral therapy (HAART) can robustly control human immunodeficiency virus (HIV) infection, the existence of latent HIV in a form of proviral DNA integrated into the host genome makes the virus insensitive to HAART. This requires patients to adhere to HAART for a lifetime, often leading to drug toxicity or viral resistance to therapy. Current genome-editing technologies offer different strategies to reduce the latent HIV reservoir in the body. In this review, we systematize the research on CRISPR/Cas-based anti-HIV therapeutic methods, discuss problems related to viral escape and gene editing, and try to focus on the technologies that effectively and precisely introduce genetic modifications and confer strong resistance to HIV infection. Particularly, knock-in (KI) approaches, such as mature B cells engineered to produce broadly neutralizing antibodies, T cells expressing fusion inhibitory peptides in the context of inactivated viral coreceptors, or provirus excision using base editors, look very promising. Current and future advancements in the precision of CRISPR/Cas editing and its delivery will help extend its applicability to clinical HIV therapy.
Collapse
Affiliation(s)
- Alexandra Maslennikova
- Cell and Gene Technology Group, Institute of Gene Biology of Russian Academy of Science, Moscow, Russia
| | - Dmitriy Mazurov
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology of Russian Academy of Science, Moscow, Russia
| |
Collapse
|
8
|
Wei Hou ZZ, Chen S. Updates on CRISPR-based gene editing in HIV-1/AIDS therapy. Virol Sin 2022; 37:1-10. [PMID: 35234622 PMCID: PMC8922418 DOI: 10.1016/j.virs.2022.01.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 11/15/2021] [Indexed: 12/17/2022] Open
Abstract
Although tremendous efforts have been made to prevent and treat HIV-1 infection, HIV-1/AIDS remains a major threat to global human health. The combination antiretroviral therapy (cART), although able to suppress HIV-1 replication, cannot eliminate the proviral DNA integrated into the human genome and thus requires lifelong treatment that may lead to various side effects. In recent years, clustered regularly interspaced short palindromic repeat (CRISPR)-associated nuclease 9 (Cas9) related gene-editing systems have been developed and designed as effective ways to treat HIV-1 infection. However, new gene-targeting tools derived from or functioning like CRISPR/Cas9, including base editor, prime editing, SHERLOCK, DETECTR, PAC-MAN, ABACAS, pfAGO, have been developed and optimized for pathogens detection and diseases correction. Here, we summarize recent studies on HIV-1/AIDS gene therapy and provide more gene-editing targets based on studies relating to the molecular mechanism of HIV-1 infection. We also identify the strategies and potential applications of these new gene-editing technologies for HIV-1/AIDS treatment in the future. Moreover, we discuss the caveats and problems that should be addressed before the clinical use of these versatile CRISPR-based gene targeting tools. Finally, we offer alternative solutions to improve the practice of gene targeting in HIV-1/AIDS gene therapy. New gene-targeting tools derived from CRISPR/Cas9 have been introduced. Recent researches in HIV-1/AIDS gene therapy have been summarized. The strategies and potential applications of new gene editing technologies for HIV-1/AIDS treatment have been provided. The caveats and challenges in HIV-1/AIDS gene therapy have been discussed.
Collapse
|
9
|
Herskovitz J, Hasan M, Patel M, Blomberg WR, Cohen JD, Machhi J, Shahjin F, Mosley RL, McMillan J, Kevadiya BD, Gendelman HE. CRISPR-Cas9 Mediated Exonic Disruption for HIV-1 Elimination. EBioMedicine 2021; 73:103678. [PMID: 34774454 PMCID: PMC8633974 DOI: 10.1016/j.ebiom.2021.103678] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/04/2021] [Accepted: 10/22/2021] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND A barrier to HIV-1 cure rests in the persistence of proviral DNA in infected CD4+ leukocytes. The high HIV-1 mutation rate leads to viral diversity, immune evasion, and consequent antiretroviral drug resistance. While CRISPR-spCas9 can eliminate latent proviral DNA, its efficacy is limited by HIV strain diversity and precision target cell delivery. METHODS A library of guide RNAs (gRNAs) designed to disrupt five HIV-1 exons (tat1-2/rev1-2/gp41) was constructed. The gRNAs were derived from a conseensus sequence of the transcriptional regulator tat from 4004 HIV-1 strains. Efficacy was affirmed by gRNA cell entry through transfection, electroporation, or by lentivirus or lipid nanoparticle (LNP) delivery. Treated cells were evaluated for viral excision by monitoring HIV-1 DNA, RNA, protein, and progeny virus levels. FINDINGS Virus was reduced in all transmitted founder strains by 82 and 94% after CRISPR TatDE transfection or lentivirus treatments, respectively. No recorded off-target cleavages were detected. Electroporation of TatDE ribonucleoprotein and delivery of LNP TatDE gRNA and spCas9 mRNA to latently infected cells resulted in up to 100% viral excision. Protection against HIV-1-challenge or induction of virus during latent infection, in primary or transformed CD4+ T cells or monocytes was achieved. We propose that multi-exon gRNA TatDE disruption delivered by LNPs enables translation for animal and human testing. INTERPRETATION These results provide "proof of concept' for CRISPR gRNA treatments for HIV-1 elimination. The absence of full-length viral DNA by LNP delivery paired with undetectable off-target affirms the importance of payload delivery for effective viral gene editing. FUNDING The work was supported by the University of Nebraska Foundation, including donations from the Carol Swarts, M.D. Emerging Neuroscience Research Laboratory, the Margaret R. Larson Professorship, and individual donor support from the Frances and Louie Blumkin Foundation and from Harriet Singer. The research received support from National Institutes of Health grants T32 NS105594, 5R01MH121402, 1R01Al158160, R01 DA054535, PO1 DA028555, R01 NS126089, R01 NS36126, PO1 MH64570, P30 MH062261, and 2R01 NS034239.
Collapse
Affiliation(s)
- Jonathan Herskovitz
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198-5900 USA.
| | - Mahmudul Hasan
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5800 USA; Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198-6120 USA
| | - Milankumar Patel
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5800 USA
| | - Wilson R Blomberg
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5800 USA; School of Medicine, Creighton University Medical Center, Omaha, NE 68124
| | - Jacob D Cohen
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5800 USA
| | - Jatin Machhi
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5800 USA
| | - Farah Shahjin
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5800 USA
| | - R Lee Mosley
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5800 USA
| | - JoEllyn McMillan
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5800 USA
| | - Bhavesh D Kevadiya
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5800 USA
| | - Howard E Gendelman
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198-5900 USA; Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5800 USA; Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198-6120 USA.
| |
Collapse
|