1
|
Kajsikova M, Kajsik M, Bocanova L, Papayova K, Drahovska H, Bukovska G. Endolysin EN572-5 as an alternative to treat urinary tract infection caused by Streptococcus agalactiae. Appl Microbiol Biotechnol 2024; 108:79. [PMID: 38189950 PMCID: PMC10774192 DOI: 10.1007/s00253-023-12949-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 11/13/2023] [Accepted: 11/26/2023] [Indexed: 01/09/2024]
Abstract
Streptococcus agalactiae (Group B Streptococcus, GBS) is an opportunistic pathogen causing urinary tract infection (UTI). Endolysin EN572-5 was identified in prophage KMB-572-E of the human isolate Streptococcus agalactiae KMB-572. The entire EN572-5 gene was cloned into an expression vector and the corresponding recombinant protein EN572-5 was expressed in Escherichia coli in a soluble form, isolated by affinity chromatography, and characterized. The isolated protein was highly active after 30 min incubation in a temperature range of - 20 °C to 37 °C and in a pH range of 5.5-8.0. The endolysin EN572-5 lytic activity was tested on different Streptococcus spp. and Lactobacillus spp. The enzyme lysed clinical GBS (n = 31/31) and different streptococci (n = 6/8), and also exhibited moderate lytic activity against UPEC (n = 4/4), but no lysis of beneficial vaginal lactobacilli (n = 4) was observed. The ability of EN572-5 to eliminate GBS during UTI was investigated using an in vitro model of UPSA. After the administration of 3 μM EN572-5, a nearly 3-log decrease of urine bacterial burden was detected within 3 h. To date, no studies have been published on the use of endolysins against S. agalactiae during UTI. KEY POINTS: • A lytic protein, EN572-5, from a prophage of a human GBS isolate has been identified. • This protein is easily produced, simple to prepare, and stable after lyophilization. • The bacteriolytic activity of EN572-5 was demonstrated for the first time in human urine.
Collapse
Affiliation(s)
- Maria Kajsikova
- Department of Genomics and Biotechnology, Institute of Molecular Biology SAS, Dubravska cesta 21, 845 51, Bratislava, Slovakia
| | - Michal Kajsik
- Comenius University Science Park, Ilkovicova 8, 841 04, Bratislava, Slovakia
| | - Lucia Bocanova
- Department of Genomics and Biotechnology, Institute of Molecular Biology SAS, Dubravska cesta 21, 845 51, Bratislava, Slovakia
| | - Kristina Papayova
- Department of Genomics and Biotechnology, Institute of Molecular Biology SAS, Dubravska cesta 21, 845 51, Bratislava, Slovakia
| | - Hana Drahovska
- Department of Molecular Biology, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovicova 6, 841 15, Bratislava, Slovakia
| | - Gabriela Bukovska
- Department of Genomics and Biotechnology, Institute of Molecular Biology SAS, Dubravska cesta 21, 845 51, Bratislava, Slovakia.
| |
Collapse
|
2
|
Kovacec V, Di Gregorio S, Pajon M, Crestani C, Poklepovich T, Campos J, Basit Khan U, Bentley SD, Jamrozy D, Mollerach M, Bonofiglio L. Revisiting typing systems for group B Streptococcus prophages: an application in prophage detection and classification in group B Streptococcus isolates from Argentina. Microb Genom 2024; 10:001297. [PMID: 39418095 PMCID: PMC11485964 DOI: 10.1099/mgen.0.001297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 08/30/2024] [Indexed: 10/19/2024] Open
Abstract
Group B Streptococcus (GBS) causes severe infections in neonates and adults with comorbidities. Prophages have been reported to contribute to GBS evolution and pathogenicity. However, no studies are available to date on the presence and diversity of prophages in GBS isolates from humans in South America. This study provides insights into the prophage content of 365 GBS isolates collected from clinical samples in the context of an Argentinean multicentric study. Using whole-genome sequence data, we implemented two previously proposed methods for prophage typing: a PCR approach (carried out in silico) coupled with a blastx-based method to classify prophages based on their prophage group and integrase type, respectively. We manually searched the genomes and identified 325 prophages. However, only 80% of prophages could be accurately categorized with the previous approaches. Integration of phylogenetic analysis, prophage group and integrase type allowed for all to be classified into 19 prophage types, which correlated with GBS clonal complex grouping. The revised prophage typing approach was additionally improved by using a blastn search after enriching the database with ten new genes for prophage group classification combined with the existing integrase typing method. This modified and integrated typing system was applied to the analysis of 615 GBS genomes (365 GBS from Argentina and 250 from public databases), which revealed 29 prophage types, including two novel integrase subtypes. Their characterization and comparative analysis revealed major differences in the lysogeny and replication modules. Genes related to bacterial fitness, virulence or adaptation to stressful environments were detected in all prophage types. Considering prophage prevalence, distribution and their association with bacterial virulence, it is important to study their role in GBS epidemiology. In this context, we propose the use of an improved and integrated prophage typing system suitable for rapid phage detection and classification with little computational processing.
Collapse
Affiliation(s)
- Veronica Kovacec
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Instituto de Bacteriología y Virología Molecular, Buenos Aires, Argentina
| | - Sabrina Di Gregorio
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Instituto de Bacteriología y Virología Molecular, Buenos Aires, Argentina
- CONICET, Buenos Aires, Argentina
| | - Mario Pajon
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Instituto de Bacteriología y Virología Molecular, Buenos Aires, Argentina
| | | | - Tomás Poklepovich
- Unidad Operativa Centro Nacional de Genómica y Bioinformática, ANLIS Dr. Carlos G. Malbrán, Buenos Aires, Argentina
| | - Josefina Campos
- Unidad Operativa Centro Nacional de Genómica y Bioinformática, ANLIS Dr. Carlos G. Malbrán, Buenos Aires, Argentina
| | - Uzma Basit Khan
- Parasites and Microbes Programme, Wellcome Sanger Institute, Cambridgeshire, UK
| | - Stephen D. Bentley
- Parasites and Microbes Programme, Wellcome Sanger Institute, Cambridgeshire, UK
| | - Dorota Jamrozy
- Parasites and Microbes Programme, Wellcome Sanger Institute, Cambridgeshire, UK
| | - Marta Mollerach
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Instituto de Bacteriología y Virología Molecular, Buenos Aires, Argentina
- CONICET, Buenos Aires, Argentina
| | - Laura Bonofiglio
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Instituto de Bacteriología y Virología Molecular, Buenos Aires, Argentina
- CONICET, Buenos Aires, Argentina
| |
Collapse
|
3
|
Wiafe-Kwakye CS, Fournier A, Maurais H, Southworth KJ, Molloy SD, Neely MN. Comparative Genomic Analysis of Prophages in Human Vaginal Isolates of Streptococcus agalactiae. Pathogens 2024; 13:610. [PMID: 39204211 PMCID: PMC11357604 DOI: 10.3390/pathogens13080610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/16/2024] [Accepted: 07/18/2024] [Indexed: 09/03/2024] Open
Abstract
Prophages, viral genomes integrated into bacterial genomes, are known to enhance bacterial colonization, adaptation, and ecological fitness, providing a better chance for pathogenic bacteria to disseminate and cause infection. Streptococcus agalactiae (Group B Streptococcus or GBS) is a common bacterium found colonizing the genitourinary tract of humans. However, GBS-colonized pregnant women are at risk of passing the organism to the neonate, where it can cause severe infections. GBS typically encode one or more prophages in their genomes, yet their role in pathogen fitness and virulence has not yet been described. Sequencing and bioinformatic analysis of the genomic content of GBS human isolates identified 42 complete prophages present in their genomes. Comparative genomic analyses of the prophage sequences revealed that the prophages could be classified into five distinct clusters based on their genomic content, indicating significant diversity in their genetic makeup. Prophage diversity was also identified across GBS capsule serotypes, sequence types (STs), and clonal clusters (CCs). Comprehensive genomic annotation revealed that all GBS strains encode paratox, a protein that prevents the uptake of DNA in Streptococcus, either on the chromosome, on the prophage, or both, and each prophage genome has at least one toxin-antitoxin system.
Collapse
Affiliation(s)
- Caitlin S. Wiafe-Kwakye
- Department of Molecular and Biomedical Sciences, University of Maine, Orono, ME 04469, USA (S.D.M.)
| | - Andrew Fournier
- Department of Molecular and Biomedical Sciences, University of Maine, Orono, ME 04469, USA (S.D.M.)
| | - Hannah Maurais
- Department of Molecular and Biomedical Sciences, University of Maine, Orono, ME 04469, USA (S.D.M.)
| | - Katie J. Southworth
- Department of Molecular and Biomedical Sciences, University of Maine, Orono, ME 04469, USA (S.D.M.)
| | - Sally D. Molloy
- Department of Molecular and Biomedical Sciences, University of Maine, Orono, ME 04469, USA (S.D.M.)
- The Honors College, University of Maine, Orono, ME 04469, USA
| | - Melody N. Neely
- Department of Molecular and Biomedical Sciences, University of Maine, Orono, ME 04469, USA (S.D.M.)
| |
Collapse
|
4
|
Megat Mazhar Khair MH, Tee AN, Wahab NF, Othman SS, Goh YM, Masarudin MJ, Chong CM, In LLA, Gan HM, Song AAL. Comprehensive Characterization of a Streptococcus agalactiae Phage Isolated from a Tilapia Farm in Selangor, Malaysia, and Its Potential for Phage Therapy. Pharmaceuticals (Basel) 2023; 16:ph16050698. [PMID: 37242481 DOI: 10.3390/ph16050698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/19/2023] [Accepted: 04/20/2023] [Indexed: 05/28/2023] Open
Abstract
The Streptococcus agalactiae outbreak in tilapia has caused huge losses in the aquaculture industry worldwide. In Malaysia, several studies have reported the isolation of S. agalactiae, but no study has reported the isolation of S. agalactiae phages from tilapia or from the culture pond. Here, the isolation of the S. agalactiae phage from infected tilapia is reported and it is named as vB_Sags-UPM1. Transmission electron micrograph (TEM) revealed that this phage showed characteristics of a Siphoviridae and it was able to kill two local S. agalactiae isolates, which were S. agalactiae smyh01 and smyh02. Whole genome sequencing (WGS) of the phage DNA showed that it contained 42,999 base pairs with 36.80% GC content. Bioinformatics analysis predicted that this phage shared an identity with the S. agalactiae S73 chromosome as well as several other strains of S. agalactiae, presumably due to prophages carried by these hosts, and it encodes integrase, which suggests that it was a temperate phage. The endolysin of vB_Sags-UPM1 termed Lys60 showed killing activity on both S. agalactiae strains with varying efficacy. The discovery of the S. agalactiae temperate phage and its antimicrobial genes could open a new window for the development of antimicrobials to treat S. agalactiae infection.
Collapse
Affiliation(s)
- Megat Hamzah Megat Mazhar Khair
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - An Nie Tee
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Nurul Fazlin Wahab
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Siti Sarah Othman
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
- Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Yong Meng Goh
- Department of Veterinary Preclinical Sciences, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Mas Jaffri Masarudin
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
- Nanomaterials Synthesis and Characterisation Laboratory, Institute of Nanoscience and Nanotechnology, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Chou Min Chong
- Department of Aquaculture, Faculty of Agriculture, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Lionel Lian Aun In
- Department of Biotechnology, Faculty of Applied Sciences, UCSI University, Kuala Lumpur 56000, Selangor, Malaysia
| | - Han Ming Gan
- Patriot Biotech, Sunway Geo Avenue, Bandar Sunway, Subang Jaya 47500, Selangor, Malaysia
| | - Adelene Ai-Lian Song
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
- Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| |
Collapse
|
5
|
Mejia ME, Robertson CM, Patras KA. Interspecies Interactions within the Host: the Social Network of Group B Streptococcus. Infect Immun 2023; 91:e0044022. [PMID: 36975791 PMCID: PMC10112235 DOI: 10.1128/iai.00440-22] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023] Open
Abstract
Group B Streptococcus (GBS) is a pervasive neonatal pathogen accounting for a combined half a million deaths and stillbirths annually. The most common source of fetal or neonatal GBS exposure is the maternal microbiota. GBS asymptomatically colonizes the gastrointestinal and vaginal mucosa of 1 in 5 individuals globally, although its precise role in these niches is not well understood. To prevent vertical transmission, broad-spectrum antibiotics are administered to GBS-positive mothers during labor in many countries. Although antibiotics have significantly reduced GBS early-onset neonatal disease, there are several unintended consequences, including an altered neonatal microbiota and increased risk for other microbial infections. Additionally, the incidence of late-onset GBS neonatal disease remains unaffected and has sparked an emerging hypothesis that GBS-microbe interactions in developing neonatal gut microbiota may be directly involved in this disease process. This review summarizes our current understanding of GBS interactions with other resident microbes at the mucosal surface from multiple angles, including clinical association studies, agriculture and aquaculture observations, and experimental animal model systems. We also include a comprehensive review of in vitro findings of GBS interactions with other bacterial and fungal microbes, both commensal and pathogenic, along with newly established animal models of GBS vaginal colonization and in utero or neonatal infection. Finally, we provide a perspective on emerging areas of research and current strategies to design microbe-targeting prebiotic or probiotic therapeutic intervention strategies to prevent GBS disease in vulnerable populations.
Collapse
Affiliation(s)
- Marlyd E. Mejia
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Clare M. Robertson
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Kathryn A. Patras
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
- Alkek Center for Metagenomics and Microbiome Research, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
6
|
Bocanova L, Psenko M, Barák I, Halgasova N, Drahovska H, Bukovska G. A novel phage-encoded endolysin EN534-C active against clinical strain Streptococcus agalactiae GBS. J Biotechnol 2022; 359:48-58. [PMID: 36179792 DOI: 10.1016/j.jbiotec.2022.09.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 09/26/2022] [Indexed: 11/16/2022]
Abstract
Streptococcus agalactiae (Group B Streptococcus, GBS) is primarily known as a major neonatal pathogen. In adults, these bacteria often colonize the gastrointestinal and urogenital tracts. Treatment of infections using antibiotics is often complicated by recurrences caused by multi-resistant streptococci. Endolysin EN534 from prophage A2 of human isolate Streptococcus agalactiae KMB-534 has a modular structure consisting of two terminal catalytic domains, amidase_3 and CHAP, and one central binding domain, LysM. The EN534 gene was cloned into an expression vector, and the corresponding recombinant protein EN534-C was expressed in Escherichia coli in a soluble form and isolated by affinity chromatography. The lytic activity of this endolysin was tested on cell wall substrates from different GBS serotypes, B. subtilis, L. jensenii, and E. coli. The enzyme lysed streptococci, but not beneficial vaginal lactobacilli. The isolated protein is stable in a temperature range of 20 °C to 37 °C. Calcium ions enhanced the activity of the enzyme in the pH range from 5.0 to 8.0. The exolytic activity of EN534-C was observed by time-lapse fluorescence microscopy on a S. agalactiae CCM 6187 substrate. Recombinant endolysin EN534-C may have the potential to become an antimicrobial agent for the treatment of S. agalactiae infections.
Collapse
Affiliation(s)
- Lucia Bocanova
- Department of Genomics and Biotechnology, Institute of Molecular Biology SAS, Dubravska cesta 21, 845 51 Bratislava, Slovakia
| | - Michal Psenko
- Department of Genomics and Biotechnology, Institute of Molecular Biology SAS, Dubravska cesta 21, 845 51 Bratislava, Slovakia
| | - Imrich Barák
- Department of Microbial Genetics, Institute of Molecular Biology SAS, Dubravska cesta 21, 845 51 Bratislava, Slovakia
| | - Nora Halgasova
- Department of Genomics and Biotechnology, Institute of Molecular Biology SAS, Dubravska cesta 21, 845 51 Bratislava, Slovakia
| | - Hana Drahovska
- Department of Molecular Biology, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovicova 6, 841 15 Bratislava, Slovakia
| | - Gabriela Bukovska
- Department of Genomics and Biotechnology, Institute of Molecular Biology SAS, Dubravska cesta 21, 845 51 Bratislava, Slovakia.
| |
Collapse
|
7
|
Drulis-Kawa Z, Augustyniak D. Special Issue: Phage-Bacteria Interplay in Health and Disease. Viruses 2022; 14:v14051054. [PMID: 35632795 PMCID: PMC9146416 DOI: 10.3390/v14051054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 05/11/2022] [Indexed: 12/10/2022] Open
|
8
|
Chaïb A, Claisse O, Delbarre E, Bosviel J, Le Marrec C. Assessment of the lysogenic status in the lactic acid bacterium O. oeni during the spontaneous malolactic fermentation of red wines. Food Microbiol 2022; 103:103947. [DOI: 10.1016/j.fm.2021.103947] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 09/12/2021] [Accepted: 11/14/2021] [Indexed: 11/04/2022]
|
9
|
Common Colonization Genes Profiling and BOX-PCR Based Genotyping of Streptococcus agalactiae from Pregnant Women in Tehran, Iran. Jundishapur J Microbiol 2022. [DOI: 10.5812/jjm-122008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Background: Streptococcus agalactiae or group B streptococcus (GBS) is a prominent cause of severe neonatal infections. GBS is a part of the intestinal and vaginal normal flora. Maternal colonization is recognized as the main path of GBS transmission. GBS is a pathobiont that changes from a non-symptomatic mucosal carriage state to a significant bacterial pathogen, causing major infections. Objectives: This study aimed to investigate the concomitant presence of major colonization genes, including ftsA, ftsB, lmb, and sfbA, and to determine the genetic relatedness of clinical GBS isolates. Methods: The GBS isolates were obtained from urinary and placental samples of pregnant women with a urinary tract infection, who were admitted to a hospital in Tehran, Iran. The presence of some major colonization factors was investigated via multiplex PCR assay. Genotyping of the isolates was performed using the BOX-PCR fingerprint technique with a BOX-A1R primer. Next, the data were analyzed using the UPGMA method and the coefficient of Jaccard in NTSYS software. Results: A total of 60 GBS isolates were examined in this study. The concomitant presence of target colonization genes was observed in all isolates. The BOX-PCR discriminated GBS isolates into six different genetic clusters at a 60% cutoff point. The majority of isolates (80%) from both clinical samples were clustered into genotypes 2, 6, and 4, while the rest (20%) were distributed equally into three different genotypes. Conclusions: Determining the colonization associated genes and genetic polymorphism in a different geographical area provides the epidemiological basis for the prevention of GBS infections in pregnant women and infants.
Collapse
|
10
|
Vidal Amaral JR, Jucá Ramos RT, Almeida Araújo F, Bentes Kato R, Figueira Aburjaile F, de Castro Soares S, Góes-Neto A, Matiuzzi da Costa M, Azevedo V, Brenig B, Soares de Oliveira S, Soares Rosado A. Bacteriocin Producing Streptococcus agalactiae Strains Isolated from Bovine Mastitis in Brazil. Microorganisms 2022; 10:microorganisms10030588. [PMID: 35336163 PMCID: PMC8953382 DOI: 10.3390/microorganisms10030588] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/25/2022] [Accepted: 02/25/2022] [Indexed: 11/18/2022] Open
Abstract
Antibiotic resistance is one of the biggest health challenges of our time. We are now facing a post-antibiotic era in which microbial infections, currently treatable, could become fatal. In this scenario, antimicrobial peptides such as bacteriocins represent an alternative solution to traditional antibiotics because they are produced by many organisms and can inhibit bacteria, fungi, and/or viruses. Herein, we assessed the antimicrobial activity and biotechnological potential of 54 Streptococcus agalactiae strains isolated from bovine mastitis. Deferred plate antagonism assays revealed an inhibition spectrum focused on species of the genus Streptococcus—namely, S. pyogenes, S. agalactiae, S. porcinus, and S. uberis. Three genomes were successfully sequenced, allowing for their taxonomic confirmation via a multilocus sequence analysis (MLSA). Virulence potential and antibiotic resistance assessments showed that strain LGMAI_St_08 is slightly more pathogenic than the others. Moreover, the mreA gene was identified in the three strains. This gene is associated with resistance against erythromycin, azithromycin, and spiramycin. Assessments for secondary metabolites and antimicrobial peptides detected the bacteriocin zoocin A. Finally, comparative genomics evidenced high similarity among the genomes, with more significant similarity between the LGMAI_St_11 and LGMAI_St_14 strains. Thus, the current study shows promising antimicrobial and biotechnological potential for the Streptococcus agalactiae strains.
Collapse
Affiliation(s)
- João Ricardo Vidal Amaral
- Institute of Microbiology, Universidade Federal do Rio de Janeiro, Cidade Universitária, Rio de Janeiro 21941-902, RJ, Brazil
| | | | - Fabrício Almeida Araújo
- Socio-Environmental and Water Resources Institute, Universidade Federal Rural da Amazônia, Belém 66077-830, PA, Brazil
| | - Rodrigo Bentes Kato
- Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
| | - Flávia Figueira Aburjaile
- Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
| | - Siomar de Castro Soares
- Institute of Biological and Natural Sciences, Universidade Federal do Triângulo Mineiro, Uberaba 38025-180, MG, Brazil
| | - Aristóteles Góes-Neto
- Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
| | - Mateus Matiuzzi da Costa
- Department of Biological Sciences, Universidade Federal do Vale do São Francisco, Petrolina 56304-917, PE, Brazil
| | - Vasco Azevedo
- Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
| | - Bertram Brenig
- Department of Molecular Biology of Livestock, Institute of Veterinary Medicine, Georg August University Göttingen, 37077 Göttingen, Germany
| | - Selma Soares de Oliveira
- Institute of Microbiology, Universidade Federal do Rio de Janeiro, Cidade Universitária, Rio de Janeiro 21941-902, RJ, Brazil
| | - Alexandre Soares Rosado
- Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Makkah 23955, Saudi Arabia
| |
Collapse
|
11
|
Xu S, Liu Y, Gao J, Zhou M, Yang J, He F, Kastelic JP, Deng Z, Han B. Comparative Genomic Analysis of Streptococcus dysgalactiae subspecies dysgalactiae Isolated From Bovine Mastitis in China. Front Microbiol 2021; 12:751863. [PMID: 34745056 PMCID: PMC8570283 DOI: 10.3389/fmicb.2021.751863] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 09/24/2021] [Indexed: 12/11/2022] Open
Abstract
Streptococcus dysgalactiae subsp. dysgalactiae (SDSD) is one of the most prevalent pathogens causing bovine mastitis worldwide. However, there is a lack of comprehensive information regarding genetic diversity, complete profiles of virulence factors (VFs), and antimicrobial resistance (AMR) genes for SDSD associated with bovine mastitis in China. In this study, a total of 674 milk samples, including samples from 509 clinical and 165 subclinical mastitis cases, were collected from 17 herds in 7 provinces in China from November 2016 to June 2019. All SDSD isolates were included in phylogenetic analysis based on 16S rRNA and multi-locus sequence typing (MLST). In addition, whole genome sequencing was performed on 12 representative SDSD isolates to screen for VFs and AMR genes and to define pan-, core and accessory genomes. The prevalence of SDSD from mastitis milk samples was 7.57% (51/674). According to phylogenetic analysis based on 16S rRNA, 51 SDSD isolates were divided into 4 clusters, whereas based on MLST, 51 SDSD isolates were identified as 11 sequence types, including 6 registered STs and 5 novel STs (ST521, ST523, ST526, ST527, ST529) that belonged to 2 distinct clonal complexes (CCs) and 4 singletons. Based on WGS information, 108 VFs genes in 12 isolates were determined in 11 categories. In addition, 23 AMR genes were identified in 11 categories. Pan-, core and accessory genomes were composed of 2,663, 1,633 and 699 genes, respectively. These results provided a comprehensive profiles of SDSD virulence and resistance genes as well as phylogenetic relationships among mastitis associated SDSD in North China.
Collapse
Affiliation(s)
- Siyu Xu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Yang Liu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Jian Gao
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Man Zhou
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Jingyue Yang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Fumeng He
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - John P Kastelic
- Department of Production Animal Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Zhaoju Deng
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Bo Han
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing, China
| |
Collapse
|
12
|
12/111phiA Prophage Domestication Is Associated with Autoaggregation and Increased Ability to Produce Biofilm in Streptococcus agalactiae. Microorganisms 2021; 9:microorganisms9061112. [PMID: 34063935 PMCID: PMC8223999 DOI: 10.3390/microorganisms9061112] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 05/14/2021] [Accepted: 05/17/2021] [Indexed: 01/11/2023] Open
Abstract
CC17 Streptococcus agalactiae carrying group-A prophages is increasingly responsible for neonatal infections. To investigate the impact of the genetic features of a group-A prophage, we first conducted an in silico analysis of the genome of 12/111phiA, a group-A prophage carried by a strain responsible for a bloodstream infection in a parturient. This revealed a Restriction Modification system, suggesting a prophage maintenance strategy and five ORFs of interest for the host and encoding a type II toxin antitoxin system RelB/YafQ, an endonuclease, an S-adenosylmethionine synthetase MetK, and an StrP-like adhesin. Using the WT strain cured from 12/111phiA and constructing deleted mutants for the ORFs of interest, and their complemented mutants, we demonstrated an impact of prophage features on growth characteristics, cell morphology and biofilm formation. Our findings argue in favor of 12/111phiA domestication by the host and a role of prophage features in cell autoaggregation, glycocalyx and biofilm formation. We suggest that lysogeny may promote GBS adaptation to the acid environment of the vagina, consequently colonizing and infecting neonates.
Collapse
|