1
|
Rupprecht CE, Buchanan T, Cliquet F, King R, Müller T, Yakobson B, Yang DK. A Global Perspective on Oral Vaccination of Wildlife against Rabies. J Wildl Dis 2024; 60:241-284. [PMID: 38381612 DOI: 10.7589/jwd-d-23-00078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 01/03/2024] [Indexed: 02/23/2024]
Abstract
The long-term mitigation of human-domestic animal-wildlife conflicts is complex and difficult. Over the last 50 yr, the primary biomedical concepts and actualized collaborative global field applications of oral rabies vaccination to wildlife serve as one dramatic example that revolutionized the field of infectious disease management of free-ranging animals. Oral vaccination of wildlife occurred in diverse locales within Africa, Eurasia, the Middle East, and North America. Although rabies is not a candidate for eradication, over a billion doses of vaccine-laden baits distributed strategically by hand, at baiting stations, or via aircraft, resulted in widespread disease prevention, control, or local disease elimination among mesocarnivores. Pure, potent, safe, and efficacious vaccines consisted of either modified-live, highly attenuated, or recombinant viruses contained within attractive, edible baits. Since the late 1970s, major free-ranging target species have included coyotes (Canis latrans), foxes (Urocyon cinereoargenteus; Vulpes vulpes), jackals (Canis aureus; Lupulella mesomelas), raccoons (Procyon lotor), raccoon dogs (Nyctereutes procyonoides), and skunks (Mephitis mephitis). Operational progress has occurred in all but the latter species. Programmatic evaluations of oral rabies vaccination success have included: demonstration of biomarkers incorporated within vaccine-laden baits in target species as representative of bait contact; serological measurement of the induction of specific rabies virus neutralizing antibodies, indicative of an immune response to vaccine; and most importantly, the decreasing detection of rabies virus antigens in the brains of collected animals via enhanced laboratory-based surveillance, as evidence of management impact. Although often conceived mistakenly as a panacea, such cost-effective technology applied to free-ranging wildlife represents a real-world, One Health application benefiting agriculture, conservation biology, and public health. Based upon lessons learned with oral rabies vaccination of mesocarnivores, opportunities for future extension to other taxa and additional diseases will have far-reaching, transdisciplinary benefits.
Collapse
Affiliation(s)
- Charles E Rupprecht
- College of Forestry, Wildlife and Environment, College of Veterinary Medicine, Auburn University, 602 Duncan Drive, Auburn, Alabama 36849, USA
| | - Tore Buchanan
- Wildlife Research and Monitoring Section, Ontario Ministry of Natural Resources and Forestry, Trent University, 2140 East Bank Drive, Peterborough, Ontario K9L1Z8, Canada
| | - Florence Cliquet
- ANSES, Nancy Laboratory for Rabies and Wildlife, European Union Reference Laboratory for Rabies Serology, European Union Reference Laboratory for Rabies, WHO Collaborating Centre for Research and Management in Zoonoses Control, WOAH Reference Laboratory for Rabies, Technopôle Agricole et Vétérinaire, Domaine de Pixérécourt, CS 40009 Malzeville, France
| | - Roni King
- Israel Nature and Parks Authority, Am V'Olamo 3, Jerusalem 95463, Israel
| | - Thomas Müller
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, WHO Collaborating Centre for Rabies Surveillance and Research, WOAH Reference Laboratory for Rabies, Südufer 10, 17493 Greifswald-Insel Riems, Germany
| | - Boris Yakobson
- WOAH Reference Laboratory for Rabies, Kimron Veterinary Institute, Ministry of Agriculture, Derech HaMaccabim 62, Rishon Lezion, 50250, Israel
| | - Dong-Kun Yang
- Viral Disease Division, Animal and Plant Quarantine Agency, Ministry of Agriculture, Food and Rural Affairs, 177, Hyeoksin 8-ro, Gimcheon-si, Gyeongsangbuk-do, 39660, Republic of Korea
| |
Collapse
|
2
|
Davis AJ, Chipman RB, Nelson KM, Haley BS, Kirby JD, Ma X, Wallace RM, Gilbert AT. Evaluation of contingency actions to control the spread of raccoon rabies in Ohio and Virginia. Prev Vet Med 2024; 225:106145. [PMID: 38354432 DOI: 10.1016/j.prevetmed.2024.106145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 01/31/2024] [Accepted: 02/05/2024] [Indexed: 02/16/2024]
Abstract
The raccoon (Procyon lotor) variant of the rabies virus (RRV) is enzootic in the eastern United States and oral rabies vaccination (ORV) is the primary strategy to prevent and control landscape spread. Breaches of ORV management zones occasionally occur, and emergency "contingency" actions may be implemented to enhance local control. Contingency actions are an integral part of landscape-scale wildlife rabies management but can be very costly and routinely involve enhanced rabies surveillance (ERS) around the index case. We investigated two contingency actions in Ohio (2017-2019 and 2018-2021) and one in Virginia (2017-2019) using a dynamic, multi-method occupancy approach to examine relationships between specific management actions and RRV occurrence, including whether ERS was sufficient around the index case. The RRV occupancy was assessed seasonally at 100-km2 grids and we examined relationships across three spatial scales (regional management zone, RRV free regions, and local contingency areas). The location of a grid relative to the ORV management zone was the strongest predictor of RRV occupancy at the regional scale. In RRV free regions, the neighbor effect and temporal variability were most important in influencing RRV occupancy. Parenteral (hand) vaccination of raccoons was important across all three contingency action areas, but more influential in the Ohio contingency action areas where more raccoons were hand vaccinated. In the Virginia contingency action area, ORV strategies were as important in reducing RRV occupancy as a hand vaccination strategy. The management action to trap, euthanize, and test (TET) raccoons was an important method to increase ERS, yet the impacts of TET on RRV occupancy are not clear. The probability of detecting additional cases of RRV was exceptionally high (>0.95) during the season the index case occurred. The probability of detecting RRV through ERS declined in the seasons following initial TET efforts but remained higher after the contingency action compared to the ERS detection probabilities prior to index case incidence. Local RRV cases were contained within one year and eliminated within 2-3 years of each contingency action.
Collapse
Affiliation(s)
- Amy J Davis
- United States Department of Agriculture, Animal and Plant Health Inspection Service, Wildlife Services, National Wildlife Research Center, Fort Collins, CO, 80521, USA.
| | - Richard B Chipman
- United States Department of Agriculture, Animal and Plant Health Inspection Service, Wildlife Services, National Rabies Management Program, Concord, NH, 03301, USA
| | - Kathleen M Nelson
- United States Department of Agriculture, Animal and Plant Health Inspection Service, Wildlife Services, National Rabies Management Program, Concord, NH, 03301, USA
| | - Betsy S Haley
- United States Department of Agriculture, Animal and Plant Health Inspection Service, Wildlife Services, National Rabies Management Program, Concord, NH, 03301, USA
| | - Jordona D Kirby
- United States Department of Agriculture, Animal and Plant Health Inspection Service, Wildlife Services, National Rabies Management Program, Concord, NH, 03301, USA
| | - Xiaoyue Ma
- Centers for Disease Control and Prevention, Atlanta, GA 30333, USA
| | - Ryan M Wallace
- Centers for Disease Control and Prevention, Atlanta, GA 30333, USA
| | - Amy T Gilbert
- United States Department of Agriculture, Animal and Plant Health Inspection Service, Wildlife Services, National Wildlife Research Center, Fort Collins, CO, 80521, USA
| |
Collapse
|
3
|
Song Y, Mehl F, Zeichner SL. Vaccine Strategies to Elicit Mucosal Immunity. Vaccines (Basel) 2024; 12:191. [PMID: 38400174 PMCID: PMC10892965 DOI: 10.3390/vaccines12020191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/29/2024] [Accepted: 02/08/2024] [Indexed: 02/25/2024] Open
Abstract
Vaccines are essential tools to prevent infection and control transmission of infectious diseases that threaten public health. Most infectious agents enter their hosts across mucosal surfaces, which make up key first lines of host defense against pathogens. Mucosal immune responses play critical roles in host immune defense to provide durable and better recall responses. Substantial attention has been focused on developing effective mucosal vaccines to elicit robust localized and systemic immune responses by administration via mucosal routes. Mucosal vaccines that elicit effective immune responses yield protection superior to parenterally delivered vaccines. Beyond their valuable immunogenicity, mucosal vaccines can be less expensive and easier to administer without a need for injection materials and more highly trained personnel. However, developing effective mucosal vaccines faces many challenges, and much effort has been directed at their development. In this article, we review the history of mucosal vaccine development and present an overview of mucosal compartment biology and the roles that mucosal immunity plays in defending against infection, knowledge that has helped inform mucosal vaccine development. We explore new progress in mucosal vaccine design and optimization and novel approaches created to improve the efficacy and safety of mucosal vaccines.
Collapse
Affiliation(s)
- Yufeng Song
- Department of Pediatrics, University of Virginia, Charlottesville, VA 22908, USA; (Y.S.)
| | - Frances Mehl
- Department of Pediatrics, University of Virginia, Charlottesville, VA 22908, USA; (Y.S.)
| | - Steven L. Zeichner
- Department of Pediatrics, University of Virginia, Charlottesville, VA 22908, USA; (Y.S.)
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA 22908, USA
| |
Collapse
|
4
|
Beasley EM, Nelson KM, Slate D, Gilbert AT, Pogmore FE, Chipman RB, Davis AJ. Oral Rabies Vaccination of Raccoons (Procyon lotor) across a Development Intensity Gradient in Burlington, Vermont, USA, 2015-2017. J Wildl Dis 2024; 60:1-13. [PMID: 37972639 DOI: 10.7589/jwd-d-22-00117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 06/27/2022] [Indexed: 11/19/2023]
Abstract
Management of the raccoon rabies virus variant in North America is conducted primarily using oral rabies vaccination (ORV). When a sufficient proportion of the population is vaccinated (∼60%), rabies transmission can be eliminated. To date, ORV programs have successfully controlled and eliminated raccoon rabies in rural areas, but there has been less success in urban areas. We studied the proportions of rabies virus neutralizing antibodies (RVNA) in a raccoon (Procyon lotor) population during a 3-yr ORV trial in developed areas of Burlington, Vermont, US. We used a modified N-mixture model to estimate raccoon abundance, RVNA seroprevalence, and capture rates jointly to examine factors that relate to ORV success to better inform management. We found that raccoon abundance was lower in less-developed areas compared to urban centers. Raccoon RVNA seroprevalence decreased as population abundance increased; it increased as the average age of the population increased. Nontarget opossum (Didelphis virginiana) captures correlated with a decrease in raccoon RVNA seroprevalence in low-development areas, suggesting that they may be competing for baits. The target bait density across the entire study area was 150 baits/km2, but a hand baiting strategy was heavily concentrated on roads, resulting in uneven bait densities within sampling sites (0-484 baits/km2). Uneven bait distribution across the study area may explain low RVNA seroprevalence in some locations. Our results suggest that increases in bait density across the study area may improve RVNA seroprevalence and support annual ORV to account for raccoon population turnover.
Collapse
Affiliation(s)
- Emily M Beasley
- University of Vermont, Department of Biology, 109 Carrigan Drive, Burlington, Vermont 05401, USA
- Current affiliation: Université de Montréal, Département de Sciences Biologiques, 1375 Avenue Thérèse-Lavoie-Roux, Montréal, Quebec H2V 0B3, Canada
- These authors contributed equally
| | - Kathleen M Nelson
- United States Department of Agriculture, Animal and Plant Health Inspection Service, Wildlife Services, National Rabies Management Program, 59 Chenell Drive, Suite 2, Concord, New Hampshire 03301, USA
- These authors contributed equally
| | - Dennis Slate
- United States Department of Agriculture, Animal and Plant Health Inspection Service, Wildlife Services, National Rabies Management Program, 59 Chenell Drive, Suite 2, Concord, New Hampshire 03301, USA
- Current affiliation: Chippewa Bay Wildlife Art and Science LLC, 1132 County Road 6, Hammond, New York 13646, USA
| | - Amy T Gilbert
- United States Department of Agriculture, Animal and Plant Health Inspection Service, Wildlife Services, National Wildlife Research Center, 4101 Laporte Avenue, Fort Collins, Colorado 80521, USA
| | - Frederick E Pogmore
- United States Department of Agriculture, Animal and Plant Health Inspection Service, Wildlife Services, 617 Comstock Road, Suite 9, Berlin, Vermont 05602, USA
| | - Richard B Chipman
- United States Department of Agriculture, Animal and Plant Health Inspection Service, Wildlife Services, National Rabies Management Program, 59 Chenell Drive, Suite 2, Concord, New Hampshire 03301, USA
| | - Amy J Davis
- United States Department of Agriculture, Animal and Plant Health Inspection Service, Wildlife Services, National Wildlife Research Center, 4101 Laporte Avenue, Fort Collins, Colorado 80521, USA
| |
Collapse
|
5
|
Johnson SR, Ellis CK, Wickham CK, Selleck MR, Gilbert AT. Comparison of Ketamine-Xylazine, Butorphanol-Azaperone-Medetomidine, and Nalbuphine-Medetomidine-Azaperone for Raccoon (Procyon lotor) Immobilization. J Wildl Dis 2024; 60:95-104. [PMID: 37924235 DOI: 10.7589/jwd-d-23-00060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 10/05/2023] [Indexed: 11/06/2023]
Abstract
Raccoons (Procyon lotor) are frequently handled using chemical immobilization in North America for management and research. In a controlled environment, we compared three drug combinations: ketamine-xylazine (KX), butorphanol-azaperone-medetomidine (BAM), and nalbuphine-medetomidine-azaperone (NalMed-A) for raccoon immobilization. In crossover comparisons, raccoons received a mean of the following: 8.66 mg/kg ketamine and 1.74 mg/kg xylazine (0.104 mL/kg KX); 0.464 mg/kg butorphanol, 0.155 mg/kg azaperone, and 0.185 mg/kg medetomidine (0.017 mL/kg BAM); and 0.800 mg/kg nalbuphine, 0.200 mg/kg azaperone, and 0.200 mg/kg medetomidine (0.020 mL/kg NalMed-A). Induction time was shortest with KX (mean±SE, 10.0±0.7 min) and longest with NalMed-A (13.0±1.3 min). A sampling procedure was completed on 89% (16/18), 72% (13/18), and 89% (16/18) of the raccoons administered KX, BAM, and NalMed-A, respectively. Reasons for incomplete sampling included inadequate immobilization (one KX and one NalMed-A), responsive behaviors (one each with KX, BAM, NalMed-A), or animal safety (four BAM). Mean recovery time for KX was 32.8±7.1 min without antagonizing and 28.6±5.2 min following delivery of an antagonist. Mean recovery time was 6.2±0.8 min for BAM and 5.1±0.5 min for NalMed-A after antagonizing. Only with KX were raccoons observed to recover without use of an antagonist. Supplemental oxygen was provided to 23% (3/13), 72% (13/18), and 71% (12/17) of raccoons immobilized with KX, BAM, and NalMed-A, respectively. Hypoxemia at <80% oxygen saturation occurred in 0% (0/17), 27% (4/15), and 6% (1/16) of the raccoons administered KX, BAM, and NalMed-A, respectively; all raccoons fully recovered from chemical immobilization. All combinations could be used for raccoon immobilization; however, the need for delivery of supplemental oxygen to a majority of raccoons immobilized with BAM and NalMed-A may limit broader use of these agents for certain field studies involving capture, sample, and release of free-ranging animals from a practical standpoint.
Collapse
Affiliation(s)
- Shylo R Johnson
- US Department of Agriculture, Animal and Plant Health Inspection Service, Wildlife Services, National Wildlife Research Center, 4101 LaPorte Avenue, Fort Collins, Colorado 80521, USA
| | - Christine K Ellis
- US Department of Agriculture, Animal and Plant Health Inspection Service, Wildlife Services, National Wildlife Research Center, 4101 LaPorte Avenue, Fort Collins, Colorado 80521, USA
- Current address: US Department of Agriculture, Animal and Plant Health Inspection Service, Veterinary Services, 2150 Centre Avenue, Building B, Fort Collins, Colorado 80526, USA
| | - Chad K Wickham
- US Department of Agriculture, Animal and Plant Health Inspection Service, Wildlife Services, National Wildlife Research Center, 4101 LaPorte Avenue, Fort Collins, Colorado 80521, USA
- Current address: US Department of Agriculture, Animal and Plant Health Inspection Service, Wildlife Services, 3375 Koapaka Street, Suite H-420, Honolulu, Hawaii 96819, USA
| | - Molly R Selleck
- US Department of Agriculture, Animal and Plant Health Inspection Service, Wildlife Services, National Wildlife Research Center, 4101 LaPorte Avenue, Fort Collins, Colorado 80521, USA
| | - Amy T Gilbert
- US Department of Agriculture, Animal and Plant Health Inspection Service, Wildlife Services, National Wildlife Research Center, 4101 LaPorte Avenue, Fort Collins, Colorado 80521, USA
| |
Collapse
|
6
|
Helton JL, Hill JE, Bernasconi DA, Dixon WC, Chipman RB, Gilbert AT, Beasley JC, Dharmarajan G, Rhodes OE. Assessment of habitat‐specific competition for oral rabies vaccine baits between raccoons and opossums. J Wildl Manage 2023. [DOI: 10.1002/jwmg.22398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
Affiliation(s)
- James L. Helton
- Savannah River Ecology Laboratory, Warnell School of Forestry and Natural Resources University of Georgia, Drawer E Aiken SC 29802 USA
| | - Jacob E. Hill
- Savannah River Ecology Laboratory University of Georgia, Drawer E Aiken SC 29802 USA
| | - David A. Bernasconi
- Savannah River Ecology Laboratory, Warnell School of Forestry and Natural Resources University of Georgia, Drawer E Aiken SC 29802 USA
| | - Wesley C. Dixon
- Savannah River Ecology Laboratory, Warnell School of Forestry and Natural Resources University of Georgia, Drawer E Aiken SC 29802 USA
| | - Richard B. Chipman
- National Rabies Management Program, USDA, APHIS, Wildlife Services Concord NH 03301 USA
| | - Amy T. Gilbert
- National Wildlife Research Center, USDA, APHIS, Wildlife Services Fort Collins CO 80521 USA
| | - James C. Beasley
- Savannah River Ecology Laboratory, Warnell School of Forestry and Natural Resources University of Georgia, Drawer E Aiken SC 29802 USA
| | - Guha Dharmarajan
- School of Interwoven Arts and Sciences Krea University Sri City AP India
| | - Olin E. Rhodes
- Savannah River Ecology Laboratory, Odum School of Ecology University of Georgia, Drawer E Aiken SC 29802 USA
| |
Collapse
|
7
|
Comparing Control Intervention Scenarios for Raccoon Rabies in Southern Ontario between 2015 and 2025. Viruses 2023; 15:v15020528. [PMID: 36851742 PMCID: PMC9967127 DOI: 10.3390/v15020528] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 02/06/2023] [Accepted: 02/07/2023] [Indexed: 02/16/2023] Open
Abstract
The largest outbreak of raccoon rabies in Canada was first reported in Hamilton, Ontario, in 2015 following a probable translocation event from the United States. We used a spatially-explicit agent-based model to evaluate the effectiveness of provincial control programs in an urban-centric outbreak if control interventions were used until 2025, 2020, or never used. Calibration tests suggested that a seroprevalence of protective rabies antibodies 2.1 times higher than that inferred from seroprevalence in program assessments was required in simulations to replicate observed raccoon rabies cases. Our simulation results showed that if control interventions with an adjusted seroprevalence were used until 2025 or 2020, the probability of rabies elimination due to control intervention use was 49.2% and 42.1%, respectively. However, if controls were never used, the probability that initial rabies cases failed to establish a sustained outbreak was only 18.2%. In simulations where rabies was not successfully eliminated, using control interventions until 2025 resulted in 67% fewer new infections compared to only applying controls until 2020 and in 90% fewer new infections compared to no control intervention use. However, the model likely underestimated rabies elimination rates since we did not adjust for adaptive control strategies in response to changes in rabies distributions and case numbers, as well as extending control interventions past 2025. Our agent-based model offers a cost-effective strategy to evaluate approaches to rabies control applications.
Collapse
|
8
|
Special Issue “Innovative Techniques and Approaches in the Control and Prevention of Rabies Virus”. Viruses 2022; 14:v14050845. [PMID: 35632587 PMCID: PMC9144731 DOI: 10.3390/v14050845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 04/06/2022] [Indexed: 12/03/2022] Open
|
9
|
Drawert B, Flies AS, Matthew S, Powell M, Rumsey B. Saving the Devils Is in the Details: Tasmanian Devil Facial Tumor Disease Can Be Eliminated with Interventions. LETTERS IN BIOMATHEMATICS 2022; 9:121-140. [PMID: 37655234 PMCID: PMC10470821 DOI: 10.30707/lib9.1.1681913305.269822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Tasmanian Devils facial tumor disease (DFTD) is severely impacting the population of this wild animal. We developed a computational model of the population of Tasmanian Devils, and the change induced by DFTD. We use this model to test possible intervention strategies Tasmanian conservationists could do. We investigate bait drop vaccination programs, diseased animal removals programs, and evolution of natural immunity. We conclude that a combination of intervention strategies gives the most favorable outcome. An additional goal of this paper is reproducibility of our results. Our StochSS software platform features the ability to share and reproduce the computational notebooks that created all of the results in the paper. We endeavor that all readers should be able to reproduce our results with minimum effort.
Collapse
Affiliation(s)
- Brian Drawert
- National Environmental Modeling and Analysis Center, University of North Carolina Asheville, Asheville, NC, USA
| | - Andrew S. Flies
- Menzies Institute for Medical Research, College of Health and Medicine, University of Tasmania, Hobart, TAS, 7000, Australia
| | - Sean Matthew
- National Environmental Modeling and Analysis Center, University of North Carolina Asheville, Asheville, NC, USA
| | - Megan Powell
- Department of Mathematics and Statistics, University of North Carolina Asheville, Asheville, NC, USA
| | - Bryan Rumsey
- National Environmental Modeling and Analysis Center, University of North Carolina Asheville, Asheville, NC, USA
| |
Collapse
|