1
|
Papadopoulou P, Polissidis A, Kythreoti G, Sagnou M, Stefanatou A, Theoharides TC. Anti-Inflammatory and Neuroprotective Polyphenols Derived from the European Olive Tree, Olea europaea L., in Long COVID and Other Conditions Involving Cognitive Impairment. Int J Mol Sci 2024; 25:11040. [PMID: 39456822 PMCID: PMC11507169 DOI: 10.3390/ijms252011040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 10/03/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024] Open
Abstract
The European olive tree, Olea europaea L., and its polyphenols hold great therapeutic potential to treat neuroinflammation and cognitive impairment. This review examines the evidence for the anti-inflammatory and neuroprotective actions of olive polyphenols and their potential in the treatment of long COVID and neurodegenerative diseases such as Alzheimer's disease (AD), Parkinson's disease (PD), and multiple sclerosis (MS). Key findings suggest that olive polyphenols exhibit antioxidant, anti-inflammatory, neuroprotective, and antiviral properties, making them promising candidates for therapeutic intervention, especially when formulated in unique combinations. Recommendations for future research directions include elucidating molecular pathways through mechanistic studies, exploring the therapeutic implications of olive polyphenol supplementation, and conducting clinical trials to assess efficacy and safety. Investigating potential synergistic effects with other agents addressing different targets is suggested for further exploration. The evidence reviewed strengthens the translational value of olive polyphenols in conditions involving cognitive dysfunction and emphasizes the novelty of new formulations.
Collapse
Affiliation(s)
- Paraskevi Papadopoulou
- Department of Science and Mathematics, Deree-The American College of Greece, 15342 Athens, Greece; (P.P.)
| | - Alexia Polissidis
- Department of Science and Mathematics, Deree-The American College of Greece, 15342 Athens, Greece; (P.P.)
| | - Georgia Kythreoti
- Department of Science and Mathematics, Deree-The American College of Greece, 15342 Athens, Greece; (P.P.)
| | - Marina Sagnou
- Institute of Biosciences and Applications, National Centre for Scientific Research Demokritos, 15310 Athens, Greece;
| | - Athena Stefanatou
- School of Graduate & Professional Education, Deree–The American College of Greece, 15342 Athens, Greece
| | - Theoharis C. Theoharides
- Institute for Neuro-Immune Medicine-Clearwater, Clearwater, FL 33759, USA
- Department of Immunology, Tufts University School of Medicine, Boston, MA 02111, USA
| |
Collapse
|
2
|
Calabrese V, Osakabe N, Siracusa R, Modafferi S, Di Paola R, Cuzzocrea S, Jacob UM, Fritsch T, Abdelhameed AS, Rashan L, Wenzel U, Franceschi C, Calabrese EJ. Transgenerational hormesis in healthy aging and antiaging medicine from bench to clinics: Role of food components. Mech Ageing Dev 2024; 220:111960. [PMID: 38971236 DOI: 10.1016/j.mad.2024.111960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 06/20/2024] [Accepted: 06/25/2024] [Indexed: 07/08/2024]
Abstract
Neurodegenerative diseases have multifactorial pathogenesis, mainly involving neuroinflammatory processes. Finding drugs able to treat these diseases, expecially because for most of these diseases there are no effective drugs, and the current drugs cause undesired side effects, represent a crucial point. Most in vivo and in vitro studies have been concentrated on various aspects related to neurons (e.g. neuroprotection), however, there has not been focus on the prevention of early stages involving glial cell activation and neuroinflammation. Recently, it has been demonstrated that nutritional phytochemicals including polyphenols, the main active constituents of the Mediterranean diet, maintain redox balance and neuroprotection through the activation of hormetic vitagene pathway. Recent lipidomics data from our laboratory indicate mushrooms as strong nutritional neuronutrients with strongly activity against neuroinflammation in Meniere' diseaseas, a model of cochleovestibular neural degeneration, as well as in animal model of traumatic brain injury, or rotenone induced parkinson's disease. Moreover, Hidrox®, an aqueous extract of olive containing hydroxytyrosol, and Boswellia, acting as Nrf2 activators, promote resilience by enhancing the redox potential, and thus, regulate through hormetic mechanisms, cellular stress response mechanisms., Thus, modulation of cellular stress pathways, in particular vitagenes system, may be an innovative approach for therapeutic intervention in neurodegenerative disorders.
Collapse
Affiliation(s)
- Vittorio Calabrese
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy.
| | - Naomi Osakabe
- Department of Bioscience and Engineering, Shibaura Institute Technology, Tokyo, Japan.
| | - Rosalba Siracusa
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina 98166, Italy
| | - Sergio Modafferi
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Rosanna Di Paola
- Department of Veterinary Sciences, University of Messina, Messina 98168, Italy
| | - Salvatore Cuzzocrea
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina 98166, Italy
| | | | | | - Ali S Abdelhameed
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Kingdom of Saudi Arabia
| | - Luay Rashan
- Biodiversity Unit, Dhofar University, Salalah, Oman
| | - Uwe Wenzel
- Institut für Ernährungswissenschaft, Justus Liebig Universitat Giessen, Germany
| | | | - Edward J Calabrese
- Department of Environmental Health Sciences, Morrill I, N344, University of Massachusetts, Amherst, MA 01003, USA
| |
Collapse
|
3
|
Komu JG, Jamsransuren D, Matsuda S, Ogawa H, Takeda Y. Collection and transportation of SARS-CoV-2 and influenza A virus diagnostic samples: Optimizing the usage of guanidine-based chaotropic salts for enhanced biosafety and viral genome preservation. Biochem Biophys Res Commun 2024; 715:149994. [PMID: 38692139 DOI: 10.1016/j.bbrc.2024.149994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 04/22/2024] [Indexed: 05/03/2024]
Abstract
Many virus lysis/transport buffers used in molecular diagnostics, including the detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA, contain guanidine-based chaotropic salts, primarily guanidine hydrochloride (GuHCl) or guanidine isothiocyanate (GITC). Although the virucidal effects of GuHCl and GITC alone against some enveloped viruses have been established, standardized data on their optimum virucidal concentrations against SARS-CoV-2 and effects on viral RNA stability are scarce. Thus, we aimed to determine the optimum virucidal concentrations of GuHCl and GITC against SARS-CoV-2 compared to influenza A virus (IAV), another enveloped respiratory virus. We also evaluated the effectiveness of viral RNA stabilization at the determined optimum virucidal concentrations under high-temperature conditions (35°C) using virus-specific real-time reverse transcription polymerase chain reaction. Both viruses were potently inactivated by 1.0 M GITC and 2.5 M GuHCl, but the GuHCl concentration for efficient SARS-CoV-2 inactivation was slightly higher than that for IAV inactivation. GITC showed better viral RNA stability than GuHCl at the optimum virucidal concentrations. An increased concentration of GuHCl or GITC increased viral RNA degradation at 35°C. Our findings highlight the need to standardize GuHCl and GITC concentrations in virus lysis/transport buffers and the potential application of these guanidine-based salts alone as virus inactivation solutions in SARS-CoV-2 and IAV molecular diagnostics.
Collapse
Affiliation(s)
- James G Komu
- Graduate School of Animal and Veterinary Sciences and Agriculture, Obihiro University of Agriculture and Veterinary Medicine, 2-11 Inada, Obihiro, Hokkaido, 080-8555, Japan; Department of Medical Laboratory Sciences, College of Health Sciences, Jomo Kenyatta University of Agriculture and Technology, P.O. Box 62000-00200, Nairobi, Kenya.
| | - Dulamjav Jamsransuren
- Research Center for Global Agromedicine, Obihiro University of Agriculture and Veterinary Medicine, 2-11 Inada, Obihiro, Hokkaido, 080-8555, Japan.
| | - Sachiko Matsuda
- Research Center for Global Agromedicine, Obihiro University of Agriculture and Veterinary Medicine, 2-11 Inada, Obihiro, Hokkaido, 080-8555, Japan.
| | - Haruko Ogawa
- Department of Veterinary Medicine, Obihiro University of Agriculture and Veterinary Medicine, 2-11 Inada, Obihiro, Hokkaido, 080-8555, Japan.
| | - Yohei Takeda
- Research Center for Global Agromedicine, Obihiro University of Agriculture and Veterinary Medicine, 2-11 Inada, Obihiro, Hokkaido, 080-8555, Japan; Department of Veterinary Medicine, Obihiro University of Agriculture and Veterinary Medicine, 2-11 Inada, Obihiro, Hokkaido, 080-8555, Japan.
| |
Collapse
|
4
|
Micucci M, Gioacchini S, Baggieri M, Fioravanti R, Bucci P, Giuseppetti R, Saleem SS, Maulud SQ, Abdullah FO, Ismael BQ, Ahmed JQ, D'Ugo E, Marchi A, Okeke UJ, Magurano F. Review from host and guest approach to new frontiers nutraceuticals in the era of COVID-19. FUTURE FOODS 2024; 9:100303. [DOI: 10.1016/j.fufo.2024.100303] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025] Open
|
5
|
Vural N, Algan-Cavuldak Ö, Akay MA. Desirability Function Approach for the Optimization of Hydroalcoholic Solvent Extraction Conditions for Antioxidant Compounds from Olive Leaves. AN ACAD BRAS CIENC 2024; 96:e20230602. [PMID: 38808814 DOI: 10.1590/0001-37652024202306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 07/28/2023] [Indexed: 05/30/2024] Open
Affiliation(s)
- Nilüfer Vural
- Department of Food Processing-Food Technology, Health Services Vocational School, University of Ankara Yıldırım Beyazıt, 06760, Çubuk, Ankara, Türkiye
- Institute of Public Health, Department of Traditional, Complementary and Integrative Medicine Practice and Research Center, University of Ankara Yıldırım Beyazıt, 06010, Etlik, Ankara, Türkiye
| | - Özge Algan-Cavuldak
- Department of Food Engineering, Faculty of Engineering, Zonguldak Bülent Ecevit University, 67100, Zonguldak, Türkiye
| | - M Abdülkadir Akay
- Department of Chemistry, Faculty of Sciences, Ankara University, 06100, Ankara, Türkiye
| |
Collapse
|
6
|
Majrashi TA, El Hassab MA, Mahmoud SH, Mostafa A, Wahsh EA, Elkaeed EB, Hassan FE, Eldehna WM, Abdelgawad SM. In vitro biological evaluation and in silico insights into the antiviral activity of standardized olive leaves extract against SARS-CoV-2. PLoS One 2024; 19:e0301086. [PMID: 38662719 PMCID: PMC11045091 DOI: 10.1371/journal.pone.0301086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 03/08/2024] [Indexed: 04/28/2024] Open
Abstract
There is still a great global need for efficient treatments for the management of SARS-CoV-2 illness notwithstanding the availability and efficacy of COVID-19 vaccinations. Olive leaf is an herbal remedy with a potential antiviral activity that could improve the recovery of COVID-19 patients. In this work, the olive leaves major metabolites were screened in silico for their activity against SARS-CoV-2 by molecular docking on several viral targets such as methyl transferase, helicase, Plpro, Mpro, and RdRp. The results of in silico docking study showed that olive leaves phytoconstituents exhibited strong potential antiviral activity against SARS-CoV-2 selected targets. Verbacoside demonstrated a strong inhibition against methyl transferase, helicase, Plpro, Mpro, and RdRp (docking scores = -17.2, -20, -18.2, -19.8, and -21.7 kcal/mol.) respectively. Oleuropein inhibited 5rmm, Mpro, and RdRp (docking scores = -15, -16.6 and -18.6 kcal/mol., respectively) respectively. Apigenin-7-O-glucoside exhibited activity against methyl transferase and RdRp (docking score = -16.1 and -19.4 kcal/mol., respectively) while Luteolin-7-O-glucoside inhibited Plpro and RdRp (docking score = -15.2 and -20 kcal/mol., respectively). The in vitro antiviral assay was carried out on standardized olive leaf extract (SOLE) containing 20% oleuropein and IC50 was calculated. The results revealed that 20% SOLE demonstrated a moderate antiviral activity against SARS-CoV-2 with IC50 of 118.3 μg /mL. Accordingly, olive leaf could be a potential herbal therapy against SARS-CoV-2 but more in vivo and clinical investigations are recommended.
Collapse
Affiliation(s)
- Taghreed A. Majrashi
- Department of Pharmacognosy, College of Pharmacy, King Khalid University, Asir, Saudi Arabia
| | - Mahmoud A. El Hassab
- Department of Medicinal Chemistry, Faculty of Pharmacy, King Salman International University (KSIU), South Sinai, Egypt
| | - Sara H. Mahmoud
- Center of Scientific Excellence for Influenza Viruses, National Research Centre, Giza, Egypt
| | - Ahmed Mostafa
- Center of Scientific Excellence for Influenza Viruses, National Research Centre, Giza, Egypt
| | - Engy A. Wahsh
- Clinical Pharmacy Department, Faculty of Pharmacy, October 6 University, Giza Governorate, Egypt
| | - Eslam B. Elkaeed
- Department of Pharmaceutical Sciences, College of Pharmacy, AlMaarefa University, Riyadh, Saudi Arabia
| | - Fatma E. Hassan
- Department of Physiology, General Medicine Practice Program, Batterjee Medical College, Jeddah, Saudi Arabia
- Medical Physiology Department, Kasr Alainy, Faculty of Medicine, Cairo University, Giza, Egypt
| | - Wagdy M. Eldehna
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, Egypt
| | | |
Collapse
|
7
|
Elste J, Kumari S, Sharma N, Razo EP, Azhar E, Gao F, Nunez MC, Anwar W, Mitchell JC, Tiwari V, Sahi S. Plant Cell-Engineered Gold Nanoparticles Conjugated to Quercetin Inhibit SARS-CoV-2 and HSV-1 Entry. Int J Mol Sci 2023; 24:14792. [PMID: 37834240 PMCID: PMC10573121 DOI: 10.3390/ijms241914792] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/25/2023] [Accepted: 09/28/2023] [Indexed: 10/15/2023] Open
Abstract
Recent studies have revealed considerable promise in the antiviral properties of metal nanomaterials, specifically when biologically prepared. This study demonstrates for the first time the antiviral roles of the plant cell-engineered gold nanoparticles (pAuNPs) alone and when conjugated with quercetin (pAuNPsQ). We show here that the quercetin conjugated nanoparticles (pAuNPsQ) preferentially inhibit the cell entry of two medically important viruses-severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and herpes simplex virus type-1 (HSV-1) using different mechanisms. Interestingly, in the case of SARS-CoV-2, the pre-treatment of target cells with pAuNPsQ inhibited the viral entry, but the pre-treatment of the virus with pAuNPsQ did not affect viral entry into the host cell. In contrast, pAuNPsQ demonstrated effective blocking capabilities against HSV-1 entry, either during the pre-treatment of target cells or by inducing virus neutralization. In addition, pAuNPsQ also significantly affected HSV-1 replication, evidenced by the plaque-counting assay. In this study, we also tested the chemically synthesized gold nanoparticles (cAuNPs) of identical size and shape and observed comparable effects. The versatility of plant cell-based nanomaterial fabrication and its modification with bioactive compounds opens a new frontier in therapeutics, specifically in designing novel antiviral formulations.
Collapse
Affiliation(s)
- James Elste
- Department of Microbiology & Immunology, College of Graduate Studies, Midwestern University, Downers Grove, IL 60515, USA; (J.E.); (E.A.)
| | - Sangeeta Kumari
- Department of Biology, Saint Joseph’s University, University City Campus, Philadelphia, PA 19131, USA; (S.K.); (W.A.)
| | - Nilesh Sharma
- Department of Biology, Western Kentucky University, Bowling Green, KY 42101, USA;
| | - Erendira Palomino Razo
- College of Dental Medicine, Midwestern University, Downers Grove, IL 60515, USA; (E.P.R.); (F.G.); (M.C.N.); (J.C.M.)
| | - Eisa Azhar
- Department of Microbiology & Immunology, College of Graduate Studies, Midwestern University, Downers Grove, IL 60515, USA; (J.E.); (E.A.)
| | - Feng Gao
- College of Dental Medicine, Midwestern University, Downers Grove, IL 60515, USA; (E.P.R.); (F.G.); (M.C.N.); (J.C.M.)
| | - Maria Cuevas Nunez
- College of Dental Medicine, Midwestern University, Downers Grove, IL 60515, USA; (E.P.R.); (F.G.); (M.C.N.); (J.C.M.)
| | - Wasim Anwar
- Department of Biology, Saint Joseph’s University, University City Campus, Philadelphia, PA 19131, USA; (S.K.); (W.A.)
| | - John C. Mitchell
- College of Dental Medicine, Midwestern University, Downers Grove, IL 60515, USA; (E.P.R.); (F.G.); (M.C.N.); (J.C.M.)
| | - Vaibhav Tiwari
- Department of Microbiology & Immunology, College of Graduate Studies, Midwestern University, Downers Grove, IL 60515, USA; (J.E.); (E.A.)
- College of Dental Medicine, Midwestern University, Downers Grove, IL 60515, USA; (E.P.R.); (F.G.); (M.C.N.); (J.C.M.)
| | - Shivendra Sahi
- Department of Biology, Saint Joseph’s University, University City Campus, Philadelphia, PA 19131, USA; (S.K.); (W.A.)
| |
Collapse
|
8
|
Low Z, Lani R, Tiong V, Poh C, AbuBakar S, Hassandarvish P. COVID-19 Therapeutic Potential of Natural Products. Int J Mol Sci 2023; 24:9589. [PMID: 37298539 PMCID: PMC10254072 DOI: 10.3390/ijms24119589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 05/26/2023] [Accepted: 05/29/2023] [Indexed: 06/12/2023] Open
Abstract
Despite the fact that coronavirus disease 2019 (COVID-19) treatment and management are now considerably regulated, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is still one of the leading causes of death in 2022. The availability of COVID-19 vaccines, FDA-approved antivirals, and monoclonal antibodies in low-income countries still poses an issue to be addressed. Natural products, particularly traditional Chinese medicines (TCMs) and medicinal plant extracts (or their active component), have challenged the dominance of drug repurposing and synthetic compound libraries in COVID-19 therapeutics. Their abundant resources and excellent antiviral performance make natural products a relatively cheap and readily available alternative for COVID-19 therapeutics. Here, we deliberately review the anti-SARS-CoV-2 mechanisms of the natural products, their potency (pharmacological profiles), and application strategies for COVID-19 intervention. In light of their advantages, this review is intended to acknowledge the potential of natural products as COVID-19 therapeutic candidates.
Collapse
Affiliation(s)
- Zhaoxuan Low
- Tropical Infectious Diseases Research & Education Centre (TIDREC), Universiti Malaya, Kuala Lumpur 50603, Malaysia; (Z.L.); (S.A.)
| | - Rafidah Lani
- Department of Medical Microbiology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia;
| | - Vunjia Tiong
- Tropical Infectious Diseases Research & Education Centre (TIDREC), Universiti Malaya, Kuala Lumpur 50603, Malaysia; (Z.L.); (S.A.)
| | - Chitlaa Poh
- Centre for Virus and Vaccine Research, School of Medical and Life Sciences, Sunway University, Petaling Jaya 47500, Malaysia;
| | - Sazaly AbuBakar
- Tropical Infectious Diseases Research & Education Centre (TIDREC), Universiti Malaya, Kuala Lumpur 50603, Malaysia; (Z.L.); (S.A.)
| | - Pouya Hassandarvish
- Tropical Infectious Diseases Research & Education Centre (TIDREC), Universiti Malaya, Kuala Lumpur 50603, Malaysia; (Z.L.); (S.A.)
| |
Collapse
|
9
|
Murata T, Jamsransuren D, Matsuda S, Ogawa H, Takeda Y. Rapid Virucidal Activity of Japanese Saxifraga Species-Derived Condensed Tannins against SARS-CoV-2, Influenza A Virus, and Human Norovirus Surrogate Viruses. Appl Environ Microbiol 2023:e0023723. [PMID: 37184410 DOI: 10.1128/aem.00237-23] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), influenza A virus (IAV), and norovirus are global threats to human health. The application of effective virucidal agents, which contribute to the inactivation of viruses on hands and environmental surfaces, is important to facilitate robust virus infection control measures. Naturally derived virucidal disinfectants have attracted attention owing to their safety and eco-friendly properties. In this study, we showed that multiple Japanese Saxifraga species-derived fractions demonstrated rapid, potent virucidal activity against the SARS-CoV-2 ancestral strain and multiple variant strains, IAV, and two human norovirus surrogates: feline calicivirus (FCV) and murine norovirus (MNV). Condensed tannins were identified as active chemical constituents that play a central role in the virucidal activities of these fractions. At a concentration of 25 μg/mL, the purified condensed tannin fraction Sst-2R induced significant reductions in the viral titers of the SARS-CoV-2 ancestral strain, IAV, and FCV (reductions of ≥3.13, ≥3.00, and 2.50 log10 50% tissue culture infective doses [TCID50]/mL, respectively) within 10 s of reaction time. Furthermore, at a concentration of 100 μg/mL, Sst-2R induced a reduction of 1.75 log10 TCID50/mL in the viral titers of MNV within 1 min. Western blotting and transmission electron microscopy analyses revealed that Sst-2R produced structural abnormalities in viral structural proteins and envelopes, resulting in the destruction of viral particles. Furthermore, Saxifraga species-derived fraction-containing cream showed virucidal activity against multiple viruses within 10 min. Our findings indicate that Saxifraga species-derived fractions containing condensed tannins can be used as disinfectants against multiple viruses on hands and environmental surfaces. IMPORTANCE SARS-CoV-2, IAV, and norovirus are highly contagious pathogens. The use of naturally derived components as novel virucidal/antiviral agents is currently attracting attention. We showed that fractions from extracts of Saxifraga species, in the form of a solution as well as a cream, exerted potent, rapid virucidal activities against SARS-CoV-2, IAV, and surrogates of human norovirus. Condensed tannins were found to play a central role in this activity. The in vitro cytotoxicity of the purified condensed tannin fraction at a concentration that exhibited some extent of virucidal activity was lower than that of 70% ethanol or 2,000 ppm sodium hypochlorite solution, which are popular virucidal disinfectants. Our study suggests that Saxifraga species-derived fractions containing condensed tannins can be used on hands and environmental surfaces as safe virucidal agents against multiple viruses.
Collapse
Affiliation(s)
- Toshihiro Murata
- Division of Pharmacognosy, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi, Japan
| | - Dulamjav Jamsransuren
- Department of Veterinary Medicine, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido, Japan
| | - Sachiko Matsuda
- Department of Veterinary Medicine, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido, Japan
| | - Haruko Ogawa
- Department of Veterinary Medicine, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido, Japan
| | - Yohei Takeda
- Department of Veterinary Medicine, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido, Japan
- Research Center for Global Agromedicine, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido, Japan
| |
Collapse
|
10
|
Pérez de la Lastra JM, Curieses Andrés CM, Andrés Juan C, Plou FJ, Pérez-Lebeña E. Hydroxytyrosol and Arginine as Antioxidant, Anti-Inflammatory and Immunostimulant Dietary Supplements for COVID-19 and Long COVID. Foods 2023; 12:foods12101937. [PMID: 37238755 DOI: 10.3390/foods12101937] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/07/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023] Open
Abstract
Phytochemicals from plant extracts are becoming increasingly popular in the world of food science and technology because they have positive effects on human health. In particular, several bioactive foods and dietary supplements are being investigated as potential treatments for chronic COVID. Hydroxytyrosol (HXT) is a natural antioxidant, found in olive oil, with antioxidant anti-inflammatory properties that has been consumed by humans for centuries without reported adverse effects. Its use was approved by the European Food Safety Authority as a protective agent for the cardiovascular system. Similarly, arginine is a natural amino acid with anti-inflammatory properties that can modulate the activity of immune cells, reducing the production of pro-inflammatory cytokines such as IL-6 and TNF-α. The properties of both substances may be particularly beneficial in the context of COVID-19 and long COVID, which are characterised by inflammation and oxidative stress. While l-arginine promotes the formation of •NO, HXT prevents oxidative stress and inflammation in infected cells. This combination could prevent the formation of harmful peroxynitrite, a potent pro-inflammatory substance implicated in pneumonia and COVID-19-associated organ dysfunction, as well as reduce inflammation, improve immune function, protect against free radical damage and prevent blood vessel injury. Further research is needed to fully understand the potential benefits of HXT and arginine in the context of COVID-19.
Collapse
Affiliation(s)
- José Manuel Pérez de la Lastra
- Institute of Natural Products and Agrobiology, CSIC-Spanish Research Council, Avda. Astrofísico Fco. Sánchez, 3, 38206 San Cristóbal de la Laguna, Spain
| | | | - Celia Andrés Juan
- Cinquima Institute and Department of Organic Chemistry, Faculty of Sciences, Valladolid University, Paseo de Belén, 7, 47011 Valladolid, Spain
| | - Francisco J Plou
- Institute of Catalysis and Petrochemistry, CSIC-Spanish Research Council, 28049 Madrid, Spain
| | | |
Collapse
|
11
|
Komu JG, Jamsransuren D, Matsuda S, Ogawa H, Takeda Y. Efficacy Validation of SARS-CoV-2-Inactivation and Viral Genome Stability in Saliva by a Guanidine Hydrochloride and Surfactant-Based Virus Lysis/Transport Buffer. Viruses 2023; 15:v15020509. [PMID: 36851723 PMCID: PMC9959814 DOI: 10.3390/v15020509] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/29/2023] [Accepted: 02/09/2023] [Indexed: 02/15/2023] Open
Abstract
To enhance biosafety and reliability in SARS-CoV-2 molecular diagnosis, virus lysis/transport buffers should inactivate the virus and preserve viral RNA under various conditions. Herein, we evaluated the SARS-CoV-2-inactivating activity of guanidine hydrochloride (GuHCl)- and surfactant (hexadecyltrimethylammonium chloride (Hexa-DTMC))-based buffer, Prep Buffer A, (Precision System Science Co., Ltd., Matsudo, Japan) and its efficacy in maintaining the stability of viral RNA at different temperatures using the traditional real-time one-step RT-PCR and geneLEAD VIII sample-to-result platform. Although Prep Buffer A successfully inactivated SARS-CoV-2 in solutions with high and low organic substance loading, there was considerable viral genome degradation at 35 °C compared with that at 4 °C. The individual roles of GuHCl and Hexa-DTMC in virus inactivation and virus genome stability at 35 °C were clarified. Hexa-DTMC alone (0.384%), but not 1.5 M GuHCl alone, exhibited considerable virucidal activity, suggesting that it was essential for potently inactivating SARS-CoV-2 using Prep Buffer A. GuHCl and Hexa-DTMC individually reduced the viral copy numbers to the same degree as Prep Buffer A. Although both components inhibited RNase activity, Hexa-DTMC, but not GuHCl, directly destroyed naked viral RNA. Our findings suggest that samples collected in Prep Buffer A should be stored at 4 °C when RT-PCR will not be performed for several days.
Collapse
Affiliation(s)
- James Gitau Komu
- Graduate School of Animal and Veterinary Sciences and Agriculture, Obihiro University of Agriculture and Veterinary Medicine, 2-11 Inada, Obihiro 080-8555, Hokkaido, Japan
- Department of Medical Laboratory Sciences, College of Health Sciences, Jomo Kenyatta University of Agriculture and Technology, Nairobi P.O. Box 62000-00200, Kenya
| | - Dulamjav Jamsransuren
- Department of Veterinary Medicine, Obihiro University of Agriculture and Veterinary Medicine, 2-11 Inada, Obihiro 080-8555, Hokkaido, Japan
| | - Sachiko Matsuda
- Department of Veterinary Medicine, Obihiro University of Agriculture and Veterinary Medicine, 2-11 Inada, Obihiro 080-8555, Hokkaido, Japan
| | - Haruko Ogawa
- Department of Veterinary Medicine, Obihiro University of Agriculture and Veterinary Medicine, 2-11 Inada, Obihiro 080-8555, Hokkaido, Japan
| | - Yohei Takeda
- Department of Veterinary Medicine, Obihiro University of Agriculture and Veterinary Medicine, 2-11 Inada, Obihiro 080-8555, Hokkaido, Japan
- Research Center for Global Agromedicine, Obihiro University of Agriculture and Veterinary Medicine, 2-11 Inada, Obihiro 080-8555, Hokkaido, Japan
- Correspondence: ; Tel.: +81-155-49-5896
| |
Collapse
|
12
|
Arangia A, Marino Y, Impellizzeri D, D’Amico R, Cuzzocrea S, Di Paola R. Hydroxytyrosol and Its Potential Uses on Intestinal and Gastrointestinal Disease. Int J Mol Sci 2023; 24:ijms24043111. [PMID: 36834520 PMCID: PMC9964144 DOI: 10.3390/ijms24043111] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/30/2023] [Accepted: 02/01/2023] [Indexed: 02/09/2023] Open
Abstract
In recent years, the phytoconstituents of foods in the Mediterranean diet (MD) have been the subject of several studies for their beneficial effects on human health. The traditional MD is described as a diet heavy in vegetable oils, fruits, nuts, and fish. The most studied element of MD is undoubtedly olive oil due precisely to its beneficial properties that make it an object of interest. Several studies have attributed these protective effects to hydroxytyrosol (HT), the main polyphenol contained in olive oil and leaves. HT has been shown to be able to modulate the oxidative and inflammatory process in numerous chronic disorders, including intestinal and gastrointestinal pathologies. To date, there is no paper that summarizes the role of HT in these disorders. This review provides an overview of the anti-inflammatory and antioxidant proprieties of HT against intestinal and gastrointestinal diseases.
Collapse
Affiliation(s)
- Alessia Arangia
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy
| | - Ylenia Marino
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy
| | - Daniela Impellizzeri
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy
- Correspondence: (D.I.); (R.D.); Tel.: +39-090-676-5208 (D.I. & R.D.)
| | - Ramona D’Amico
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy
- Correspondence: (D.I.); (R.D.); Tel.: +39-090-676-5208 (D.I. & R.D.)
| | - Salvatore Cuzzocrea
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy
| | - Rosanna Di Paola
- Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy
| |
Collapse
|
13
|
de Oliveira JR, Antunes BS, do Nascimento GO, Kawall JCDS, Oliveira JVB, Silva KGDS, Costa MADT, Oliveira CR. Antiviral activity of medicinal plant-derived products against SARS-CoV-2. Exp Biol Med (Maywood) 2022; 247:1797-1809. [PMID: 35894129 PMCID: PMC9679310 DOI: 10.1177/15353702221108915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
This review presents information from several studies that have demonstrated the antiviral activity of extracts (Andrographis paniculata, Artemisia annua, Artemisia afra, Cannabis sativa, Curcuma longa, Echinacea purpurea, Olea europaea, Piper nigrum, and Punica granatum) and phytocompounds derived from medicinal plants (artemisinins, glycyrrhizin, and phenolic compounds) against SARS-CoV-2. A brief background of the plant products studied, the methodology used to evaluate the antiviral activity, the main findings from the research, and the possible mechanisms of action are presented. These plant products have been shown to impede the adsorption of SARS-CoV-2 to the host cell, and prevent multiplication of the virus post its entry into the host cell. In addition to antiviral activity, the plant products have also been demonstrated to exert an immunomodulatory effect by controlling the excessive release of cytokines, which is commonly associated with SARS-CoV-2 infections.
Collapse
Affiliation(s)
- Jonatas Rafael de Oliveira
- School of Medicine, Anhembi Morumbi University (UAM), Avenida Deputado Benedito Matarazzo, 6707 - Jardim Aquarius, São José dos Campos 12242-010, SP, Brazil
| | - Beatriz Sales Antunes
- School of Medicine, Anhembi Morumbi University (UAM), Avenida Deputado Benedito Matarazzo, 6707 - Jardim Aquarius, São José dos Campos 12242-010, SP, Brazil
| | - Gabriela Oliveira do Nascimento
- School of Medicine, Anhembi Morumbi University (UAM), Avenida Deputado Benedito Matarazzo, 6707 - Jardim Aquarius, São José dos Campos 12242-010, SP, Brazil
| | - Jaqueline Cadorini de Souza Kawall
- School of Medicine, Anhembi Morumbi University (UAM), Avenida Deputado Benedito Matarazzo, 6707 - Jardim Aquarius, São José dos Campos 12242-010, SP, Brazil
| | - João Victor Bianco Oliveira
- School of Medicine, Anhembi Morumbi University (UAM), Avenida Deputado Benedito Matarazzo, 6707 - Jardim Aquarius, São José dos Campos 12242-010, SP, Brazil
| | - Kevin Gustavo dos Santos Silva
- School of Medicine, Anhembi Morumbi University (UAM), Avenida Deputado Benedito Matarazzo, 6707 - Jardim Aquarius, São José dos Campos 12242-010, SP, Brazil
| | - Mariana Aparecida de Toledo Costa
- School of Medicine, Anhembi Morumbi University (UAM), Avenida Deputado Benedito Matarazzo, 6707 - Jardim Aquarius, São José dos Campos 12242-010, SP, Brazil
| | - Carlos Rocha Oliveira
- School of Medicine, Anhembi Morumbi University (UAM), Avenida Deputado Benedito Matarazzo, 6707 - Jardim Aquarius, São José dos Campos 12242-010, SP, Brazil
- Post-graduation Program in Biomedical Engineering, Federal University of Sao Paulo (UNIFESP), Rua Talim, 330 - Vila Nair, São José dos Campos 12231-280, SP, Brazil
| |
Collapse
|
14
|
Iraci N, Corsaro C, Giofrè SV, Neri G, Mezzasalma AM, Vacalebre M, Speciale A, Saija A, Cimino F, Fazio E. Nanoscale Technologies in the Fight against COVID-19: From Innovative Nanomaterials to Computer-Aided Discovery of Potential Antiviral Plant-Derived Drugs. Biomolecules 2022; 12:1060. [PMID: 36008954 PMCID: PMC9405735 DOI: 10.3390/biom12081060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/25/2022] [Accepted: 07/26/2022] [Indexed: 12/04/2022] Open
Abstract
The last few years have increasingly emphasized the need to develop new active antiviral products obtained from artificial synthesis processes using nanomaterials, but also derived from natural matrices. At the same time, advanced computational approaches have found themselves fundamental in the repurposing of active therapeutics or for reducing the very long developing phases of new drugs discovery, which represents a real limitation, especially in the case of pandemics. The first part of the review is focused on the most innovative nanomaterials promising both in the field of therapeutic agents, as well as measures to control virus spread (i.e., innovative antiviral textiles). The second part of the review aims to show how computer-aided technologies can allow us to identify, in a rapid and therefore constantly updated way, plant-derived molecules (i.e., those included in terpenoids) potentially able to efficiently interact with SARS-CoV-2 cell penetration pathways.
Collapse
Affiliation(s)
- Nunzio Iraci
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno D’Alcontres 31, I-98166 Messina, Italy; (N.I.); (S.V.G.); (G.N.); (A.S.); (A.S.)
| | - Carmelo Corsaro
- Department of Mathematical and Computational Sciences, Physics Science and Earth Science, University of Messina, Viale F. Stagno D’Alcontres 31, I-98166 Messina, Italy; (A.M.M.); (M.V.); (E.F.)
| | - Salvatore V. Giofrè
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno D’Alcontres 31, I-98166 Messina, Italy; (N.I.); (S.V.G.); (G.N.); (A.S.); (A.S.)
| | - Giulia Neri
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno D’Alcontres 31, I-98166 Messina, Italy; (N.I.); (S.V.G.); (G.N.); (A.S.); (A.S.)
| | - Angela Maria Mezzasalma
- Department of Mathematical and Computational Sciences, Physics Science and Earth Science, University of Messina, Viale F. Stagno D’Alcontres 31, I-98166 Messina, Italy; (A.M.M.); (M.V.); (E.F.)
| | - Martina Vacalebre
- Department of Mathematical and Computational Sciences, Physics Science and Earth Science, University of Messina, Viale F. Stagno D’Alcontres 31, I-98166 Messina, Italy; (A.M.M.); (M.V.); (E.F.)
| | - Antonio Speciale
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno D’Alcontres 31, I-98166 Messina, Italy; (N.I.); (S.V.G.); (G.N.); (A.S.); (A.S.)
| | - Antonina Saija
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno D’Alcontres 31, I-98166 Messina, Italy; (N.I.); (S.V.G.); (G.N.); (A.S.); (A.S.)
| | - Francesco Cimino
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno D’Alcontres 31, I-98166 Messina, Italy; (N.I.); (S.V.G.); (G.N.); (A.S.); (A.S.)
| | - Enza Fazio
- Department of Mathematical and Computational Sciences, Physics Science and Earth Science, University of Messina, Viale F. Stagno D’Alcontres 31, I-98166 Messina, Italy; (A.M.M.); (M.V.); (E.F.)
| |
Collapse
|
15
|
Travis BJ, Elste J, Gao F, Joo BY, Cuevas‐Nunez M, Kohlmeir E, Tiwari V, Mitchell JC. Significance of chlorine-dioxide-based oral rinses in preventing SARS-CoV-2 cell entry. Oral Dis 2022; 28 Suppl 2:2481-2491. [PMID: 35841377 PMCID: PMC9349900 DOI: 10.1111/odi.14319] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 06/08/2022] [Accepted: 07/01/2022] [Indexed: 12/30/2022]
Abstract
OBJECTIVE This work aims to determine the efficacy of preprocedural oral rinsing with chlorine dioxide solutions to minimize the risk of coronavirus disease 2019 (COVID-19) transmission during high-risk dental procedures. METHODS The antiviral activity of chlorine-dioxide-based oral rinse (OR) solutions was tested by pre-incubating with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pseudovirus in a dosage-dependent manner before transducing to human embryonic kidney epithelial (HEK293T-ACE2) cells, which stably expresses ACE-2 receptor. Viral entry was determined by measuring luciferase activity using a luminescence microplate reader. In the cell-to-cell fusion assay, effector Chinese hamster ovary (CHO-K1) cells co-expressing spike glycoprotein of SARS-CoV-2 and T7 RNA polymerase were pre-incubated with the ORs before co-culturing with the target CHO-K1 cells co-expressing human ACE2 receptor and luciferase gene. The luciferase signal was quantified 24 h after mixing the cells. Surface expression of SARS-CoV-2 spike glycoprotein and ACE-2 receptor was confirmed using direct fluorescent imaging and quantitative cell-ELISA. Finally, dosage-dependent cytotoxic effects of ORs were evaluated at two different time points. RESULTS A dosage-dependent antiviral effect of the ORs was observed against SARS-CoV-2 cell entry and spike glycoprotein mediated cell-to-cell fusion. This demonstrates that ORs can be useful as a preprocedural step to reduce viral infectivity. CONCLUSIONS Chlorine-dioxide-based ORs have a potential benefit for reducing SARS-CoV-2 entry and spread.
Collapse
Affiliation(s)
- Briana Joy Travis
- College of Dental MedicineMidwestern UniversityDowners GroveIllinoisUSA
| | - James Elste
- Department of Microbiology and ImmunologyMidwestern UniversityDowners GroveIllinoisUSA
| | - Feng Gao
- College of Dental MedicineMidwestern UniversityDowners GroveIllinoisUSA
| | - Bo Young Joo
- Department of Microbiology and ImmunologyMidwestern UniversityDowners GroveIllinoisUSA
| | | | - Ellen Kohlmeir
- Core FacilityMidwestern University, IllinoisDowners GroveIllinoisUSA
| | - Vaibhav Tiwari
- Department of Microbiology and ImmunologyMidwestern UniversityDowners GroveIllinoisUSA
| | - John C. Mitchell
- College of Dental MedicineMidwestern UniversityDowners GroveIllinoisUSA
| |
Collapse
|
16
|
Hydroxytyrosol Recovers SARS-CoV-2-PLpro-Dependent Impairment of Interferon Related Genes in Polarized Human Airway, Intestinal and Liver Epithelial Cells. Antioxidants (Basel) 2022; 11:antiox11081466. [PMID: 36009185 PMCID: PMC9404978 DOI: 10.3390/antiox11081466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/20/2022] [Accepted: 07/22/2022] [Indexed: 12/10/2022] Open
Abstract
The SARS-CoV-2 pandemic has caused approximately 6.3 million deaths, mainly due to the acute respiratory distress syndrome or multi-organ failure that characterizes COVID-19 acute disease. Post-acute COVID-19 syndrome, also known as long-COVID, is a condition characterized by a complex of symptoms that affects 10–20% of the individuals who have recovered from the infection. Scientific and clinical evidence demonstrates that long-COVID can develop in both adults and children. It has been hypothesized that multi-organ effects of long-COVID could be associated with the persistence of virus RNA/proteins in host cells, but the real mechanism remains to be elucidated. Therefore, we sought to determine the effects of the exogenous expression of the papain-like protease (PLpro) domain of the non-structural protein (NSP3) of SARS-CoV-2 in polarized human airway (Calu-3), intestinal (Caco-2), and liver (HepG2) epithelial cells, and to evaluate the ability of the natural antioxidant hydroxytyrosol (HXT) in neutralizing these effects. Our results demonstrated that PLpro was able to induce a cascade of inflammatory genes and proteins (mainly associated with the interferon pathway) and increase the apoptotic rate and expression of several oxidative stress markers in all evaluated epithelial cells. Noteably, the treatment with 10 μM HXT reverted PL-pro-dependent effects almost completely. This study provides the first evidence that SARS-CoV-2 PLpro remaining in host cells after viral clearance may contribute to the pathogenetic mechanisms of long-COVID. These effects may be counteracted by natural antioxidants. Further clinical and experimental studies are necessary to confirm this hypothesis.
Collapse
|
17
|
Marquez R, Zwilling J, Zambrano F, Tolosa L, Marquez ME, Venditti R, Jameel H, Gonzalez R. Nanoparticles and essential oils with antiviral activity on packaging and surfaces: An overview of their selection and application. J SURFACTANTS DETERG 2022. [DOI: 10.1002/jsde.12609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Ronald Marquez
- Tissue Pack Innovation Lab, Department of Forest Biomaterials North Carolina State University Raleigh North Carolina USA
| | - Jacob Zwilling
- Tissue Pack Innovation Lab, Department of Forest Biomaterials North Carolina State University Raleigh North Carolina USA
| | - Franklin Zambrano
- Tissue Pack Innovation Lab, Department of Forest Biomaterials North Carolina State University Raleigh North Carolina USA
| | - Laura Tolosa
- School of Chemical Engineering Universidad de Los Andes Mérida Venezuela
| | - Maria E. Marquez
- Laboratory of Parasite Enzymology, Department of Biology Universidad de Los Andes Mérida Venezuela
| | - Richard Venditti
- Tissue Pack Innovation Lab, Department of Forest Biomaterials North Carolina State University Raleigh North Carolina USA
| | - Hasan Jameel
- Tissue Pack Innovation Lab, Department of Forest Biomaterials North Carolina State University Raleigh North Carolina USA
| | - Ronalds Gonzalez
- Tissue Pack Innovation Lab, Department of Forest Biomaterials North Carolina State University Raleigh North Carolina USA
| |
Collapse
|
18
|
Wu CS, Chiang HM, Chen Y, Chen CY, Chen HF, Su WC, Wang WJ, Chou YC, Chang WC, Wang SC, Hung MC. Prospects of Coffee Leaf against SARS-CoV-2 Infection. Int J Biol Sci 2022; 18:4677-4689. [PMID: 35874948 PMCID: PMC9305275 DOI: 10.7150/ijbs.76058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 06/27/2022] [Indexed: 11/24/2022] Open
Abstract
In the current climate, many countries are in dire need of effective preventive methods to curb the Severe Acute Respiratory Syndrome Coronavirus Type 2 (SARS-CoV-2) pandemic. The purpose of this research is to screen and explore natural plant extracts that have the potential to against SARS-CoV-2 and provide alternative options for SARS-CoV-2 prevention and hand sanitizer or spray-like disinfectants. We first used Spike-ACE2 ELISA and TMPRSS2 fluorescence resonance energy transfer (FRET) assays to screen extracts from agricultural by-products from Taiwan with the potential to impede SARS-CoV-2 infection. Next, the SARS-CoV-2 pseudo-particles (Vpp) infection assay was tested to validate the effectiveness. We identified an extract from coffee leaf (Coffea Arabica), a natural plant that effectively inhibited wild-type SARS-CoV-2, and five Variants of Concern (Alpha, Beta, Gamma, Delta, and Omicron strain) from entering host cells. In an attempt to apply coffee leaf extract for hand sanitizer or spray-like disinfectants, we designed a skin-like gelatin membrane experiment. We showed that the high concentration of coffee leaf extract on the skin surface could block SARS-CoV-2 into cells more potently than 75% Ethanol, a standard disinfectant to inactivate SARS-CoV-2. Finally, LC-HRMS analysis was used to identify compounds such as caffeine, chlorogenic acid (CGA), quinic acid, and mangiferin that are associated with an anti-SARS-CoV-2 activity. Our results demonstrated that coffee leaf extract, an agricultural by-product effectively inhibits SARS-CoV-2 Vpp infection through an ACE2-dependent mechanism and may be utilized to develop products against SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Chen-Shiou Wu
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 406040, Taiwan
| | - Hsiu-Mei Chiang
- Department of Cosmeceutics, China Medical University, Taichung 406040, Taiwan
| | - Yeh Chen
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 406040, Taiwan
- Institute of New Drug Development, China Medical University, Taichung 406040, Taiwan
- Research Center for Cancer Biology, China Medical University, Taichung 406040, Taiwan
| | - Chung-Yu Chen
- Research Center for Cancer Biology, China Medical University, Taichung 406040, Taiwan
| | - Hsiao-Fan Chen
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 406040, Taiwan
| | - Wen-Chi Su
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 406040, Taiwan
- International Master's Program of Biomedical Sciences, China Medical University, Taichung 406040, Taiwan
- Department of Medical Research, China Medical University Hospital, Taichung 404332, Taiwan
| | - Wei-Jan Wang
- Research Center for Cancer Biology, China Medical University, Taichung 406040, Taiwan
- Department of Biological Science and Technology, China Medical University, Taichung 406040, Taiwan
| | - Yu-Chi Chou
- Biomedical Translation Research Center (BioTReC), Academia Sinica, Taipei 115024, Taiwan
| | - Wei-Chao Chang
- Center for Molecular Medicine, China Medical University Hospital, China Medical University, Taichung 404332, Taiwan
| | - Shao-Chun Wang
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 406040, Taiwan
- Research Center for Cancer Biology, China Medical University, Taichung 406040, Taiwan
- Center for Molecular Medicine, China Medical University Hospital, China Medical University, Taichung 404332, Taiwan
- Department of Biotechnology, Asia University, Taichung, 41354 Taiwan
| | - Mien-Chie Hung
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 406040, Taiwan
- Research Center for Cancer Biology, China Medical University, Taichung 406040, Taiwan
- Center for Molecular Medicine, China Medical University Hospital, China Medical University, Taichung 404332, Taiwan
- Department of Biotechnology, Asia University, Taichung, 41354 Taiwan
| |
Collapse
|
19
|
Abdelgawad SM, Hassab MAE, Abourehab MAS, Elkaeed EB, Eldehna WM. Olive Leaves as a Potential Phytotherapy in the Treatment of COVID-19 Disease; A Mini-Review. Front Pharmacol 2022; 13:879118. [PMID: 35496299 PMCID: PMC9045134 DOI: 10.3389/fphar.2022.879118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 03/09/2022] [Indexed: 12/23/2022] Open
Abstract
Beginning from December 2019, widespread COVID-19 has caused huge financial misfortunes and exceptional wellbeing emergencies across the globe. Discovering an effective and safe drug candidate for the treatment of COVID-19 and its associated symptoms became an urgent global demand, especially due to restricted information that has been discharged with respect to vaccine efficacy and safety in humans. Reviewing the recent research, olive leaves were selected as a potential co-therapy supplement for the treatment and improvement of clinical manifestations in COVID-19 patients. Olive leaves were reported to be rich in phenolic compounds such as oleuropein, hydroxytyrosol, verbascoside, apigenin-7-O-glucoside, and luteolin-7-O-glucoside and also triterpenoids such as maslinic, ursolic, and oleanolic acids that have been reported as anti-SARS-CoV-2 metabolites in recent computational and in vitro studies. In addition, olive leaf extract was previously reported in several in vivo studies for its anti-inflammatory, analgesic, antipyretic, immunomodulatory, and antithrombotic activities which are of great benefit in the control of associated inflammatory cytokine storm and disseminated intravascular coagulation in COVID-19 patients. In conclusion, the described biological activities of olive leaves alongside their biosafety, availability, and low price make them a potential candidate drug or supplement to control COVID-19 infection and are recommended for clinical investigation.
Collapse
Affiliation(s)
- Shimaa M Abdelgawad
- Pharmacognosy Department, Faculty of Pharmacy, Fayoum University, Fayoum, Egypt
| | - Mahmoud A El Hassab
- Department of Medicinal Chemistry, Faculty of Pharmacy, King Salman International University (KSIU), South Sinai, Egypt
| | - Mohammed A S Abourehab
- Department of Pharmaceutics, Faculty of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Eslam B Elkaeed
- Department of Pharmaceutical Sciences, College of Pharmacy, AlMaarefa University, Riyadh, Saudi Arabia
| | - Wagdy M Eldehna
- School of Biotechnology, Badr University in Cairo, Badr City, Egypt.,Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, Egypt
| |
Collapse
|
20
|
XENOHORMESIS UNDERLYES THE ANTI-AGING AND HEALTHY PROPERTIES OF OLIVE POLYPHENOLS. Mech Ageing Dev 2022; 202:111620. [PMID: 35033546 DOI: 10.1016/j.mad.2022.111620] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 12/08/2021] [Accepted: 01/05/2022] [Indexed: 02/08/2023]
Abstract
The paper provides a comprehensive and foundational mechanistic framework of hormesis that establishes its centrality in medicine and public health. This hormetic framework is applied to the assessment of olive polyphenols with respect to their capacity to slow the onset and reduce the magnitude of a wide range of age-related disorders and neurodegenerative diseases, including Alzheimer's Disease and Parkinson's Disease. It is proposed that olive polyphenol-induced anti-inflammatory protective effects are mediated in large part via the activation of AMPK and the upregulation of Nrf2 pathway. Consistently, herein we also review the importance of the modulation of Nrf2-related stress responsive vitagenes by olive polyphenols, which at low concentration according to the hormesis theory activates this neuroprotective cascade to preserve brain health and its potential use in the prevention and therapy against aging and age-related cognitive disorders in humans.
Collapse
|
21
|
Takeda Y, Jamsransuren D, Nagao T, Fukui Y, Matsuda S, Ogawa H. Application of Copper Iodide Nanoparticle-Doped Film and Fabric To Inactivate SARS-CoV-2 via the Virucidal Activity of Cuprous Ions (Cu +). Appl Environ Microbiol 2021; 87:e0182421. [PMID: 34613751 PMCID: PMC8612262 DOI: 10.1128/aem.01824-21] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 09/23/2021] [Indexed: 12/14/2022] Open
Abstract
As a result of the novel coronavirus disease 2019 pandemic, strengthening control measures against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has become an urgent global issue. In addition to antiviral therapy and vaccination strategies, applying available virucidal substances for SARS-CoV-2 inactivation is also a target of research to prevent the spread of infection. Here, we evaluated the SARS-CoV-2 inactivation activity of a copper iodide (CuI) nanoparticle dispersion, which provides Cu+ ions having high virucidal activity, and its mode of actions. In addition, the utility of CuI-doped film and fabric for SARS-CoV-2 inactivation was evaluated. The CuI dispersion exhibited time-dependent rapid virucidal activity. Analyses of the modes of action of CuI performed by Western blotting and real-time reverse transcription-PCR targeting viral proteins and the genome revealed that CuI treatment induced the destruction of these viral components. In this setting, the indirect action of CuI-derived reactive oxygen species contributed to the destruction of viral protein. Moreover, the CuI-doped film and fabric demonstrated rapid inactivation of the SARS-CoV-2 solution in which the viral titer was high. These findings indicated the utility of the CuI-doped film and fabric as anti-SARS-CoV-2 materials for the protection of high-touch environmental surfaces and surgical masks/protective clothes. Throughout this study, we demonstrated the effectiveness of CuI nanoparticles for inactivating SARS-CoV-2 and revealed a part of its virucidal mechanism of action. IMPORTANCE The COVID-19 pandemic has caused an unprecedented number of infections and deaths. As the spread of the disease is rapid and the risk of infection is severe, hand and environmental hygiene may contribute to suppressing contact transmission of SARS-CoV-2. Here, we evaluated the SARS-CoV-2 inactivation activity of CuI nanoparticles, which provide the Cu+ ion as an antiviral agent, and we provided advanced findings of the virucidal mechanisms of action of Cu+. Our results showed that the CuI dispersion, as well as CuI-doped film and fabric, rapidly inactivated SARS-CoV-2 with a high viral titer. We also demonstrated the CuI's virucidal mechanisms of action, specifically the destruction of viral proteins and the genome by CuI treatment. Protein destruction largely depended on CuI-derived reactive oxygen species. This study provides novel information about the utility and mechanisms of action of promising virucidal material against SARS-CoV-2.
Collapse
Affiliation(s)
- Yohei Takeda
- Research Center for Global Agromedicine, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido, Japan
- Department of Veterinary Medicine, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido, Japan
| | - Dulamjav Jamsransuren
- Department of Veterinary Medicine, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido, Japan
| | - Tomokazu Nagao
- Emergent Research Center, R&D Headquarter, NBC Meshtec Inc., Hino, Tokyo, Japan
| | - Yoko Fukui
- Emergent Research Center, R&D Headquarter, NBC Meshtec Inc., Hino, Tokyo, Japan
| | - Sachiko Matsuda
- Department of Veterinary Medicine, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido, Japan
| | - Haruko Ogawa
- Department of Veterinary Medicine, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido, Japan
| |
Collapse
|
22
|
Mohamed IMA, Ogawa H, Takeda Y. In vitro virucidal activity of the theaflavin-concentrated tea extract TY-1 against influenza A virus. J Nat Med 2021; 76:152-160. [PMID: 34550554 PMCID: PMC8456404 DOI: 10.1007/s11418-021-01568-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 09/08/2021] [Indexed: 01/25/2023]
Abstract
The annual spread of influenza A virus (IAV) infection is a global concern. We examined the IAV-inactivating potential of theaflavin-concentrated tea extract TY-1, which contains abundant polyphenols, including concentrated theaflavins and catechins. TY-1 exhibited concentration- and time-dependent virucidal activity against IAV. Specifically, 5.0 mg/mL TY-1 induced a 1.33 and ≥ 5.17 log10 50% tissue culture infective dose/mL reduction of the viral titer compared with dextrin as the diluent control within 30 min and 6 h reaction time, respectively. The high virucidal activity of TY-1 was attributed to the combined additive activities of multiple virucidal components, including theaflavins, which led to an investigation of the virucidal mechanism of action of TY-1. Western blotting revealed that TY-1 treatment reduced the band intensity of hemagglutinin and induced the appearance of additional high molecular mass bands/ladders. In addition, TY-1 treatment also reduced the band intensity of neuraminidase (NA). A hemagglutination assay revealed that TY-1 reduced hemagglutination activity, and an NA assay revealed reduced NA activity. These results indicated that TY-1 caused structural abnormalities in IAV spike proteins, possibly leading to their destruction. Reverse transcription polymerase chain reaction (PCR) targeting the IAV genome and electron microscopic observation of viral particles revealed that upon application of TY-1, the PCR products dissipated, which indicates that TY-1 destroyed the IAV genome, and the number of viral particles reduced. Overall, TY-1 exhibited multiple modes of IAV-inactivating activity. Our findings support the possible future practical use of TY-1 as a virucidal supplemental agent that can contribute to IAV infection control.
Collapse
Affiliation(s)
- Israa M A Mohamed
- Graduate School of Animal and Veterinary Sciences and Agriculture, Obihiro University of Agriculture and Veterinary Medicine, 2-11 Inada, Obihiro, Hokkaido, 080-8555, Japan
- Department of Animal and Poultry Hygiene and Environmental Sanitation, Faculty of Veterinary Medicine, Assiut University, Assiut, 71526, Egypt
| | - Haruko Ogawa
- Department of Veterinary Medicine, Obihiro University of Agriculture and Veterinary Medicine, 2-11 Inada, Obihiro, Hokkaido, 080-8555, Japan
| | - Yohei Takeda
- Department of Veterinary Medicine, Obihiro University of Agriculture and Veterinary Medicine, 2-11 Inada, Obihiro, Hokkaido, 080-8555, Japan.
- Research Center for Global Agromedicine, Obihiro University of Agriculture and Veterinary Medicine, 2-11 Inada, Obihiro, Hokkaido, 080-8555, Japan.
| |
Collapse
|
23
|
Takeda Y, Jamsransuren D, Makita Y, Kaneko A, Matsuda S, Ogawa H, Oh H. Inactivation Activities of Ozonated Water, Slightly Acidic Electrolyzed Water and Ethanol against SARS-CoV-2. Molecules 2021; 26:5465. [PMID: 34576934 PMCID: PMC8471879 DOI: 10.3390/molecules26185465] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/06/2021] [Accepted: 09/07/2021] [Indexed: 11/17/2022] Open
Abstract
This study aimed to compare the SARS-CoV-2-inactivation activity and virucidal mechanisms of ozonated water (OW) with those of slightly acidic electrolyzed water (SAEW) and 70% ethanol (EtOH). SARS-CoV-2-inactivation activity was evaluated in a virus solution containing 1%, 20% or 40% fetal bovine serum (FBS) with OW, SAEW or EtOH at a virus-to-test solution ratio of 1:9, 1:19 or 1:99 for a reaction time of 20 s. EtOH showed the strongest virucidal activity, followed by SAEW and OW. Even though EtOH potently inactivated the virus despite the 40% FBS concentration, virus inactivation by OW and SAEW decreased in proportion to the increase in FBS concentration. Nevertheless, OW and SAEW showed potent virucidal activity with 40% FBS at a virus-to-test solution ratio of 1:99. Real-time PCR targeting the viral genome revealed that cycle threshold values in the OW and SAEW groups were significantly higher than those in the control group, suggesting that OW and SAEW disrupted the viral genome. Western blotting analysis targeting the recombinant viral spike protein S1 subunit showed a change in the specific band into a ladder upon treatment with OW and SAEW. OW and SAEW may cause conformational changes in the S1 subunit of the SARS-CoV-2 spike protein.
Collapse
Affiliation(s)
- Yohei Takeda
- Research Center for Global Agromedicine, Obihiro University of Agriculture and Veterinary Medicine, 2-11 Inada, Obihiro 080-8555, Japan;
- Department of Veterinary Medicine, Obihiro University of Agriculture and Veterinary Medicine, 2-11 Inada, Obihiro 080-8555, Japan; (D.J.); (S.M.); (H.O.)
| | - Dulamjav Jamsransuren
- Department of Veterinary Medicine, Obihiro University of Agriculture and Veterinary Medicine, 2-11 Inada, Obihiro 080-8555, Japan; (D.J.); (S.M.); (H.O.)
| | - Yoshimasa Makita
- Department of Chemistry, Osaka Dental University, 8-1 Kuzuha Hanazono Hirakata, Osaka 573-1121, Japan;
| | - Akihiro Kaneko
- Department of Oral Surgery, Ikegami General Hospital, 6-1-19 Ikegami Ootaku, Tokyo 146-8531, Japan;
| | - Sachiko Matsuda
- Department of Veterinary Medicine, Obihiro University of Agriculture and Veterinary Medicine, 2-11 Inada, Obihiro 080-8555, Japan; (D.J.); (S.M.); (H.O.)
| | - Haruko Ogawa
- Department of Veterinary Medicine, Obihiro University of Agriculture and Veterinary Medicine, 2-11 Inada, Obihiro 080-8555, Japan; (D.J.); (S.M.); (H.O.)
| | - Hourei Oh
- Center of Innovation in Dental Education, Osaka Dental University, 8-1 Kuzuha Hanazono Hirakata, Osaka 573-1121, Japan
| |
Collapse
|
24
|
Karnik M, Beeraka NM, Uthaiah CA, Nataraj SM, Bettadapura ADS, Aliev G, Madhunapantula SV. A Review on SARS-CoV-2-Induced Neuroinflammation, Neurodevelopmental Complications, and Recent Updates on the Vaccine Development. Mol Neurobiol 2021; 58:4535-4563. [PMID: 34089508 PMCID: PMC8179092 DOI: 10.1007/s12035-021-02399-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 04/19/2021] [Indexed: 02/08/2023]
Abstract
Coronavirus disease 2019 (COVID-19) is a devastating viral infection caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The incidence and mortality of COVID-19 patients have been increasing at an alarming rate. The mortality is much higher in older individuals, especially the ones suffering from respiratory distress, cardiac abnormalities, renal diseases, diabetes, and hypertension. Existing evidence demonstrated that SARS-CoV-2 makes its entry into human cells through angiotensin-converting enzyme 2 (ACE-2) followed by the uptake of virions through cathepsin L or transmembrane protease serine 2 (TMPRSS2). SARS-CoV-2-mediated abnormalities in particular cardiovascular and neurological ones and the damaged coagulation systems require extensive research to develop better therapeutic modalities. As SARS-CoV-2 uses its S-protein to enter into the host cells of several organs, the S-protein of the virus is considered as the ideal target to develop a potential vaccine. In this review, we have attempted to highlight the landmark discoveries that lead to the development of various vaccines that are currently under different stages of clinical progression. Besides, a brief account of various drug candidates that are being tested to mitigate the burden of COVID-19 was also covered. Further, in a dedicated section, the impact of SARS-CoV-2 infection on neuronal inflammation and neuronal disorders was discussed. In summary, it is expected that the content covered in this article help to understand the pathophysiology of COVID-19 and the impact on neuronal complications induced by SARS-CoV-2 infection while providing an update on the vaccine development.
Collapse
Affiliation(s)
- Medha Karnik
- Center of Excellence in Molecular Biology and Regenerative Medicine (CEMR), Department of Biochemistry, JSS Medical College, JSS Academy of Higher Education & Research (JSS AHER), Mysuru, Karnataka, India
| | - Narasimha M Beeraka
- Center of Excellence in Molecular Biology and Regenerative Medicine (CEMR), Department of Biochemistry, JSS Medical College, JSS Academy of Higher Education & Research (JSS AHER), Mysuru, Karnataka, India
- Sechenov First Moscow State Medical University (Sechenov University), St. Trubetskaya, 8, bld. 2, Moscow, 119991, Russia
| | - Chinnappa A Uthaiah
- Center of Excellence in Molecular Biology and Regenerative Medicine (CEMR), Department of Biochemistry, JSS Medical College, JSS Academy of Higher Education & Research (JSS AHER), Mysuru, Karnataka, India
| | - Suma M Nataraj
- Center of Excellence in Molecular Biology and Regenerative Medicine (CEMR), Department of Biochemistry, JSS Medical College, JSS Academy of Higher Education & Research (JSS AHER), Mysuru, Karnataka, India
| | - Anjali Devi S Bettadapura
- Center of Excellence in Molecular Biology and Regenerative Medicine (CEMR), Department of Biochemistry, JSS Medical College, JSS Academy of Higher Education & Research (JSS AHER), Mysuru, Karnataka, India
| | - Gjumrakch Aliev
- Sechenov First Moscow State Medical University (Sechenov University), St. Trubetskaya, 8, bld. 2, Moscow, 119991, Russia
- Institute of Physiologically Active Compounds, Russian Academy of Sciences, Chernogolovka, Moscow Region, 142432, Russia
- Research Institute of Human Morphology, 3 Tsyurupy Street, Moscow, 117418, Russia
- GALLY International Research Institute, 7733 Louis Pasteur Drive, San Antonio, TX, #330, USA
| | - SubbaRao V Madhunapantula
- Center of Excellence in Molecular Biology and Regenerative Medicine (CEMR), Department of Biochemistry, JSS Medical College, JSS Academy of Higher Education & Research (JSS AHER), Mysuru, Karnataka, India.
- Special Interest Group in Cancer Biology and Cancer Stem Cells (SIG-CBCSC), JSS Medical College, JSS Academy of Higher Education & Research (JSS AHER), Mysuru, Karnataka, India.
| |
Collapse
|
25
|
Takeda Y, Tamura K, Jamsransuren D, Matsuda S, Ogawa H. Severe Acute Respiratory Syndrome Coronavirus-2 Inactivation Activity of the Polyphenol-Rich Tea Leaf Extract with Concentrated Theaflavins and Other Virucidal Catechins. Molecules 2021; 26:molecules26164803. [PMID: 34443390 PMCID: PMC8402090 DOI: 10.3390/molecules26164803] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 07/27/2021] [Accepted: 08/05/2021] [Indexed: 12/23/2022] Open
Abstract
Since severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is producing a large number of infections and deaths globally, the development of supportive and auxiliary treatments is attracting increasing attention. Here, we evaluated SARS-CoV-2-inactivation activity of the polyphenol-rich tea leaf extract TY-1 containing concentrated theaflavins and other virucidal catechins. The TY-1 was mixed with SARS-CoV-2 solution, and its virucidal activity was evaluated. To evaluate the inhibition activity of TY-1 in SARS-CoV-2 infection, TY-1 was co-added with SARS-CoV-2 into cell culture media. After 1 h of incubation, the cell culture medium was replaced, and the cells were further incubated in the absence of TY-1. The viral titers were then evaluated. To evaluate the impacts of TY-1 on viral proteins and genome, TY-1-treated SARS-CoV-2 structural proteins and viral RNA were analyzed using western blotting and real-time RT-PCR, respectively. TY-1 showed time- and concentration-dependent virucidal activity. TY-1 inhibited SARS-CoV-2 infection of cells. The results of western blotting and real-time RT-PCR suggested that TY-1 induced structural change in the S2 subunit of the S protein and viral genome destruction, respectively. Our findings provided basic insights in vitro into the possible value of TY-1 as a virucidal agent, which could enhance the current SARS-CoV-2 control measures.
Collapse
Affiliation(s)
- Yohei Takeda
- Research Center for Global Agromedicine, Obihiro University of Agriculture and Veterinary Medicine, 2-11 Inada, Obihiro 080-8555, Japan;
- Department of Veterinary Medicine, Obihiro University of Agriculture and Veterinary Medicine, 2-11 Inada, Obihiro 080-8555, Japan; (K.T.); (D.J.); (S.M.)
| | - Kyohei Tamura
- Department of Veterinary Medicine, Obihiro University of Agriculture and Veterinary Medicine, 2-11 Inada, Obihiro 080-8555, Japan; (K.T.); (D.J.); (S.M.)
| | - Dulamjav Jamsransuren
- Department of Veterinary Medicine, Obihiro University of Agriculture and Veterinary Medicine, 2-11 Inada, Obihiro 080-8555, Japan; (K.T.); (D.J.); (S.M.)
| | - Sachiko Matsuda
- Department of Veterinary Medicine, Obihiro University of Agriculture and Veterinary Medicine, 2-11 Inada, Obihiro 080-8555, Japan; (K.T.); (D.J.); (S.M.)
| | - Haruko Ogawa
- Department of Veterinary Medicine, Obihiro University of Agriculture and Veterinary Medicine, 2-11 Inada, Obihiro 080-8555, Japan; (K.T.); (D.J.); (S.M.)
- Correspondence: ; Tel.: +81-155-49-5893
| |
Collapse
|
26
|
Scuto M, Trovato Salinaro A, Caligiuri I, Ontario ML, Greco V, Sciuto N, Crea R, Calabrese EJ, Rizzolio F, Canzonieri V, Calabrese V. Redox modulation of vitagenes via plant polyphenols and vitamin D: Novel insights for chemoprevention and therapeutic interventions based on organoid technology. Mech Ageing Dev 2021; 199:111551. [PMID: 34358533 DOI: 10.1016/j.mad.2021.111551] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 07/19/2021] [Accepted: 08/01/2021] [Indexed: 12/29/2022]
Abstract
Polyphenols are chemopreventive through the induction of nuclear factor erythroid 2 related factor 2 (Nrf2)-mediated proteins and anti-inflammatory pathways. These pathways, encoding cytoprotective vitagenes, include heat shock proteins, such as heat shock protein 70 (Hsp70) and heme oxygenase-1 (HO-1), as well as glutathione redox system to protect against cancer initiation and progression. Phytochemicals exhibit biphasic dose responses on cancer cells, activating at low dose, signaling pathways resulting in upregulation of vitagenes, as in the case of the Nrf2 pathway upregulated by hydroxytyrosol (HT) or curcumin and NAD/NADH-sirtuin-1 activated by resveratrol. Here, the importance of vitagenes in redox stress response and autophagy mechanisms, as well as the potential use of dietary antioxidants in the prevention and treatment of multiple types of cancer are discussed. We also discuss the possible relationship between SARS-CoV-2, inflammation and cancer, exploiting innovative therapeutic approaches with HT-rich aqueous olive pulp extract (Hidrox®), a natural polyphenolic formulation, as well as the rationale of Vitamin D supplementation. Finally, we describe innovative approaches with organoids technology to study human carcinogenesis in preclinical models from basic cancer research to clinical practice, suggesting patient-derived organoids as an innovative tool to test drug toxicity and drive personalized therapy.
Collapse
Affiliation(s)
- Maria Scuto
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95124 Catania, Italy; Pathology Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy.
| | - Angela Trovato Salinaro
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95124 Catania, Italy.
| | - Isabella Caligiuri
- Pathology Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy.
| | - Maria Laura Ontario
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95124 Catania, Italy.
| | - Valentina Greco
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95124 Catania, Italy.
| | - Nello Sciuto
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95124 Catania, Italy.
| | - Roberto Crea
- Oliphenol LLC., 26225 Eden Landing Road, Suite C, Hayward, CA 94545, USA.
| | - Edward J Calabrese
- Department of Environmental Health Sciences, Morrill I, N344, University of Massachusetts, Amherst, MA, 01003, USA.
| | - Flavio Rizzolio
- Pathology Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy; Department of Molecular Sciences and Nanosystems, Ca'Foscari University of Venice, 30123 Venezia, Italy.
| | - Vincenzo Canzonieri
- Pathology Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy; Department of Medical, Surgical and Health Sciences, University of Trieste, 34127 Trieste, Italy.
| | - Vittorio Calabrese
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95124 Catania, Italy.
| |
Collapse
|
27
|
Cárdenas-Rodríguez N, Bandala C, Vanoye-Carlo A, Ignacio-Mejía I, Gómez-Manzo S, Hernández-Cruz EY, Pedraza-Chaverri J, Carmona-Aparicio L, Hernández-Ochoa B. Use of Antioxidants for the Neuro-Therapeutic Management of COVID-19. Antioxidants (Basel) 2021; 10:971. [PMID: 34204362 PMCID: PMC8235474 DOI: 10.3390/antiox10060971] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 06/07/2021] [Accepted: 06/15/2021] [Indexed: 02/07/2023] Open
Abstract
Coronavirus Disease 2019 (COVID-19), caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), is an emergent infectious disease that has caused millions of deaths throughout the world. COVID-19 infection's main symptoms are fever, cough, fatigue, and neurological manifestations such as headache, myalgias, anosmia, ageusia, impaired consciousness, seizures, and even neuromuscular junctions' disorders. In addition, it is known that this disease causes a series of systemic complications such as adverse respiratory distress syndrome, cardiac injury, acute kidney injury, and liver dysfunction. Due to the neurological symptoms associated with COVID-19, damage in the central nervous system has been suggested as well as the neuroinvasive potential of SARS-CoV-2. It is known that CoV infections are associated with an inflammation process related to the imbalance of the antioxidant system; cellular changes caused by oxidative stress contribute to brain tissue damage. Although anti-COVID-19 vaccines are under development, there is no specific treatment for COVID-19 and its clinical manifestations and complications; only supportive treatments with immunomodulators, anti-vascular endothelial growth factors, modulating drugs, statins, or nutritional supplements have been used. In the present work, we analyzed the potential of antioxidants as adjuvants for the treatment of COVID-19 and specifically their possible role in preventing or decreasing the neurological manifestations and neurological complications present in the disease.
Collapse
Affiliation(s)
- Noemí Cárdenas-Rodríguez
- Laboratorio de Neurociencias, Instituto Nacional de Pediatría, Secreatría de Salud, Ciudad de México 04530, Mexico; (A.V.-C.); (L.C.-A.)
| | - Cindy Bandala
- Division de Neurociencias, Instituto Nacional de Rehabilitación, Secretaría de Salud, Ciudad de México 14389, Mexico;
- Escuela Superior de Medicina, Instituto Politécnico Nacional, Ciudad de México 11340, Mexico
| | - América Vanoye-Carlo
- Laboratorio de Neurociencias, Instituto Nacional de Pediatría, Secreatría de Salud, Ciudad de México 04530, Mexico; (A.V.-C.); (L.C.-A.)
| | - Iván Ignacio-Mejía
- Laboratorio de Medicina Traslacional, Escuela Militar de Graduados de Sanidad, SEDENA, Ciudad de México 11200, Mexico;
| | - Saúl Gómez-Manzo
- Laboratorio de Bioquímica Genética, Instituto Nacional de Pediatría, Secretaría de Salud, Ciudad de México 04530, Mexico;
| | | | - José Pedraza-Chaverri
- Departamento de Biología, Facultad de Química, UNAM, Ciudad de México 04150, Mexico; (E.Y.H.-C.); (J.P.-C.)
| | - Liliana Carmona-Aparicio
- Laboratorio de Neurociencias, Instituto Nacional de Pediatría, Secreatría de Salud, Ciudad de México 04530, Mexico; (A.V.-C.); (L.C.-A.)
| | - Beatriz Hernández-Ochoa
- Laboratorio de Inmunoquímica, Hospital Infantil de México Federico Gómez, Secretaría de Salud, Ciudad de México 06720, Mexico;
| |
Collapse
|