1
|
Vieira CJSP, Gyawali N, Onn MB, Shivas MA, Shearman D, Darbro JM, Wallau GL, van den Hurk AF, Frentiu FD, Skinner EB, Devine GJ. Mosquito bloodmeals can be used to determine vertebrate diversity, host preference, and pathogen exposure in humans and wildlife. Sci Rep 2024; 14:23203. [PMID: 39369026 PMCID: PMC11455984 DOI: 10.1038/s41598-024-73820-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 09/20/2024] [Indexed: 10/07/2024] Open
Abstract
The surveillance and detection of zoonotic pathogens in animals is essential for predicting disease transmission pathways and the risks of spillover, but challenges include the costs, ethics and technical expertise required for vertebrate trapping, serum sampling and antibody or virus screening. Surveillance using haematophagous arthropods as a sampling tool offers a unique opportunity to obtain blood samples from a wide range of vertebrate species, allowing the study of host-mosquito associations, and host exposure to pathogens. We explored vertebrate diversity and potential Ross River virus (RRV) transmission pathways by analysing blood-fed mosquitoes collected in Brisbane, Australia. Host origins were identified using barcode sequencing, and host exposure to RRV was assessed using a modified plaque reduction neutralisation test. In total, 480 blood-fed mosquitoes were collected between February 2021 and May 2022. The host origins of 346 (72%) bloodmeals were identified, with humans (73%) and cattle (9%) comprising the dominant hosts. RRV seroprevalence was high in both vertebrate species with evidence of RRV exposure in 70% (21/30) of cattle and 52% (132/253) of humans. This is a novel, non-invasive method of estimating seroprevalence in vertebrate host populations. Our results highlight the potential of blood-fed mosquitoes to provide species-specific insights into pathogen transmission dynamics.
Collapse
Affiliation(s)
- Carla Julia S P Vieira
- Mosquito Control Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, QLD, 4006, Australia.
- Centre for Immunology and Infection Control, School of Biomedical Sciences, Queensland University of Technology, Brisbane, QLD, 4006, Australia.
| | - Narayan Gyawali
- Mosquito Control Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, QLD, 4006, Australia
| | - Michael B Onn
- Entomology Laboratory, Public Space Operations, Brisbane City Council, Brisbane, QLD, 4009, Australia
| | - Martin A Shivas
- Entomology Laboratory, Public Space Operations, Brisbane City Council, Brisbane, QLD, 4009, Australia
| | - Damien Shearman
- Metro North Public Health Unit, Queensland Health, Brisbane, QLD, 4030, Australia
| | - Jonathan M Darbro
- Metro North Public Health Unit, Queensland Health, Brisbane, QLD, 4030, Australia
| | - Gabriel L Wallau
- Department of Entomology and Bioinformatic Core of the Aggeu Magalhães Institute, Oswaldo Cruz Foundation, Recife, 50740-465, PE, Brazil
- Department of Arbovirology, Bernhard Nocht Institute for Tropical Medicine, WHO Collaborating Center for Arbovirus and Hemorrhagic Fever Reference and Research, National Reference Center for Tropical Infectious Diseases, 20359, Hamburg, Germany
| | - Andrew F van den Hurk
- Public Health Virology, Forensic and Scientific Services, Queensland Health, Brisbane, QLD, 4108, Australia
| | - Francesca D Frentiu
- Centre for Immunology and Infection Control, School of Biomedical Sciences, Queensland University of Technology, Brisbane, QLD, 4006, Australia
| | - Eloise B Skinner
- Department of Biology, Stanford University, Stanford, CA, 94305, USA
- Centre for Planetary Health and Food Security, Griffith University, Gold Coast, QLD, 4215, Australia
| | - Gregor J Devine
- Mosquito Control Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, QLD, 4006, Australia
| |
Collapse
|
2
|
Satapathy P, Rustagi S, Habeeb Naser I, Gaidhane S, Syed Zahiruddin Q, Mehta R, Apostolopoulos V, Sah R. The emergence of Japanese encephalitis as a public health concern in New South Wales Australia. Expert Rev Anti Infect Ther 2024:1-4. [PMID: 39041795 DOI: 10.1080/14787210.2024.2381824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 07/15/2024] [Indexed: 07/24/2024]
Affiliation(s)
- Prakasini Satapathy
- Center for Global Health Research, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
- School of Pharmacy, Graphic Era Hill University, Dehradun, India
| | - Sarvesh Rustagi
- School of Applied and Life Sciences, Uttaranchal University, Dehradun, Uttarakhand, India
| | - Israa Habeeb Naser
- Medical Laboratories Techniques Department, AL-Mustaqbal University, Hillah, Iraq
| | - Shilpa Gaidhane
- One Health Centre (COHERD), Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education, Wardha, India
| | - Quazi Syed Zahiruddin
- South Asia Infant Feeding Research Network (SAIFRN), Division of Evidence Synthesis, Global Consortium of Public Health and Research, Datta Meghe Institute of Higher Education, Wardha, India
| | - Rachana Mehta
- National Public Health Laboratory, Government of Nepal, Teku, Kathmandu, Nepal
| | - Vasso Apostolopoulos
- Institute for Health and Sport, Immunology and Translational Research, Victoria University, Melbourne, Australia
- Immunology Program, Australian Institute for Musculoskeletal Science (AIMSS), Melbourne, Australia
| | - Ranjit Sah
- Tribhuvan University Teaching Hospital, Institute of Medicine, Kathmandu, Nepal
- Department of Clinical Microbiology, Dr. D. Y. Patil Medical College, Hospital and Research Centre, Dr. D. Y. Patil Vidyapeeth, Pune, Maharashtra, India
- Department of Public Health Dentistry, Dr. D.Y. Patil Dental College and Hospital, Dr. D.Y. Patil Vidyapeeth, Pune, Maharashtra, India
| |
Collapse
|
3
|
Viennet E, Frentiu FD, McKenna E, Torres Vasconcelos F, Flower RLP, Faddy HM. Arbovirus Transmission in Australia from 2002 to 2017. BIOLOGY 2024; 13:524. [PMID: 39056717 PMCID: PMC11273437 DOI: 10.3390/biology13070524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/10/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024]
Abstract
Arboviruses pose a significant global public health threat, with Ross River virus (RRV), Barmah Forest virus (BFV), and dengue virus (DENV) being among the most common and clinically significant in Australia. Some arboviruses, including those prevalent in Australia, have been reported to cause transfusion-transmitted infections. This study examined the spatiotemporal variation of these arboviruses and their potential impact on blood donation numbers across Australia. Using data from the Australian Department of Health on eight arboviruses from 2002 to 2017, we retrospectively assessed the distribution and clustering of incidence rates in space and time using Geographic Information System mapping and space-time scan statistics. Regression models were used to investigate how weather variables, their lag months, space, and time affect case and blood donation counts. The predictors' importance varied with the spatial scale of analysis. Key predictors were average rainfall, minimum temperature, daily temperature variation, and relative humidity. Blood donation number was significantly associated with the incidence rate of all viruses and its interaction with local transmission of DENV, overall. This study, the first to cover eight clinically relevant arboviruses at a fine geographical level in Australia, identifies regions at risk for transmission and provides valuable insights for public health intervention.
Collapse
Affiliation(s)
- Elvina Viennet
- Research and Development, Strategy and Growth, Australian Red Cross Lifeblood, Kelvin Grove, QLD 4059, Australia; (E.M.); (F.T.V.); (R.L.P.F.); (H.M.F.)
- School of Biomedical Sciences, Centre for Immunology and Infection Control, Queensland University of Technology, Brisbane, QLD 4001, Australia;
| | - Francesca D. Frentiu
- School of Biomedical Sciences, Centre for Immunology and Infection Control, Queensland University of Technology, Brisbane, QLD 4001, Australia;
| | - Emilie McKenna
- Research and Development, Strategy and Growth, Australian Red Cross Lifeblood, Kelvin Grove, QLD 4059, Australia; (E.M.); (F.T.V.); (R.L.P.F.); (H.M.F.)
- School of Biomedical Sciences, Centre for Immunology and Infection Control, Queensland University of Technology, Brisbane, QLD 4001, Australia;
| | - Flavia Torres Vasconcelos
- Research and Development, Strategy and Growth, Australian Red Cross Lifeblood, Kelvin Grove, QLD 4059, Australia; (E.M.); (F.T.V.); (R.L.P.F.); (H.M.F.)
- School of Health, University of the Sunshine Coast, Petrie, QLD 4052, Australia
| | - Robert L. P. Flower
- Research and Development, Strategy and Growth, Australian Red Cross Lifeblood, Kelvin Grove, QLD 4059, Australia; (E.M.); (F.T.V.); (R.L.P.F.); (H.M.F.)
- School of Biomedical Sciences, Centre for Immunology and Infection Control, Queensland University of Technology, Brisbane, QLD 4001, Australia;
| | - Helen M. Faddy
- Research and Development, Strategy and Growth, Australian Red Cross Lifeblood, Kelvin Grove, QLD 4059, Australia; (E.M.); (F.T.V.); (R.L.P.F.); (H.M.F.)
- School of Health, University of the Sunshine Coast, Petrie, QLD 4052, Australia
| |
Collapse
|
4
|
Nurmukanova V, Matsvay A, Gordukova M, Shipulin G. Square the Circle: Diversity of Viral Pathogens Causing Neuro-Infectious Diseases. Viruses 2024; 16:787. [PMID: 38793668 PMCID: PMC11126052 DOI: 10.3390/v16050787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/08/2024] [Accepted: 05/10/2024] [Indexed: 05/26/2024] Open
Abstract
Neuroinfections rank among the top ten leading causes of child mortality globally, even in high-income countries. The crucial determinants for successful treatment lie in the timing and swiftness of diagnosis. Although viruses constitute the majority of infectious neuropathologies, diagnosing and treating viral neuroinfections remains challenging. Despite technological advancements, the etiology of the disease remains undetermined in over half of cases. The identification of the pathogen becomes more difficult when the infection is caused by atypical pathogens or multiple pathogens simultaneously. Furthermore, the modern surge in global passenger traffic has led to an increase in cases of infections caused by pathogens not endemic to local areas. This review aims to systematize and summarize information on neuroinvasive viral pathogens, encompassing their geographic distribution and transmission routes. Emphasis is placed on rare pathogens and cases involving atypical pathogens, aiming to offer a comprehensive and structured catalog of viral agents with neurovirulence potential.
Collapse
Affiliation(s)
- Varvara Nurmukanova
- Federal State Budgetary Institution “Centre for Strategic Planning and Management of Biomedical Health Risks” of the Federal Medical Biological Agency, 119121 Moscow, Russia
| | - Alina Matsvay
- Federal State Budgetary Institution “Centre for Strategic Planning and Management of Biomedical Health Risks” of the Federal Medical Biological Agency, 119121 Moscow, Russia
| | - Maria Gordukova
- G. Speransky Children’s Hospital No. 9, 123317 Moscow, Russia
| | - German Shipulin
- Federal State Budgetary Institution “Centre for Strategic Planning and Management of Biomedical Health Risks” of the Federal Medical Biological Agency, 119121 Moscow, Russia
| |
Collapse
|
5
|
Cope ED, Gupta N, Koehler AV, Gasser RB, Crowe A. Ocular Dirofilariasis in Migrant from Sri Lanka, Australia. Emerg Infect Dis 2024; 30:829-830. [PMID: 38526371 PMCID: PMC10977853 DOI: 10.3201/eid3004.240125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2024] Open
Abstract
We describe a case of imported ocular dirofilariasis in Australia, linked to the Hong Kong genotype of Dirofilaria sp., in a migrant from Sri Lanka. Surgical extraction and mitochondrial sequences analyses confirmed this filarioid nematode as the causative agent and a Dirofilaria sp. not previously reported in Australia.
Collapse
|
6
|
Koolhof IS, Beeton N, Bettiol S, Charleston M, Firestone SM, Gibney K, Neville P, Jardine A, Markey P, Kurucz N, Warchot A, Krause V, Onn M, Rowe S, Franklin L, Fricker S, Williams C, Carver S. Testing the intrinsic mechanisms driving the dynamics of Ross River Virus across Australia. PLoS Pathog 2024; 20:e1011944. [PMID: 38358961 PMCID: PMC10868856 DOI: 10.1371/journal.ppat.1011944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 01/04/2024] [Indexed: 02/17/2024] Open
Abstract
The mechanisms driving dynamics of many epidemiologically important mosquito-borne pathogens are complex, involving combinations of vector and host factors (e.g., species composition and life-history traits), and factors associated with transmission and reporting. Understanding which intrinsic mechanisms contribute most to observed disease dynamics is important, yet often poorly understood. Ross River virus (RRV) is Australia's most important mosquito-borne disease, with variable transmission dynamics across geographic regions. We used deterministic ordinary differential equation models to test mechanisms driving RRV dynamics across major epidemic centers in Brisbane, Darwin, Mandurah, Mildura, Gippsland, Renmark, Murray Bridge, and Coorong. We considered models with up to two vector species (Aedes vigilax, Culex annulirostris, Aedes camptorhynchus, Culex globocoxitus), two reservoir hosts (macropods, possums), seasonal transmission effects, and transmission parameters. We fit models against long-term RRV surveillance data (1991-2017) and used Akaike Information Criterion to select important mechanisms. The combination of two vector species, two reservoir hosts, and seasonal transmission effects explained RRV dynamics best across sites. Estimated vector-human transmission rate (average β = 8.04x10-4per vector per day) was similar despite different dynamics. Models estimate 43% underreporting of RRV infections. Findings enhance understanding of RRV transmission mechanisms, provide disease parameter estimates which can be used to guide future research into public health improvements and offer a basis to evaluate mitigation practices.
Collapse
Affiliation(s)
- Iain S. Koolhof
- College of Health and Medicine, Tasmanian School of Medicine, University of Tasmania, Hobart, Tasmania, Australia
- College of Sciences and Engineering, School of Natural Sciences, University of Tasmania, Hobart, Tasmania, Australia
| | | | - Silvana Bettiol
- College of Health and Medicine, Tasmanian School of Medicine, University of Tasmania, Hobart, Tasmania, Australia
| | - Michael Charleston
- College of Sciences and Engineering, School of Natural Sciences, University of Tasmania, Hobart, Tasmania, Australia
| | - Simon M. Firestone
- Melbourne Veterinary School, Faculty of Science, University of Melbourne, Melbourne, Victoria, Australia
| | - Katherine Gibney
- Victorian Department of Health and Human Services, Communicable Disease Epidemiology and Surveillance, Health Protection Branch, Melbourne, Victoria, Australia
| | - Peter Neville
- Department of Health, Western Australia, Environmental Health Directorate, Public and Aboriginal Health Division, Perth, Western Australia, Australia
| | - Andrew Jardine
- Department of Health, Western Australia, Environmental Health Directorate, Public and Aboriginal Health Division, Perth, Western Australia, Australia
| | - Peter Markey
- Centre for Disease Control, Northern Territory Department of Health, Northern Territory, Darwin, Australia
| | - Nina Kurucz
- Centre for Disease Control, Northern Territory Department of Health, Northern Territory, Darwin, Australia
| | - Allan Warchot
- Centre for Disease Control, Northern Territory Department of Health, Northern Territory, Darwin, Australia
| | - Vicki Krause
- Centre for Disease Control, Northern Territory Department of Health, Northern Territory, Darwin, Australia
| | - Michael Onn
- Brisbane City Council, Brisbane, Queensland, Australia
| | - Stacey Rowe
- Victorian Department of Health and Human Services, Communicable Disease Epidemiology and Surveillance, Health Protection Branch, Melbourne, Victoria, Australia
| | - Lucinda Franklin
- Victorian Department of Health and Human Services, Communicable Disease Epidemiology and Surveillance, Health Protection Branch, Melbourne, Victoria, Australia
| | - Stephen Fricker
- Australian Centre for Precision Health, University of South Australia, Adelaide, South Australia, Australia
| | - Craig Williams
- Australian Centre for Precision Health, University of South Australia, Adelaide, South Australia, Australia
| | - Scott Carver
- College of Sciences and Engineering, School of Natural Sciences, University of Tasmania, Hobart, Tasmania, Australia
- Odum School of Ecology, University of Georgia, Georgia, United States of America
- Center for the Ecology of Infectious Diseases, University of Georgia, Georgia, United States of America
| |
Collapse
|
7
|
Williams CR, Webb CE, Higgs S, van den Hurk AF. Japanese Encephalitis Virus Emergence in Australia: Public Health Importance and Implications for Future Surveillance. Vector Borne Zoonotic Dis 2022; 22:529-534. [DOI: 10.1089/vbz.2022.0037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Affiliation(s)
- Craig R. Williams
- UniSA: Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Cameron E. Webb
- Medical Entomology, NSW Health Pathology, Westmead, New South Wales, Australia
- Sydney Institute for Infectious Diseases, University of Sydney, Sydney, New South Wales, Australia
| | - Stephen Higgs
- Biosecurity Research Institute, Kansas State University, Manhattan, Kansas, USA
| | - Andrew F. van den Hurk
- Public Health Virology, Forensic and Scientific Services, Department of Health, Queensland Government, Archerfield, Queensland, Australia
| |
Collapse
|
8
|
A Bivalent Trans-Amplifying RNA Vaccine Candidate Induces Potent Chikungunya and Ross River Virus Specific Immune Responses. Vaccines (Basel) 2022; 10:vaccines10091374. [PMID: 36146452 PMCID: PMC9503900 DOI: 10.3390/vaccines10091374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/18/2022] [Accepted: 08/19/2022] [Indexed: 11/17/2022] Open
Abstract
Alphaviruses such as the human pathogenic chikungunya virus (CHIKV) and Ross River virus (RRV) can cause explosive outbreaks raising public health concerns. However, no vaccine or specific antiviral treatment is yet available. We recently established a CHIKV vaccine candidate based on trans-amplifying RNA (taRNA). This novel system consists of a replicase-encoding mRNA and a trans-replicon (TR) RNA encoding the antigen. The TR-RNA is amplified by the replicase in situ. We were interested in determining whether multiple TR-RNAs can be amplified in parallel and if, thus, a multivalent vaccine candidate can be generated. In vitro, we observed an efficient amplification of two TR-RNAs, encoding for the CHIKV and the RRV envelope proteins, by the replicase, which resulted in a high antigen expression. Vaccination of BALB/c mice with the two TR-RNAs induced CHIKV- and RRV-specific humoral and cellular immune responses. However, antibody titers and neutralization capacity were higher after immunization with a single TR-RNA. In contrast, alphavirus-specific T cell responses were equally potent after the bivalent vaccination. These data show the proof-of-principle that the taRNA system can be used to generate multivalent vaccines; however, further optimizations will be needed for clinical application.
Collapse
|
9
|
Hime NJ, Wickens M, Doggett SL, Rahman K, Toi C, Webb C, Vyas A, Lachireddy K. Weather extremes associated with increased Ross River virus and Barmah Forest virus notifications in NSW: learnings for public health response. Aust N Z J Public Health 2022; 46:842-849. [DOI: 10.1111/1753-6405.13283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 05/01/2022] [Accepted: 06/01/2022] [Indexed: 11/30/2022] Open
Affiliation(s)
- Neil J. Hime
- Environmental Health Branch, Health Protection NSW NSW Health St Leonards New South Wales
- Discipline of Public Health, the School of Public Health, the Faculty of Medicine and Health The University of Sydney New South Wales
| | - Meredith Wickens
- Communicable Diseases Branch, Health Protection NSW NSW Health St Leonards New South Wales
| | - Stephen L. Doggett
- Department of Medical Entomology, NSW Health Pathology‐Institute of Clinical Pathology and Medical Research Westmead Hospital Westmead New South Wales
| | - Kazi Rahman
- North Coast Public Health Unit, Mid North Coast and Northern NSW Local Health Districts NSW Health Lismore New South Wales
| | - Cheryl Toi
- Department of Medical Entomology, NSW Health Pathology‐Institute of Clinical Pathology and Medical Research Westmead Hospital Westmead New South Wales
| | - Cameron Webb
- Discipline of Public Health, the School of Public Health, the Faculty of Medicine and Health The University of Sydney New South Wales
- Department of Medical Entomology, NSW Health Pathology‐Institute of Clinical Pathology and Medical Research Westmead Hospital Westmead New South Wales
| | - Aditya Vyas
- Environmental Health Branch, Health Protection NSW NSW Health St Leonards New South Wales
| | - Kishen Lachireddy
- Environmental Health Branch, Health Protection NSW NSW Health St Leonards New South Wales
| |
Collapse
|
10
|
Special Issue: Emerging Wildlife Viral Diseases. Viruses 2022; 14:v14040807. [PMID: 35458537 PMCID: PMC9026112 DOI: 10.3390/v14040807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 04/10/2022] [Indexed: 12/10/2022] Open
|