1
|
Mihaylova-Garnizova R, Davidova S, Hodzhev Y, Satchanska G. Antimicrobial Peptides Derived from Bacteria: Classification, Sources, and Mechanism of Action against Multidrug-Resistant Bacteria. Int J Mol Sci 2024; 25:10788. [PMID: 39409116 PMCID: PMC11476732 DOI: 10.3390/ijms251910788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 08/22/2024] [Accepted: 08/27/2024] [Indexed: 10/20/2024] Open
Abstract
Antimicrobial peptides (AMPs) are short, usually cationic peptides with an amphiphilic structure, which allows them to easily bind and interact with the cellular membranes of viruses, bacteria, fungi, and other pathogens. Bacterial AMPs, or bacteriocins, can be produced from Gram-negative and Gram-positive bacteria via ribosomal synthesis to eliminate competing organisms. Bacterial AMPs are vital in addressing the increasing antibiotic resistance of various pathogens, potentially serving as an alternative to ineffective antibiotics. Bacteriocins have a narrow spectrum of action, making them highly specific antibacterial compounds that target particular bacterial pathogens. This review covers the two main groups of bacteriocins produced by Gram-negative and Gram-positive bacteria, their modes of action, classification, sources of positive effects they can play on the human body, and their limitations and future perspectives as an alternative to antibiotics.
Collapse
Affiliation(s)
- Raynichka Mihaylova-Garnizova
- Department of Natural Sciences, New Bulgarian University, Montevideo Blvd. 21, 1618 Sofia, Bulgaria; (R.M.-G.); (S.D.); (Y.H.)
- Department of Infectious Diseases, Military Academy, George Sofiiski Str. 3, 1606 Sofia, Bulgaria
| | - Slavena Davidova
- Department of Natural Sciences, New Bulgarian University, Montevideo Blvd. 21, 1618 Sofia, Bulgaria; (R.M.-G.); (S.D.); (Y.H.)
| | - Yordan Hodzhev
- Department of Natural Sciences, New Bulgarian University, Montevideo Blvd. 21, 1618 Sofia, Bulgaria; (R.M.-G.); (S.D.); (Y.H.)
| | - Galina Satchanska
- Department of Natural Sciences, New Bulgarian University, Montevideo Blvd. 21, 1618 Sofia, Bulgaria; (R.M.-G.); (S.D.); (Y.H.)
| |
Collapse
|
2
|
Sharma G, Paul P, Dviwedi A, Kaur P, Kumar P, Gupta VK, Saha SB, Kulshrestha S. In silico screening and evaluation of antiviral peptides as inhibitors against ORF9b protein of SARS-CoV-2. 3 Biotech 2024; 14:192. [PMID: 39118822 PMCID: PMC11303353 DOI: 10.1007/s13205-024-04032-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 07/14/2024] [Indexed: 08/10/2024] Open
Abstract
The present study investigated antiviral peptides (AVPs) as inhibitors of SARS-CoV-2 Orf9b protein, a novel target for disrupting the Orf9b-TOM70 complex crucial for viral infection. In silico screening via molecular docking and MD simulations identified AVP1442 and AVP1896 with high binding affinities to Orf9b (- 846.3 kcal mol-1 and - 820 kcal mol-1, respectively), comparable to the Orf9b-TOM70 complex (- 810.99 kcal mol-1). These AVPs interacted with key amino acid residues in Orf9b, including phosphorylation sites. In addition, AVPs also closely interacted with conserved regions in Orf9b. AVP1896 formed a hydrogen bond with Orf9b's threonine at position 84. AVP1442 interacted with Orf9b's leucine at position 15. Favorable Ramachandran plots and compactness during MD simulations for up to 100 ns suggest good stability of formed complexes. These non-toxic AVPs warrant further in vitro and in vivo evaluation, potentially as components of drug cocktails with small molecules or interferon-based therapies. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-024-04032-4.
Collapse
Affiliation(s)
- Gaurav Sharma
- Faculty of Applied Sciences and Biotechnology, Shoolini University of Biotechnology and Management Sciences, Solan, 173229 Himachal Pradesh India
- School of Applied Sciences and Technology, Gujarat Technological University, Ahmedabad, 382424 Gujarat India
| | - Prateek Paul
- Department of Computational Biology and Bioinformatics, Sam Higginbottom University of Agriculture, Technology, and Sciences, Prayagraj, 211007 Uttar Pradesh India
| | - Ananya Dviwedi
- Faculty of Applied Sciences and Biotechnology, Shoolini University of Biotechnology and Management Sciences, Solan, 173229 Himachal Pradesh India
- Rajiv Gandhi Institute of Information Technology and Biotechnology, Pune, 411045 Maharashtra India
| | - Parneet Kaur
- Faculty of Applied Sciences and Biotechnology, Shoolini University of Biotechnology and Management Sciences, Solan, 173229 Himachal Pradesh India
| | - Pradeep Kumar
- Faculty of Applied Sciences and Biotechnology, Shoolini University of Biotechnology and Management Sciences, Solan, 173229 Himachal Pradesh India
- Department of Forensic Science, Himachal Pradesh University, Summer Hill, Shimla, 171005 Himachal Pradesh India
| | - V. Kumar Gupta
- Department of Applied Biology, University of Science and Technology, Meghalaya, 793101 India
| | - Saurav Bhaskar Saha
- Department of Computational Biology and Bioinformatics, Sam Higginbottom University of Agriculture, Technology, and Sciences, Prayagraj, 211007 Uttar Pradesh India
| | - Saurabh Kulshrestha
- Faculty of Applied Sciences and Biotechnology, Shoolini University of Biotechnology and Management Sciences, Solan, 173229 Himachal Pradesh India
| |
Collapse
|
3
|
Mehraj I, Hamid A, Gani U, Iralu N, Manzoor T, Saleem Bhat S. Combating Antimicrobial Resistance by Employing Antimicrobial Peptides: Immunomodulators and Therapeutic Agents against Infectious Diseases. ACS APPLIED BIO MATERIALS 2024; 7:2023-2035. [PMID: 38533844 DOI: 10.1021/acsabm.3c01104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
The rising prevalence of multiple-drug-resistant pathogens poses a formidable challenge to conventional antimicrobial treatments. The inability of potent antibiotics to combat these "superbugs" underscores the pressing need for alternative therapeutic agents. Antimicrobial peptides (AMPs) represent an alternative class of antibiotics. AMPs are essential immunomodulatory molecules that are found in various organisms. They play a pivotal role in managing microbial ecosystems and bolstering innate immunity by targeting and eliminating invading microorganisms. AMPs also have applications in the agriculture sector by combating animal as well as plant pathogens. AMPs can be exploited for the targeted therapy of various diseases and can also be used in drug-delivery systems. They can be used in synergy with current treatments like antibiotics and can potentially lead to a lower required dosage. AMPs also have huge potential in wound healing and regenerative medicine. Developing AMP-based strategies with improved safety, specificity, and efficacy is crucial in the battle against alarming global microbial resistance. This review will explore AMPs' increasing applicability, their mode of antimicrobial activity, and various delivery systems enhancing their stability and efficacy.
Collapse
Affiliation(s)
- Insha Mehraj
- Division of Animal Biotechnology, Faculty of Veterinary Sciences and Animal Husbandry, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Shalimar, Srinagar, Jammu and Kashmir 05466, India
| | - Aflaq Hamid
- Department of Plant Pathology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Shalimar, Srinagar, Jammu and Kashmir 05466, India
| | - Ubaid Gani
- Division of Animal Biotechnology, Faculty of Veterinary Sciences and Animal Husbandry, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Shalimar, Srinagar, Jammu and Kashmir 05466, India
| | - Nulevino Iralu
- Department of Plant Pathology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Shalimar, Srinagar, Jammu and Kashmir 05466, India
| | - Tasaduq Manzoor
- Division of Animal Biotechnology, Faculty of Veterinary Sciences and Animal Husbandry, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Shalimar, Srinagar, Jammu and Kashmir 05466, India
| | - Sahar Saleem Bhat
- Division of Animal Biotechnology, Faculty of Veterinary Sciences and Animal Husbandry, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Shalimar, Srinagar, Jammu and Kashmir 05466, India
| |
Collapse
|
4
|
Bergamo A, Sava G. Lysozyme: A Natural Product with Multiple and Useful Antiviral Properties. Molecules 2024; 29:652. [PMID: 38338396 PMCID: PMC10856218 DOI: 10.3390/molecules29030652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 01/24/2024] [Accepted: 01/29/2024] [Indexed: 02/12/2024] Open
Abstract
Lysozyme, especially the one obtained from hen's egg white, continues to show new pharmacological properties. The fact that only a few of these properties can be translated into therapeutic applications is due to the lack of suitable clinical studies. However, this lack cannot hide the evidence that is emerging from scientific research. This review for the first time examines, from a pharmacological point of view, all the relevant studies on the antiviral properties of lysozyme, analyzing its possible mechanism of action and its ability to block viral infections and, in some cases, inhibit viral replication. Lysozyme can interact with nucleic acids and alter their function, but this effect is uncoupled from the catalytic activity that determines its antibacterial activity; it is present in intact lysozyme but is equally potent in a heat-degraded lysozyme or in a nonapeptide isolated by proteolytic digestion. An analysis of the literature shows that lysozyme can be used both as a disinfectant for raw and processed foods and as a drug to combat viral infections in animals and humans. To summarize, it can be said that lysozyme has important antiviral properties, as already suspected in the initial studies conducted over 50 years ago, and it should be explored in suitable clinical studies on humans.
Collapse
|
5
|
Nath A. Physicochemical and sequence determinants of antiviral peptides. Biol Futur 2023; 74:489-506. [PMID: 37889451 DOI: 10.1007/s42977-023-00188-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 10/06/2023] [Indexed: 10/28/2023]
Abstract
Antiviral peptides (AVPs) open new possibilities as an effective antiviral therapeutic in the current scenario of evolving drug-resistant viruses. Knowledge about the sequence and structure activity relationship in AVPs is still largely unknown. AVPs and antimicrobial peptides (AMPs) share several common features but as they target different life forms (living organisms and viruses), exploring the differential sequence features may facilitate in designing specific AVPs. The current work developed accurate prediction models for discriminating (a) AVPs from AMPs, (b) Coronaviridae AVPs from other virus family specific AVPs and (c) highly active AVPs (HAA) from lowly active AVPs (LAA). Further explainable machine learning methods (using model agnostic global interpretable methods) are utilized for exploring and interpreting the physicochemical spaces of AVPs, Coronaviridae AVPs and highly active AVPs. To further understand the association of physicochemical space distribution with pIC50 values, regression models were developed and analyzed using accumulated local effects and interaction strength analysis. An independent sample t-test is used to filter out the significant compositional differences between the smaller length HAA and longer length HAA groups. AVPs prefer lower charge/length ratio and basic residues in comparison with AMPs. Coronaviridae family-specific AVPs have lower propensities for basic amino acids, charge and preference for aspartic acid. Further there is prevalence for basic residues in lowly active AVPs as compared to highly active AVPs. Sequence order effects captured in terms of average amino acid pair distances proved to be more constructive in deciphering the sequences of AVPs.
Collapse
Affiliation(s)
- Abhigyan Nath
- Department of Biochemistry, Pt. Jawahar Lal Nehru Memorial Medical College, Raipur, 492001, India.
| |
Collapse
|
6
|
Jan Z, Geethakumari AM, Biswas KH, Jithesh PV. Protegrin-2, a potential inhibitor for targeting SARS-CoV-2 main protease M pro. Comput Struct Biotechnol J 2023; 21:3665-3671. [PMID: 37576748 PMCID: PMC10412832 DOI: 10.1016/j.csbj.2023.07.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 07/03/2023] [Accepted: 07/19/2023] [Indexed: 08/15/2023] Open
Abstract
Background SARS-CoV-2 variants continue to spread throughout the world and cause waves of COVID-19 infections. It is important to find effective antiviral drugs to combat SARS-CoV-2 and its variants. The main protease (Mpro) of SARS-CoV-2 is a promising therapeutic target due to its crucial role in viral replication and its conservation in all the variants. Therefore, the aim of this work was to identify an effective inhibitor of Mpro. Methods We studied around 200 antimicrobial peptides using in silico methods including molecular docking and allergenicity and toxicity prediction. One selected antiviral peptide was studied experimentally using a Bioluminescence Resonance Energy Transfer (BRET)-based Mpro biosensor, which reports Mpro activity through a decrease in energy transfer. Results Molecular docking identified one natural antimicrobial peptide, Protegrin-2, with high binding affinity and stable interactions with Mpro allosteric residues. Furthermore, free energy calculations and molecular dynamics simulation illustrated a high affinity interaction between the two. We also determined the impact of the binding of Protegrin-2 to Mpro using a BRET-based assay, showing that it inhibits the proteolytic cleavage activity of Mpro. Conclusions Our in silico and experimental studies identified Protegrin-2 as a potent inhibitor of Mpro that could be pursued further towards drug development against COVID-19 infection.
Collapse
Affiliation(s)
- Zainab Jan
- Division of Genomics and Translational Biomedicine, College of Health & Life Sciences, Hamad Bin Khalifa University, Education City, Qatar Foundation, Doha 34110, Qatar
| | - Anupriya M. Geethakumari
- Division of Biological and Biomedical Sciences, College of Health & Life Sciences, Hamad Bin Khalifa University, Education City, Qatar Foundation, Doha 34110, Qatar
| | - Kabir H. Biswas
- Division of Biological and Biomedical Sciences, College of Health & Life Sciences, Hamad Bin Khalifa University, Education City, Qatar Foundation, Doha 34110, Qatar
| | - Puthen Veettil Jithesh
- Division of Genomics and Translational Biomedicine, College of Health & Life Sciences, Hamad Bin Khalifa University, Education City, Qatar Foundation, Doha 34110, Qatar
| |
Collapse
|
7
|
Liu Y, Zhu Y, Sun X, Ma T, Lao X, Zheng H. DRAVP: A Comprehensive Database of Antiviral Peptides and Proteins. Viruses 2023; 15:v15040820. [PMID: 37112801 PMCID: PMC10141206 DOI: 10.3390/v15040820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 03/18/2023] [Accepted: 03/22/2023] [Indexed: 04/29/2023] Open
Abstract
Viruses with rapid replication and easy mutation can become resistant to antiviral drug treatment. With novel viral infections emerging, such as the recent COVID-19 pandemic, novel antiviral therapies are urgently needed. Antiviral proteins, such as interferon, have been used for treating chronic hepatitis C infections for decades. Natural-origin antimicrobial peptides, such as defensins, have also been identified as possessing antiviral activities, including direct antiviral effects and the ability to induce indirect immune responses to viruses. To promote the development of antiviral drugs, we constructed a data repository of antiviral peptides and proteins (DRAVP). The database provides general information, antiviral activity, structure information, physicochemical information, and literature information for peptides and proteins. Because most of the proteins and peptides lack experimentally determined structures, AlphaFold was used to predict each antiviral peptide's structure. A free website for users (http://dravp.cpu-bioinfor.org/, accessed on 30 August 2022) was constructed to facilitate data retrieval and sequence analysis. Additionally, all the data can be accessed from the web interface. The DRAVP database aims to be a useful resource for developing antiviral drugs.
Collapse
Affiliation(s)
- Yanchao Liu
- School of Life Science and Technology, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China
| | - Youzhuo Zhu
- School of Life Science and Technology, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China
| | - Xin Sun
- School of Life Science and Technology, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China
| | - Tianyue Ma
- School of Life Science and Technology, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China
| | - Xingzhen Lao
- School of Life Science and Technology, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China
| | - Heng Zheng
- School of Life Science and Technology, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China
| |
Collapse
|
8
|
Antiviral Peptides in Antimicrobial Surface Coatings—From Current Techniques to Potential Applications. Viruses 2023; 15:v15030640. [PMID: 36992349 PMCID: PMC10051592 DOI: 10.3390/v15030640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/17/2023] [Accepted: 02/20/2023] [Indexed: 03/06/2023] Open
Abstract
The transmission of pathogens through contact with contaminated surfaces is an important route for the spread of infections. The recent outbreak of COVID-19 highlights the necessity to attenuate surface-mediated transmission. Currently, the disinfection and sanitization of surfaces are commonly performed in this regard. However, there are some disadvantages associated with these practices, including the development of antibiotic resistance, viral mutation, etc.; hence, a better strategy is necessary. In recent years, peptides have been studied to be utilized as a potential alternative. They are part of the host immune defense and have many potential in vivo applications in drug delivery, diagnostics, immunomodulation, etc. Additionally, the ability of peptides to interact with different molecules and membrane surfaces of microorganisms has made it possible to exploit them in ex vivo applications such as antimicrobial (antibacterial and antiviral) coatings. Although antibacterial peptide coatings have been studied extensively and proven to be effective, antiviral coatings are a more recent development. Therefore, this study aims to highlight antiviral coating strategies and the current practices and application of antiviral coating materials in personal protective equipment, healthcare devices, and textiles and surfaces in public settings. Here, we have presented a review on potential techniques to incorporate peptides in current surface coating strategies that will serve as a guide for developing cost-effective, sustainable and coherent antiviral surface coatings. We further our discussion to highlight some challenges of using peptides as a surface coating material and to examine future perspectives.
Collapse
|
9
|
Altered Expression of Antimicrobial Peptides in the Upper Gastrointestinal Tract of Patients with Diabetes Mellitus. Nutrients 2023; 15:nu15030754. [PMID: 36771460 PMCID: PMC9919831 DOI: 10.3390/nu15030754] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/23/2023] [Accepted: 01/24/2023] [Indexed: 02/05/2023] Open
Abstract
Antimicrobial peptides (AMP) are essential components of innate immunity with a broad range of antimicrobial activities against bacteria, viruses, and fungi. The aim of this study was to investigate AMP expression in the upper gastrointestinal tract in normal and pathological metabolic states in humans. Furthermore, we examined the correlation between vitamin D levels and AMP expression in the same cohort. Serum concentrations of 25-hydroxyvitamin D3 were measured, and mRNA expression of β-defensins HBD-1, -2, -3, -4, α-defensins HD-5 and -6 and cathelicidin in the upper gastrointestinal tract epithelia were determined by quantitative RT-PCR in 31 individuals (10 with type 2 diabetes, 10 with insulin resistance, and 11 healthy controls). The majority of the cohort showed low vitamin D concentrations, which were negatively correlated with mRNA expression levels of HBD-3 in corpus mucosa. HBD-1 and HBD-3 mRNA were expressed in corpus mucosa, with the former significantly decreased in patients with diabetes. Hence, we conclude that type 2 diabetes is associated with reduced AMP expression in the upper gastrointestinal tract, which might contribute towards epithelial barrier dysfunction and increased bacterial translocation in these patients.
Collapse
|
10
|
Mabrouk DM. Antimicrobial peptides: features, applications and the potential use against covid-19. Mol Biol Rep 2022; 49:10039-10050. [PMID: 35606604 PMCID: PMC9126628 DOI: 10.1007/s11033-022-07572-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 05/05/2022] [Indexed: 12/04/2022]
Abstract
BACKGROUND Antimicrobial peptides (AMPs) are a diverse class of molecules that represent a vital part of innate immunity. AMPs are evolutionarily conserved molecules that exhibit structural and functional diversity. They provide a possible solution to the antibiotic-resistance crisis. MAIN TEXT These small cationic peptides can target bacteria, fungi, and viruses, as well as cancer cells. Their unique action mechanisms, rare antibiotic-resistant variants, broad-spectrum activity, low toxicity, and high specificity encourage pharmaceutical industries to conduct clinical trials to develop them as therapeutic drugs. The rapid development of computer-assisted strategies accelerated the identification of AMPs. The Antimicrobial Peptide Database (APD) so far contains 3324 AMPs from different sources. In addition to their applications in different fields, some AMPs demonstrated the potential to combat COVID-19, and hinder viral infectivity in diverse ways. CONCLUSIONS This review provides a brief history of AMPs and their features, including classification, evolution, sources and mechanisms of action, biosynthesis pathway, and identification techniques. Furthermore, their different applications, challenges to clinical applications, and their potential use against COVID-19 are presented.
Collapse
Affiliation(s)
- Dalia Mamdouh Mabrouk
- Cell Biology Department, National Research Centre, 33 El Bohouth, St., P.O.12622, Dokki, Giza, Egypt.
| |
Collapse
|
11
|
Hu X, Zhang Q, Zhang Q, Ding J, Liu Y, Qin W. An updated review of functional properties, debittering methods, and applications of soybean functional peptides. Crit Rev Food Sci Nutr 2022; 63:8823-8838. [PMID: 35482930 DOI: 10.1080/10408398.2022.2062587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Soybean functional peptides (SFPs) are obtained via the hydrolysis of soybean protein into polypeptides, oligopeptides, and a small amount of amino acids. They have nutritional value and a variety of functional properties, including regulating blood lipids, lowering blood pressure, anti-diabetes, anti-oxidant, preventing COVID-19, etc. SFPs have potential application prospects in food processing, functional food development, clinical medicine, infant milk powder, special medical formulations, among others. However, bitter peptides containing relatively more hydrophobic amino acids can be formed during the production of SFPs, seriously restricting the application of SFPs. High-quality confirmatory human trials are needed to determine effective doses, potential risks, and mechanisms of action, especially as dietary supplements and special medical formulations. Therefore, the physiological activities and potential risks of soybean polypeptides are summarized, and the existing debitterness technologies and their applicability are reviewed. The technical challenges and research areas to be addressed in optimizing debittering process parameters and improving the applicability of SFPs are discussed, including integrating various technologies to obtain higher quality functional peptides, which will facilitate further exploration of physiological mechanism, metabolic pathway, tolerance, bioavailability, and potential hazards of SFPs. This review can help promote the value of SFPs and the development of the soybean industry.
Collapse
Affiliation(s)
- Xinjie Hu
- College of Food Science, Sichuan Agricultural University, Ya'an, China
| | - Qinqiu Zhang
- College of Food Science, Sichuan Agricultural University, Ya'an, China
| | - Qing Zhang
- College of Food Science, Sichuan Agricultural University, Ya'an, China
| | - Jie Ding
- College of Food Science, Sichuan Agricultural University, Ya'an, China
- College of Food Science and Technology, Sichuan Tourism University, Chengdu, China
| | - Yaowen Liu
- College of Food Science, Sichuan Agricultural University, Ya'an, China
| | - Wen Qin
- College of Food Science, Sichuan Agricultural University, Ya'an, China
| |
Collapse
|
12
|
Li X, Zuo S, Wang B, Zhang K, Wang Y. Antimicrobial Mechanisms and Clinical Application Prospects of Antimicrobial Peptides. Molecules 2022; 27:2675. [PMID: 35566025 PMCID: PMC9104849 DOI: 10.3390/molecules27092675] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/14/2022] [Accepted: 04/19/2022] [Indexed: 12/16/2022] Open
Abstract
Antimicrobial peptides are a type of small-molecule peptide that widely exist in nature and are components of the innate immunity of almost all living things. They play an important role in resisting foreign invading microorganisms. Antimicrobial peptides have a wide range of antibacterial activities against bacteria, fungi, viruses and other microorganisms. They are active against traditional antibiotic-resistant strains and do not easily induce the development of drug resistance. Therefore, they have become a hot spot of medical research and are expected to become a new substitute for fighting microbial infection and represent a new method for treating drug-resistant bacteria. This review briefly introduces the source and structural characteristics of antimicrobial peptides and describes those that have been used against common clinical microorganisms (bacteria, fungi, viruses, and especially coronaviruses), focusing on their antimicrobial mechanism of action and clinical application prospects.
Collapse
Affiliation(s)
- Xin Li
- Department of Infectious Diseases, First Hospital of Jilin University, Changchun 130021, China; (X.L.); (B.W.)
| | - Siyao Zuo
- Department of Dermatology and Venereology, First Hospital of Jilin University, Changchun 130021, China;
| | - Bin Wang
- Department of Infectious Diseases, First Hospital of Jilin University, Changchun 130021, China; (X.L.); (B.W.)
| | - Kaiyu Zhang
- Department of Infectious Diseases, First Hospital of Jilin University, Changchun 130021, China; (X.L.); (B.W.)
| | - Yang Wang
- Department of Infectious Diseases, First Hospital of Jilin University, Changchun 130021, China; (X.L.); (B.W.)
| |
Collapse
|
13
|
Sukmarini L. Antiviral Peptides (AVPs) of Marine Origin as Propitious Therapeutic Drug Candidates for the Treatment of Human Viruses. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27092619. [PMID: 35565968 PMCID: PMC9101517 DOI: 10.3390/molecules27092619] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 04/03/2022] [Accepted: 04/18/2022] [Indexed: 12/13/2022]
Abstract
The marine environment presents a favorable avenue for potential therapeutic agents as a reservoir of new bioactive natural products. Due to their numerous potential pharmacological effects, marine-derived natural products—particularly marine peptides—have gained considerable attention. These peptides have shown a broad spectrum of biological functions, such as antimicrobial, antiviral, cytotoxic, immunomodulatory, and analgesic effects. The emergence of new virus strains and viral resistance leads to continuing efforts to develop more effective antiviral drugs. Interestingly, antimicrobial peptides (AMPs) that possess antiviral properties and are alternatively regarded as antiviral peptides (AVPs) demonstrate vast potential as alternative peptide-based drug candidates available for viral infection treatments. Hence, AVPs obtained from various marine organisms have been evaluated. This brief review features recent updates of marine-derived AVPs from 2011 to 2021. Moreover, the biosynthesis of this class of compounds and their possible mechanisms of action are also discussed. Selected peptides from various marine organisms possessing antiviral activities against important human viruses—such as human immunodeficiency viruses, herpes simplex viruses, influenza viruses, hepatitis C virus, and coronaviruses—are highlighted herein.
Collapse
Affiliation(s)
- Linda Sukmarini
- Research Center for Applied Microbiology, National Research and Innovation Agency (BRIN), Jl. Raya Bogor Km. 46, Cibinong 16911, West Java, Indonesia
| |
Collapse
|
14
|
Enayathullah MG, Parekh Y, Banu S, Ram S, Nagaraj R, Kumar BK, Idris MM. Gramicidin S and melittin: potential anti-viral therapeutic peptides to treat SARS-CoV-2 infection. Sci Rep 2022; 12:3446. [PMID: 35236909 PMCID: PMC8891299 DOI: 10.1038/s41598-022-07341-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Accepted: 02/16/2022] [Indexed: 01/02/2023] Open
Abstract
The COVID19 pandemic has led to multipronged approaches for treatment of the disease. Since de novo discovery of drugs is time consuming, repurposing of molecules is now considered as one of the alternative strategies to treat COVID19. Antibacterial peptides are being recognized as attractive candidates for repurposing to treat viral infections. In this study, we describe the anti-SARS-CoV-2 activity of the well-studied antibacterial peptides gramicidin S and melittin obtained from Bacillus brevis and bee venom respectively. The EC50 values for gramicidin S and melittin were 1.571 µg and 0.656 µg respectively based on in vitro antiviral assay. Significant decrease in the viral load as compared to the untreated group with no/very less cytotoxicity was observed. Both the peptides treated to the SARS-CoV-2 infected Vero cells showed viral clearance from 12 h onwards with a maximal viral clearance after 24 h post infection. Proteomics analysis indicated that more than 250 proteins were differentially regulated in the gramicidin S and melittin treated SARS-CoV-2 infected Vero cells against control SARS-CoV-2 infected Vero cells after 24 and 48 h post infection. The identified proteins were found to be associated in the metabolic and mRNA processing of the Vero cells post-treatment and infection. Both these peptides could be attractive candidates for repurposing to treat SARS-CoV-2 infection.
Collapse
Affiliation(s)
| | - Yash Parekh
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, Telangana, 500007, India
| | - Sarena Banu
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, Telangana, 500007, India
| | - Sushma Ram
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, Telangana, 500007, India
| | - Ramakrishnan Nagaraj
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, Telangana, 500007, India
| | - Bokara Kiran Kumar
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, Telangana, 500007, India.
| | - Mohammed M Idris
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, Telangana, 500007, India.
| |
Collapse
|
15
|
Manavalan B, Basith S, Lee G. Comparative analysis of machine learning-based approaches for identifying therapeutic peptides targeting SARS-CoV-2. Brief Bioinform 2022; 23:bbab412. [PMID: 34595489 PMCID: PMC8500067 DOI: 10.1093/bib/bbab412] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/27/2021] [Accepted: 09/07/2021] [Indexed: 01/08/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) has impacted public health as well as societal and economic well-being. In the last two decades, various prediction algorithms and tools have been developed for predicting antiviral peptides (AVPs). The current COVID-19 pandemic has underscored the need to develop more efficient and accurate machine learning (ML)-based prediction algorithms for the rapid identification of therapeutic peptides against severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). Several peptide-based ML approaches, including anti-coronavirus peptides (ACVPs), IL-6 inducing epitopes and other epitopes targeting SARS-CoV-2, have been implemented in COVID-19 therapeutics. Owing to the growing interest in the COVID-19 field, it is crucial to systematically compare the existing ML algorithms based on their performances. Accordingly, we comprehensively evaluated the state-of-the-art IL-6 and AVP predictors against coronaviruses in terms of core algorithms, feature encoding schemes, performance evaluation metrics and software usability. A comprehensive performance assessment was then conducted to evaluate the robustness and scalability of the existing predictors using well-constructed independent validation datasets. Additionally, we discussed the advantages and disadvantages of the existing methods, providing useful insights into the development of novel computational tools for characterizing and identifying epitopes or ACVPs. The insights gained from this review are anticipated to provide critical guidance to the scientific community in the rapid design and development of accurate and efficient next-generation in silico tools against SARS-CoV-2.
Collapse
Affiliation(s)
| | - Shaherin Basith
- Department of Physiology, Ajou University School of Medicine, Suwon 16499, Korea
| | - Gwang Lee
- Department of Physiology, Ajou University School of Medicine, Suwon 16499, Korea
| |
Collapse
|
16
|
Vanzolini T, Bruschi M, Rinaldi AC, Magnani M, Fraternale A. Multitalented Synthetic Antimicrobial Peptides and Their Antibacterial, Antifungal and Antiviral Mechanisms. Int J Mol Sci 2022; 23:545. [PMID: 35008974 PMCID: PMC8745555 DOI: 10.3390/ijms23010545] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 12/22/2021] [Accepted: 12/30/2021] [Indexed: 02/07/2023] Open
Abstract
Despite the great strides in healthcare during the last century, some challenges still remained unanswered. The development of multi-drug resistant bacteria, the alarming growth of fungal infections, the emerging/re-emerging of viral diseases are yet a worldwide threat. Since the discovery of natural antimicrobial peptides able to broadly hit several pathogens, peptide-based therapeutics have been under the lenses of the researchers. This review aims to focus on synthetic peptides and elucidate their multifaceted mechanisms of action as antiviral, antibacterial and antifungal agents. Antimicrobial peptides generally affect highly preserved structures, e.g., the phospholipid membrane via pore formation or other constitutive targets like peptidoglycans in Gram-negative and Gram-positive bacteria, and glucan in the fungal cell wall. Additionally, some peptides are particularly active on biofilm destabilizing the microbial communities. They can also act intracellularly, e.g., on protein biosynthesis or DNA replication. Their intracellular properties are extended upon viral infection since peptides can influence several steps along the virus life cycle starting from viral receptor-cell interaction to the budding. Besides their mode of action, improvements in manufacturing to increase their half-life and performances are also taken into consideration together with advantages and impairments in the clinical usage. Thus far, the progress of new synthetic peptide-based approaches is making them a promising tool to counteract emerging infections.
Collapse
Affiliation(s)
- Tania Vanzolini
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, PU, Italy; (T.V.); (M.M.); (A.F.)
| | - Michela Bruschi
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, PU, Italy; (T.V.); (M.M.); (A.F.)
| | - Andrea C. Rinaldi
- Department of Biomedical Sciences, University of Cagliari, 09042 Monserrato, CA, Italy;
| | - Mauro Magnani
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, PU, Italy; (T.V.); (M.M.); (A.F.)
| | - Alessandra Fraternale
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, PU, Italy; (T.V.); (M.M.); (A.F.)
| |
Collapse
|
17
|
Banu S, Nagaraj R, Idris MM. Defensins: Therapeutic molecules with potential to treat SARS-CoV-2 infection. Indian J Med Res 2022; 155:83-85. [PMID: 35859434 PMCID: PMC9552367 DOI: 10.4103/ijmr.ijmr_2798_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Affiliation(s)
- Sarena Banu
- Department of Developmental Biology, CSIR-Centre for Cellular & Molecular Biology, Hyderabad 500 007, Telangana, India
| | - Ramakrishnan Nagaraj
- Department of Structural Biology, CSIR-Centre for Cellular & Molecular Biology, Hyderabad 500 007, Telangana, India
| | - Mohammed M. Idris
- Department of Developmental Biology, CSIR-Centre for Cellular & Molecular Biology, Hyderabad 500 007, Telangana, India
| |
Collapse
|
18
|
Jhong JH, Yao L, Pang Y, Li Z, Chung CR, Wang R, Li S, Li W, Luo M, Ma R, Huang Y, Zhu X, Zhang J, Feng H, Cheng Q, Wang C, Xi K, Wu LC, Chang TH, Horng JT, Zhu L, Chiang YC, Wang Z, Lee TY. dbAMP 2.0: updated resource for antimicrobial peptides with an enhanced scanning method for genomic and proteomic data. Nucleic Acids Res 2021; 50:D460-D470. [PMID: 34850155 PMCID: PMC8690246 DOI: 10.1093/nar/gkab1080] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 10/16/2021] [Accepted: 10/25/2021] [Indexed: 12/26/2022] Open
Abstract
The last 18 months, or more, have seen a profound shift in our global experience, with many of us navigating a once-in-100-year pandemic. To date, COVID-19 remains a life-threatening pandemic with little to no targeted therapeutic recourse. The discovery of novel antiviral agents, such as vaccines and drugs, can provide therapeutic solutions to save human beings from severe infections; however, there is no specifically effective antiviral treatment confirmed for now. Thus, great attention has been paid to the use of natural or artificial antimicrobial peptides (AMPs) as these compounds are widely regarded as promising solutions for the treatment of harmful microorganisms. Given the biological significance of AMPs, it was obvious that there was a significant need for a single platform for identifying and engaging with AMP data. This led to the creation of the dbAMP platform that provides comprehensive information about AMPs and facilitates their investigation and analysis. To date, the dbAMP has accumulated 26 447 AMPs and 2262 antimicrobial proteins from 3044 organisms using both database integration and manual curation of >4579 articles. In addition, dbAMP facilitates the evaluation of AMP structures using I-TASSER for automated protein structure prediction and structure-based functional annotation, providing predictive structure information for clinical drug development. Next-generation sequencing (NGS) and third-generation sequencing have been applied to generate large-scale sequencing reads from various environments, enabling greatly improved analysis of genome structure. In this update, we launch an efficient online tool that can effectively identify AMPs from genome/metagenome and proteome data of all species in a short period. In conclusion, these improvements promote the dbAMP as one of the most abundant and comprehensively annotated resources for AMPs. The updated dbAMP is now freely accessible at http://awi.cuhk.edu.cn/dbAMP.
Collapse
Affiliation(s)
- Jhih-Hua Jhong
- Warshel Institute for Computational Biology, The Chinese University of Hong Kong, Shenzhen 518172, China
| | - Lantian Yao
- Warshel Institute for Computational Biology, The Chinese University of Hong Kong, Shenzhen 518172, China.,School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen 518172, China
| | - Yuxuan Pang
- Warshel Institute for Computational Biology, The Chinese University of Hong Kong, Shenzhen 518172, China.,School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen 518172, China
| | - Zhongyan Li
- Warshel Institute for Computational Biology, The Chinese University of Hong Kong, Shenzhen 518172, China.,School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen 518172, China
| | - Chia-Ru Chung
- Department of Computer Science and Information Engineering, National Central University, Taoyuan 32001, Taiwan
| | - Rulan Wang
- Warshel Institute for Computational Biology, The Chinese University of Hong Kong, Shenzhen 518172, China.,School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen 518172, China
| | - Shangfu Li
- Warshel Institute for Computational Biology, The Chinese University of Hong Kong, Shenzhen 518172, China
| | - Wenshuo Li
- Warshel Institute for Computational Biology, The Chinese University of Hong Kong, Shenzhen 518172, China.,School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen 518172, China
| | - Mengqi Luo
- Warshel Institute for Computational Biology, The Chinese University of Hong Kong, Shenzhen 518172, China
| | - Renfei Ma
- Warshel Institute for Computational Biology, The Chinese University of Hong Kong, Shenzhen 518172, China
| | - Yuqi Huang
- School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen 518172, China
| | - Xiaoning Zhu
- School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen 518172, China
| | - Jiahong Zhang
- School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen 518172, China
| | - Hexiang Feng
- School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen 518172, China
| | - Qifan Cheng
- School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen 518172, China
| | - Chunxuan Wang
- Warshel Institute for Computational Biology, The Chinese University of Hong Kong, Shenzhen 518172, China
| | - Kun Xi
- Warshel Institute for Computational Biology, The Chinese University of Hong Kong, Shenzhen 518172, China
| | - Li-Ching Wu
- Department of Biomedical Sciences and Engineering, National Central University, Taoyuan 32001, Taiwan
| | - Tzu-Hao Chang
- Graduate Institute of Biomedical Informatics, Taipei Medical University, Taipei 10675, Taiwan
| | - Jorng-Tzong Horng
- Department of Computer Science and Information Engineering, National Central University, Taoyuan 32001, Taiwan
| | - Lizhe Zhu
- Warshel Institute for Computational Biology, The Chinese University of Hong Kong, Shenzhen 518172, China.,School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen 518172, China
| | - Ying-Chih Chiang
- School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen 518172, China
| | - Zhuo Wang
- Warshel Institute for Computational Biology, The Chinese University of Hong Kong, Shenzhen 518172, China
| | - Tzong-Yi Lee
- Warshel Institute for Computational Biology, The Chinese University of Hong Kong, Shenzhen 518172, China.,School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen 518172, China
| |
Collapse
|