1
|
Okoh GR, Ariel E, Whitmore D, Horwood PF. Metagenomic and Molecular Detection of Novel Fecal Viruses in Free-Ranging Agile Wallabies. ECOHEALTH 2023; 20:427-440. [PMID: 38091182 DOI: 10.1007/s10393-023-01659-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 10/26/2023] [Indexed: 02/21/2024]
Abstract
The agile wallaby (Notamacropus agilis) is one of the most abundant marsupial species in northern Queensland and a competent host for the zoonotic Ross River virus. Despite their increased proximity and interactions with humans, little is known about the viruses carried by these animals, and whether any are of conservation or zoonotic importance. Metagenomics and molecular techniques were used in a complementary manner to identify and characterize novel viruses in the fecal samples of free-ranging agile wallabies. We detected a variety of novel marsupial-related viral species including agile wallaby atadenovirus 1, agile wallaby chaphamaparvovirus 1-2, agile wallaby polyomavirus 1-2, agile wallaby associated picobirnavirus 1-9, and a known macropod gammaherpesvirus 3. Phylogenetic analyses indicate that most of these novel viruses would have co-evolved with their hosts (agile wallabies). Additionally, non-marsupial viruses that infect bacteria (phages), plants, insects, and other eukaryotes were identified. This study highlighted the utility of non-invasive sampling as well as the integration of broad-based molecular assays (consensus PCR and next generation sequencing) for monitoring the emergence of potential pathogenic viruses in wildlife species. Furthermore, the novel marsupial viruses identified in this study will enrich the diversity of knowledge about marsupial viruses, and may be useful for developing diagnostics and vaccines.
Collapse
Affiliation(s)
- God'spower Richard Okoh
- College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, QLD, 4811, Australia.
| | - Ellen Ariel
- College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, QLD, 4811, Australia
| | - David Whitmore
- College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, QLD, 4811, Australia
| | - Paul F Horwood
- College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, QLD, 4811, Australia.
| |
Collapse
|
2
|
Ma H, Gao X, Fu J, Xue H, Zhu K, Mu B, Song Y, Dong P, Wang Z. Molecular epidemiology of canine parvovirus 2 from 2014, 2019, and 2021 shows CPV2 circulating and CPV2c increasing in Yanbian, China. J Vet Diagn Invest 2022; 34:884-888. [PMID: 35993257 PMCID: PMC9446304 DOI: 10.1177/10406387221117556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Canine parvovirus 2 (CPV2) causes one of the most serious canine viral infections, with high mortality in young dogs. In 2014, 2019, and 2021, we determined genetic sequences of CPV2 strains obtained from 39 fecal samples collected from the Yanbian Korean Autonomous Prefecture in the Jilin Province of China. Sequence alignments were performed using the major capsid protein (VP2) gene; protein sequences of these samples had high nucleotide (>97.4%) and amino acid (>95.6%) identity. All of the amino acid sequences contained Ser297Ala and Tyr324Ile mutations. Our survey indicated a high prevalence of CPV2 variants in Yanbian Prefecture, with the new CPV2a variant (26 of 39; 67%) being the most frequent. CPV2c, identified in 9 of 39 (23%) samples, had not been detected in this region previously, indicating the potential risk of CPV2 mutation. The sequences of our 39 CPV2 samples were more highly homologous to the published Chinese strains than to the CPV2 variant strains found in other countries.
Collapse
Affiliation(s)
- Haoyuan Ma
- Laboratory for Animal Molecular Virology, Department of
Veterinary Medicine, Agriculture College, Yanbian University, Yanji, China
| | - Xu Gao
- Laboratory for Animal Molecular Virology, Department of
Veterinary Medicine, Agriculture College, Yanbian University, Yanji, China
| | - Jingfeng Fu
- Laboratory for Animal Molecular Virology, Department of
Veterinary Medicine, Agriculture College, Yanbian University, Yanji, China
| | - Haowen Xue
- Laboratory for Animal Molecular Virology, Department of
Veterinary Medicine, Agriculture College, Yanbian University, Yanji, China
| | - Kunru Zhu
- Laboratory for Animal Molecular Virology, Department of
Veterinary Medicine, Agriculture College, Yanbian University, Yanji, China
| | - Biying Mu
- Laboratory for Animal Molecular Virology, Department of
Veterinary Medicine, Agriculture College, Yanbian University, Yanji, China
| | - Yanhao Song
- Laboratory for Animal Molecular Virology, Department of
Veterinary Medicine, Agriculture College, Yanbian University, Yanji, China
| | - Peng Dong
- Laboratory for Animal Molecular Virology, Department of
Veterinary Medicine, Agriculture College, Yanbian University, Yanji, China
| | - Zhenliang Wang
- Laboratory for Animal Molecular Virology, Department of
Veterinary Medicine, Agriculture College, Yanbian University, Yanji, China
| |
Collapse
|
3
|
Packianathan R, Hodge A, Wright J, Lavidis L, Ameiss K, Yip HYE, Akbarzadeh M, Sharifian M, Amanollahi R, Khabiri A, Hemmatzadeh F. Cross-Neutralization of Vanguard C4 Vaccine Against Australian Isolates of Canine Parvovirus Variants CPV-2a, CPV-2b, and CPV-2c. Viral Immunol 2022; 35:553-558. [PMID: 35997600 DOI: 10.1089/vim.2022.0027] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Canine parvovirus type 2 (CPV-2) remains one of the most significant viral pathogens in dogs in Australia and worldwide despite the availability of safe and effective CPV vaccines. At least three different variants of CPV-2 have emerged and spread all around the world, namely CPV-2a, CPV-2b, and CPV-2c. The ability of the current vaccines containing either original CPV-2 type or CPV-2b variant to cross protect the heterologous variants has been well demonstrated in laboratory studies, despite some concerns regarding the vaccine efficacy against the emerging variants. Vanguard®, a series of multivalent vaccines, has been in the market for a considerable period of time and demonstrated to provide efficacy against all three types of CPV variants CPV-2a, CPV-2b, and CPV-2c. The purpose of this study was to evaluate the ability of the recently registered Vanguard C4 vaccine to induce cross-neutralizing antibodies against the Australian isolates of CPV-2a, CPV-2b, and CPV-2c variants. Blood samples collected from dogs vaccinated with Vanguard C4 were analyzed by virus neutralizing assays developed for each of three CPV variants. The results of the study demonstrated that Vanguard vaccine induced cross-neutralizing antibodies against the Australian isolates of CPV-2a, CPV-2b, and CPV-2c, thus offering cross protection against all three Australian CPV variants.
Collapse
Affiliation(s)
- Raj Packianathan
- Veterinary Medicine Research and Development, Zoetis Australia, Rhodes, New South Wales, Australia
| | - Andrew Hodge
- Veterinary Medicine Research and Development, Zoetis Australia, Rhodes, New South Wales, Australia
| | - Jacqueline Wright
- Veterinary Medicine Research and Development, Zoetis Australia, Rhodes, New South Wales, Australia
| | - Lynette Lavidis
- Veterinary Medicine Research and Development, Zoetis Australia, Rhodes, New South Wales, Australia
| | - Keith Ameiss
- Veterinary Medicine Research and Development, Zoetis Inc., Kalamazoo, Michigan, USA
| | - Hiu Ying Esther Yip
- School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, Australia
| | - Malihe Akbarzadeh
- School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, Australia
| | - Maryam Sharifian
- School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, Australia
| | - Reza Amanollahi
- School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, Australia
| | - Aliakbar Khabiri
- School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, Australia
| | - Farhid Hemmatzadeh
- School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, Australia
| |
Collapse
|
4
|
Gainor K, Ghosh S. A comprehensive review of viruses in terrestrial animals from the Caribbean islands of Greater and Lesser Antilles. Transbound Emerg Dis 2022; 69:e1299-e1325. [PMID: 35578793 DOI: 10.1111/tbed.14595] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 05/09/2022] [Accepted: 05/09/2022] [Indexed: 11/26/2022]
Abstract
Viruses pose a major threat to animal health worldwide, causing significant mortalities and morbidities in livestock, companion animals and wildlife, with adverse implications on human health, livelihoods, food safety and security, regional/national economies, and biodiversity. The Greater and Lesser Antilles consist of a cluster of islands between the North and South Americas and is habitat to a wide variety of animal species. This review is the first to put together decades of information on different viruses circulating in companion animals, livestock, and wildlife from the Caribbean islands of Greater and Lesser Antilles. Although animal viral diseases have been documented in the Caribbean region since the 1940s, we found that studies on different animal viruses are limited, inconsistent, and scattered. Furthermore, a significant number of the reports were based on serological assays, yielding preliminary data. The available information was assessed to identify knowledge gaps and limitations, and accordingly, recommendations were made, with the overall goal to improve animal health and production, and combat zoonoses in the region. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Kerry Gainor
- Department of Biomedical Sciences, Ross University School of Veterinary Medicine, St. Kitts, West Indies
| | - Souvik Ghosh
- Department of Biomedical Sciences, Ross University School of Veterinary Medicine, St. Kitts, West Indies
| |
Collapse
|
5
|
Molecular analysis of the full-length VP2 gene of Brazilian strains of canine parvovirus 2 shows genetic and structural variability between wild and vaccine strains. Virus Res 2022; 313:198746. [DOI: 10.1016/j.virusres.2022.198746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 03/09/2022] [Accepted: 03/11/2022] [Indexed: 11/21/2022]
|
6
|
The first report of porcine parvovirus 7 (PPV7) in Colombia demonstrates the presence of variants associated with modifications at the level of the VP2-capsid protein. PLoS One 2021; 16:e0258311. [PMID: 34914702 PMCID: PMC8675767 DOI: 10.1371/journal.pone.0258311] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 09/23/2021] [Indexed: 12/15/2022] Open
Abstract
There are a wide variety of porcine parvoviruses (PPVs) referred to as PPV1 to PPV7. The latter was discovered in 2016 and later reported in some countries in America, Asia, and Europe. PPV7 as a pathogenic agent or coinfection with other pathogens causing disease has not yet been determined. In the present study, we report the identification of PPV7 for the first time in Colombia, where it was found retrospectively since 2015 in 40% of the provinces that make up the country (13/32), and the virus was ratified for 2018 in 4/5 provinces evaluated. Additionally, partial sequencing (nucleotides 380 to 4000) was performed of four Colombian strains completely covering the VP2 and NS1 viral genes. A sequence identity greater than 99% was found when comparing them with reference strains from the USA and China. In three of the four Colombian strains, an insertion of 15 nucleotides (five amino acids) was found in the PPV7-VP2 capsid protein (540–5554 nt; 180–184 aa). Based on this insertion, the VP2 phylogenetic analysis exhibited two well-differentiated evolutionarily related groups. To evaluate the impact of this insertion on the structure of the PPV7-VP2 capsid protein, the secondary structure of two different Colombian strains was predicted, and it was determined that the insertion is located in the coil region and not involved in significant changes in the structure of the protein. The 3D structure of the PPV7-VP2 capsid protein was determined by threading and homology modeling, and it was shown that the insertion did not imply a change in the shape of the protein. Additionally, it was determined that the insertion is not involved in suppressing a potential B cell epitope, although the increase in length of the epitope could affect the interaction with molecules that allow a specific immune response.
Collapse
|
7
|
Novel Cyclovirus Species in Dogs with Hemorrhagic Gastroenteritis. Viruses 2021; 13:v13112155. [PMID: 34834961 PMCID: PMC8622408 DOI: 10.3390/v13112155] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/21/2021] [Accepted: 10/22/2021] [Indexed: 11/21/2022] Open
Abstract
Nested PCRs with circovirus/cyclovirus pan-rep (replicase gene) primers detected eukaryotic circular Rep-encoding single-stranded DNA (CRESS DNA) viruses in three (samples CN9E, CN16E and CN34) of 18 canine parvovirus-2-positive fecal samples from household dogs with hemorrhagic gastroenteritis on the Caribbean island of Nevis. The complete genomes of CRESS DNA virus CN9E, CN16E and CN34 were determined by inverse nested PCRs. Based on (i) genome organization, (ii) location of the putative origin of replication, (iii) pairwise genome-wide sequence identities, (iv) the presence of conserved motifs in the putative replication-associated protein (Rep) and the arginine-rich region in the amino terminus of the putative capsid protein (Cp) and (v) a phylogenetic analysis, CN9E, CN16E and CN34 were classified as cycloviruses. Canine-associated cycloviruses CN16E and CN34 were closely related to each other and shared low genome-wide nucleotide (59.642–59.704%), deduced Rep (35.018–35.379%) and Cp (26.601%) amino acid sequence identities with CN9E. All the three canine-associated cycloviruses shared < 80% genome-wide pairwise nucleotide sequence identities with cycloviruses from other animals/environmental samples, constituting two novel species (CN9E and CN16E/34) within the genus Cyclovirus. Considering the feeding habits of dogs, we could not determine whether the cycloviruses were of dietary origin or infected the host. Interestingly, the CN9E putative Rep-encoding open reading frame was found to use the invertebrate mitochondrial genetic code with an alternative initiation codon (ATA) for translation, corroborating the hypothesis that cycloviruses are actually arthropod-infecting viruses. To our knowledge, this is the first report on the detection and complete genome analysis of cycloviruses from domestic dogs.
Collapse
|