1
|
Ouyang F, Yuan D, Zhai W, Liu S, Zhou Y, Yang H. HIV-1 Drug Resistance Detected by Next-Generation Sequencing among ART-Naïve Individuals: A Systematic Review and Meta-Analysis. Viruses 2024; 16:239. [PMID: 38400015 PMCID: PMC10893194 DOI: 10.3390/v16020239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/31/2023] [Accepted: 01/30/2024] [Indexed: 02/25/2024] Open
Abstract
BACKGROUND There are an increasing number of articles focused on the prevalence and clinical impact of pretreatment HIV drug resistance (PDR) detected by Sanger sequencing (SGS). PDR may contribute to the increased likelihood of virologic failure and the emergence of new resistance mutations. As SGS is gradually replaced by next-generation sequencing (NGS), it is necessary to assess the levels of PDR using NGS in ART-naïve patients systematically. NGS can detect the viral variants (low-abundance drug-resistant HIV-1 variants (LA-DRVs)) of virus quasi-species at levels below 20% that SGS may fail to detect. NGS has the potential to optimize current HIV drug resistance surveillance methods and inform future research directions. As the NGS technique has high sensitivity, it is highly likely that the level of pretreatment resistance would be underestimated using conventional techniques. METHODS For the systematic review and meta-analysis, we searched for original studies published in PubMed, Web of Science, Scopus, and Embase before 30 March 2023 that focused exclusively on the application of NGS in the detection of HIV drug resistance. Pooled prevalence estimates were calculated using a random effects model using the 'meta' package in R (version 4.2.3). We described drug resistance detected at five thresholds (>1%, 2%, 5%, 10%, and 20% of virus quasi-species). Chi-squared tests were used to analyze differences between the overall prevalence of PDR reported by SGS and NGS. RESULTS A total of 39 eligible studies were selected. The studies included a total of 15,242 ART-naïve individuals living with HIV. The prevalence of PDR was inversely correlated with the mutation detection threshold. The overall prevalence of PDR was 29.74% at the 1% threshold, 22.43% at the 2% threshold, 15.47% at the 5% threshold, 12.95% at the 10% threshold, and 11.08% at the 20% threshold. The prevalence of PDR to INSTIs was 1.22% (95%CI: 0.58-2.57), which is the lowest among the values for all antiretroviral drugs. The prevalence of LA-DRVs was 9.45%. At the 2% and 20% detection threshold, the prevalence of PDR was 22.43% and 11.08%, respectively. Resistance to PIs and INSTIs increased 5.52-fold and 7.08-fold, respectively, in those with a PDR threshold of 2% compared with those with PDR at 20%. However, resistance to NRTIs and NNRTIs increased 2.50-fold and 2.37-fold, respectively. There was a significant difference between the 2% and 5% threshold for detecting HIV drug resistance. There was no statistically significant difference between the results reported by SGS and NGS when using the 20% threshold for reporting resistance mutations. CONCLUSION In this study, we found that next-generation sequencing facilitates a more sensitive detection of HIV-1 drug resistance than SGS. The high prevalence of PDR emphasizes the importance of baseline resistance and assessing the threshold for optimal clinical detection using NGS.
Collapse
Affiliation(s)
- Fei Ouyang
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, Department of Epidemiology and Health Statistics, School of Public Health, Southeast University, Nanjing 210009, China; (F.O.); (D.Y.); (W.Z.); (S.L.)
| | - Defu Yuan
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, Department of Epidemiology and Health Statistics, School of Public Health, Southeast University, Nanjing 210009, China; (F.O.); (D.Y.); (W.Z.); (S.L.)
| | - Wenjing Zhai
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, Department of Epidemiology and Health Statistics, School of Public Health, Southeast University, Nanjing 210009, China; (F.O.); (D.Y.); (W.Z.); (S.L.)
| | - Shanshan Liu
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, Department of Epidemiology and Health Statistics, School of Public Health, Southeast University, Nanjing 210009, China; (F.O.); (D.Y.); (W.Z.); (S.L.)
| | - Ying Zhou
- Department of HIV/STD Control and Prevention, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing 210009, China
| | - Haitao Yang
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, Department of Epidemiology and Health Statistics, School of Public Health, Southeast University, Nanjing 210009, China; (F.O.); (D.Y.); (W.Z.); (S.L.)
- Jiangsu Health Development Research Center, Nanjing 210029, China
| |
Collapse
|
2
|
H H, Mallajosyula SS. Unveiling DNA Translocation in Pristine Graphene Nanopores: Understanding Pore Clogging via Polarizable Simulations. ACS APPLIED MATERIALS & INTERFACES 2023; 15:55095-55108. [PMID: 37965826 DOI: 10.1021/acsami.3c12262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
Graphene has garnered remarkable attention in recent years as an attractive nanopore membrane for rapid and accurate sequencing of DNA. The inherent characteristics of graphene offer exquisite experimental control over pore dimensions, encompassing both the width (pore diameter) and height. Despite these promising prospects, the practical deployment of pristine graphene nanopores for DNA sequencing has encountered a formidable challenge in the form of pore clogging, which is primarily attributed to hydrophobic interactions. However, a comprehensive understanding of the atomistic origins underpinning this clogging phenomenon and the nuanced impact of individual nucleobase identities on clogging dynamics remain an underexplored domain. Elucidating the atomistic intricacies governing pore clogging is pivotal to devising strategies for its mitigation and advancing our understanding of graphene nanopore behavior. We harness Drude polarizable simulations to systematically dissect the nucleobase-dependent mechanisms that play a pivotal role in nanopore clogging. We unveil nucleobase-specific interactions that illuminate the multifaceted roles played by both hydrophobic and electrostatic forces in driving nanopore clogging events. Notably, the Drude simulations also unveil the bias-dependent translocation dynamics and its pivotal role in alleviating pore clogging─a facet that remains significantly underestimated in conventional additive (nonpolarizable) simulations. Our findings underscore the indispensability of incorporating polarizability to faithfully capture the intricate dynamics governing graphene nanopore translocation phenomena, thus deepening our insights into this crucial field.
Collapse
Affiliation(s)
- Hemanth H
- Department of Chemistry, Indian Institute of Technology Gandhinagar, Palaj, Gujarat 382355, India
| | - Sairam S Mallajosyula
- Department of Chemistry, Indian Institute of Technology Gandhinagar, Palaj, Gujarat 382355, India
| |
Collapse
|
3
|
Ng TTL, Su J, Lao HY, Lui WW, Chan CTM, Leung AWS, Jim SHC, Lee LK, Shehzad S, Tam KKG, Leung KSS, Tang F, Yam WC, Luo R, Siu GKH. Long-Read Sequencing with Hierarchical Clustering for Antiretroviral Resistance Profiling of Mixed Human Immunodeficiency Virus Quasispecies. Clin Chem 2023; 69:1174-1185. [PMID: 37537871 DOI: 10.1093/clinchem/hvad108] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 06/28/2023] [Indexed: 08/05/2023]
Abstract
BACKGROUND HIV infections often develop drug resistance mutations (DRMs), which can increase the risk of virological failure. However, it has been difficult to determine if minor mutations occur in the same genome or in different virions using Sanger sequencing and short-read sequencing methods. Oxford Nanopore Technologies (ONT) sequencing may improve antiretroviral resistance profiling by allowing for long-read clustering. METHODS A new ONT sequencing-based method for profiling DRMs in HIV quasispecies was developed and validated. The method used hierarchical clustering of long amplicons that cover regions associated with different types of antiretroviral drugs. A gradient series of an HIV plasmid and 2 plasma samples was prepared to validate the clustering performance. The ONT results were compared to those obtained with Sanger sequencing and Illumina sequencing in 77 HIV-positive plasma samples to evaluate the diagnostic performance. RESULTS In the validation study, the abundance of detected quasispecies was concordant with the predicted result with the R2 of > 0.99. During the diagnostic evaluation, 59/77 samples were successfully sequenced for DRMs. Among 18 failed samples, 17 were below the limit of detection of 303.9 copies/μL. Based on the receiver operating characteristic analysis, the ONT workflow achieved an F1 score of 0.96 with a cutoff of 0.4 variant allele frequency. Four cases were found to have quasispecies with DRMs, in which 2 harbored quasispecies with more than one class of DRMs. Treatment modifications were recommended for these cases. CONCLUSIONS Long-read sequencing coupled with hierarchical clustering could differentiate the quasispecies resistance profiles in HIV-infected samples, providing a clearer picture for medical care.
Collapse
Affiliation(s)
- Timothy Ting-Leung Ng
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
| | - Junhao Su
- Department of Computer Science, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Hiu-Yin Lao
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
| | - Wui-Wang Lui
- Department of Computer Science, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Chloe Toi-Mei Chan
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
| | - Amy Wing-Sze Leung
- Department of Computer Science, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Stephanie Hoi-Ching Jim
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
| | - Lam-Kwong Lee
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
| | - Sheeba Shehzad
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
| | - Kingsley King-Gee Tam
- Department of Microbiology, Queen Mary Hospital, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Kenneth Siu-Sing Leung
- Department of Microbiology, Queen Mary Hospital, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Forrest Tang
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
| | - Wing-Cheong Yam
- Department of Microbiology, Queen Mary Hospital, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Ruibang Luo
- Department of Computer Science, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Gilman Kit-Hang Siu
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
| |
Collapse
|
4
|
Maggiorella MT, Sernicola L, Picconi O, Pizzi E, Belli R, Fulgenzi D, Rovetto C, Bruni R, Costantino A, Taffon S, Chionne P, Madonna E, Pisani G, Borsetti A, Falvino C, Ranieri R, Baccalini R, Pansera A, Castelvedere F, Babudieri S, Madeddu G, Starnini G, Dell'Isola S, Cervellini P, Ciccaglione AR, Ensoli B, Buttò S. Epidemiological and molecular characterization of HBV and HCV infections in HIV-1-infected inmate population in Italy: a 2017-2019 multicenter cross-sectional study. Sci Rep 2023; 13:14908. [PMID: 37689795 PMCID: PMC10492787 DOI: 10.1038/s41598-023-41814-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 08/31/2023] [Indexed: 09/11/2023] Open
Abstract
HBV/HCV co-infection is common in HIV-1-infected prisoners. To investigate the characteristics of HIV co-infections, and to evaluate the molecular heterogeneity of HIV, HBV and HCV in prisoners, we carried-out a multicenter cross-sectional study, including 65 HIV-1-infected inmates enrolled in 5 Italian detention centers during the period 2017-2019. HIV-1 subtyping showed that 77.1% of inmates were infected with B subtype and 22.9% with non-B subtypes. Italian nationals were all infected with subtype B (93.1%), except two individuals, one infected with the recombinant form CRF72_BF1, and the other with the HIV-1 sub-subtype A6, both previously not identified in inmates of Italian nationality. Non-Italian nationals were infected with subtype B (52.6%), CRFs (36.8%) and sub-subtypes A1 and A3 (5.2%). HIV variants carrying resistance mutations to NRTI, NNRTI, PI and InSTI were found in 7 inmates, 4 of which were never exposed to the relevant classes of drugs associated with these mutations. HBV and/or HCV co-infections markers were found in 49/65 (75.4%) inmates, while 27/65 (41.5%) showed markers of both HBV and HCV coinfection. Further, Italian nationals showed a significant higher presence of HCV markers as compared to non-Italian nationals (p = 0.0001). Finally, HCV phylogenetic analysis performed in 18 inmates revealed the presence of HCV subtypes 1a, 3a, 4d (66.6%, 16.7% and 16.7%, respectively). Our data suggest the need to monitor HIV, HBV and HCV infections in prisons in order to prevent spreading of these viruses both in jails and in the general population, and to implement effective public health programs that limit the circulation of different genetic forms as well as of viral variants with mutations conferring resistance to treatment.
Collapse
Affiliation(s)
- Maria Teresa Maggiorella
- National HIV/AIDS Research Center, Istituto Superiore di Sanità, V.le Regina Elena 299, 00161, Rome, Italy.
| | - L Sernicola
- National HIV/AIDS Research Center, Istituto Superiore di Sanità, V.le Regina Elena 299, 00161, Rome, Italy
| | - O Picconi
- National HIV/AIDS Research Center, Istituto Superiore di Sanità, V.le Regina Elena 299, 00161, Rome, Italy
| | - E Pizzi
- Core Facilities, Istituto Superiore di Sanità, Rome, Italy
| | - R Belli
- National HIV/AIDS Research Center, Istituto Superiore di Sanità, V.le Regina Elena 299, 00161, Rome, Italy
| | - D Fulgenzi
- National HIV/AIDS Research Center, Istituto Superiore di Sanità, V.le Regina Elena 299, 00161, Rome, Italy
| | - C Rovetto
- National HIV/AIDS Research Center, Istituto Superiore di Sanità, V.le Regina Elena 299, 00161, Rome, Italy
| | - R Bruni
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - A Costantino
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - S Taffon
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - P Chionne
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - E Madonna
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - G Pisani
- National Center for Immunobiologicals, Research and Evaluation, Istituto Superiore di Sanità, Rome, Italy
| | - A Borsetti
- National HIV/AIDS Research Center, Istituto Superiore di Sanità, V.le Regina Elena 299, 00161, Rome, Italy
| | - C Falvino
- National HIV/AIDS Research Center, Istituto Superiore di Sanità, V.le Regina Elena 299, 00161, Rome, Italy
| | - R Ranieri
- Infectious Diseases Service, Penitentiary Health System, Azienda Socio-Sanitaria Territoriale Santi Paolo e Carlo, Milan, Italy
| | | | | | | | - S Babudieri
- Infectious Diseases Unit, Department of Clinical and Experimental Medicine, University of Sassari, Sassari, Italy
| | - G Madeddu
- Infectious Diseases Unit, Department of Clinical and Experimental Medicine, University of Sassari, Sassari, Italy
| | - G Starnini
- Belcolle Hospital, ASL Viterbo, Viterbo, Italy
| | | | | | - A R Ciccaglione
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - B Ensoli
- National HIV/AIDS Research Center, Istituto Superiore di Sanità, V.le Regina Elena 299, 00161, Rome, Italy
| | - S Buttò
- National HIV/AIDS Research Center, Istituto Superiore di Sanità, V.le Regina Elena 299, 00161, Rome, Italy
| |
Collapse
|
5
|
Foka FET, Mufhandu HT. Current ARTs, Virologic Failure, and Implications for AIDS Management: A Systematic Review. Viruses 2023; 15:1732. [PMID: 37632074 PMCID: PMC10458198 DOI: 10.3390/v15081732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/02/2023] [Accepted: 08/09/2023] [Indexed: 08/27/2023] Open
Abstract
Antiretroviral therapies (ARTs) have revolutionized the management of human immunodeficiency virus (HIV) infection, significantly improved patient outcomes, and reduced the mortality rate and incidence of acquired immunodeficiency syndrome (AIDS). However, despite the remarkable efficacy of ART, virologic failure remains a challenge in the long-term management of HIV-infected individuals. Virologic failure refers to the persistent detectable viral load in patients receiving ART, indicating an incomplete suppression of HIV replication. It can occur due to various factors, including poor medication adherence, drug resistance, suboptimal drug concentrations, drug interactions, and viral factors such as the emergence of drug-resistant strains. In recent years, extensive efforts have been made to understand and address virologic failure in order to optimize treatment outcomes. Strategies to prevent and manage virologic failure include improving treatment adherence through patient education, counselling, and supportive interventions. In addition, the regular monitoring of viral load and resistance testing enables the early detection of treatment failure and facilitates timely adjustments in ART regimens. Thus, the development of novel antiretroviral agents with improved potency, tolerability, and resistance profiles offers new options for patients experiencing virologic failure. However, new treatment options would also face virologic failure if not managed appropriately. A solution to virologic failure requires a comprehensive approach that combines individualized patient care, robust monitoring, and access to a range of antiretroviral drugs.
Collapse
Affiliation(s)
- Frank Eric Tatsing Foka
- Department of Microbiology, Virology Laboratory, School of Biological Sciences, Faculty of Natural and Agricultural Sciences, North West University, Mafikeng, Private Bag, Mmabatho X2046, South Africa
| | - Hazel Tumelo Mufhandu
- Department of Microbiology, Virology Laboratory, School of Biological Sciences, Faculty of Natural and Agricultural Sciences, North West University, Mafikeng, Private Bag, Mmabatho X2046, South Africa
| |
Collapse
|
6
|
Manyana S, Pillay M, Gounder L, Khan A, Moodley P, Naidoo K, Chimukangara B. Affordable drug resistance genotyping of HIV-1 reverse transcriptase, protease and integrase genes, for resource limited settings. AIDS Res Ther 2023; 20:9. [PMID: 36759801 PMCID: PMC9912687 DOI: 10.1186/s12981-023-00505-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 02/03/2023] [Indexed: 02/11/2023] Open
Abstract
BACKGROUND As use of dolutegravir (DTG) becomes more common in resource limited settings (RLS), the demand for integrase resistance testing is increasing. Affordable methods for genotyping all relevant HIV-1 pol genes (i.e., protease (PR), reverse transcriptase (RT) and integrase (IN)) are required to guide choice of future antiretroviral therapy (ART). We designed an in-house HIV-1 drug resistance (HIVDR) genotyping method that is affordable and suitable for use in RLS. METHODS We obtained remnant plasma samples from CAPRISA 103 study and amplified HIV-1 PR, RT and IN genes, using an innovative PCR assay. We validated the assay using remnant plasma samples from an external quality assessment (EQA) programme. We genotyped samples by Sanger sequencing and assessed HIVDR mutations using the Stanford HIV drug resistance database. We compared drug resistance mutations with previous genotypes and calculated method cost-estimates. RESULTS From 96 samples processed, we obtained sequence data for 78 (81%), of which 75 (96%) had a least one HIVDR mutation, with no major-IN mutations observed. Only one sample had an E157Q INSTI-accessory mutation. When compared to previous genotypes, 18/78 (23%) had at least one discordant mutation, but only 2/78 (3%) resulted in different phenotypic predictions that could affect choice of subsequent regimen. All CAPRISA 103 study sequences were HIV-1C as confirmed by phylogenetic analysis. Of the 7 EQA samples, 4 were HIV-1C, 2 were HIV-1D, and 1 was HIV-1A. Genotypic resistance data generated using the IDR method were 100% concordant with EQA panel results. Overall genotyping cost per sample was estimated at ~ US$43-$US49, with a processing time of ~ 2 working days. CONCLUSIONS We successfully designed an in-house HIVDR method that is suitable for genotyping HIV-1 PR, RT and IN genes, at an affordable cost and shorter turnaround time. This HIVDR genotyping method accommodates changes in ART regimens and will help to guide HIV-1 treatment decisions in RLS.
Collapse
Affiliation(s)
- Sontaga Manyana
- Department of Virology, School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal and National Health Laboratory Service, 800 Vusi Mzimela Road, Durban, 4058, South Africa
| | - Melendhran Pillay
- Department of Virology, School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal and National Health Laboratory Service, 800 Vusi Mzimela Road, Durban, 4058, South Africa
| | - Lilishia Gounder
- Department of Virology, School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal and National Health Laboratory Service, 800 Vusi Mzimela Road, Durban, 4058, South Africa
| | - Aabida Khan
- Department of Virology, School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal and National Health Laboratory Service, 800 Vusi Mzimela Road, Durban, 4058, South Africa
| | - Pravi Moodley
- Department of Virology, School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal and National Health Laboratory Service, 800 Vusi Mzimela Road, Durban, 4058, South Africa
| | - Kogieleum Naidoo
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), Durban, South Africa
- CAPRISA HIV-TB Pathogenesis and Treatment Research Unit, South African Medical Research Council (SAMRC), Durban, South Africa
| | - Benjamin Chimukangara
- Department of Virology, School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal and National Health Laboratory Service, 800 Vusi Mzimela Road, Durban, 4058, South Africa.
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), Durban, South Africa.
- Critical Care Medicine Department, NIH Clinical Center, Bethesda, MD, USA.
| |
Collapse
|
7
|
Sokhela S, Lalla-Edward S, Siedner MJ, Majam M, Venter WDF. Roadmap for Achieving Universal Antiretroviral Treatment. Annu Rev Pharmacol Toxicol 2023; 63:99-117. [PMID: 36662580 PMCID: PMC10807407 DOI: 10.1146/annurev-pharmtox-052020-094321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Modern antiretroviral therapy safely, potently, and durably suppresses human immunodeficiency virus (HIV) that, if left untreated, predictably causes acquired immunodeficiency syndrome (AIDS), which has been responsible for tens of millions of deaths globally since it was described in 1981. In one of the most extraordinary medical success stories in modern times, a combination of pioneering basic science, innovative drug development, and ambitious public health programming resulted in access to lifesaving, safe drugs, taken as an oral tablet daily, for most of the world. However, substantial challenges remain in the fields of prevention, timely access to diagnosis, and treatment, especially in pediatric and adolescent patients. As HIV-positive adults age, treating their comorbidities will require understanding the course of different chronic diseases complicated by HIV-related and antiretroviral toxicities and finding potential treatments. Finally, new long-acting antiretrovirals on the horizon promise exciting new options in both the prevention and treatment fields.
Collapse
Affiliation(s)
- Simiso Sokhela
- Ezintsha, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa;
| | - Samanta Lalla-Edward
- Ezintsha, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa;
| | - Mark J Siedner
- Harvard Medical School and Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Mohammed Majam
- Ezintsha, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa;
| | | |
Collapse
|
8
|
Ssekagiri A, Jjingo D, Lujumba I, Bbosa N, Bugembe DL, Kateete DP, Jordan IK, Kaleebu P, Ssemwanga D. QuasiFlow: a Nextflow pipeline for analysis of NGS-based HIV-1 drug resistance data. BIOINFORMATICS ADVANCES 2022; 2:vbac089. [PMID: 36699347 PMCID: PMC9722223 DOI: 10.1093/bioadv/vbac089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 11/10/2022] [Accepted: 11/24/2022] [Indexed: 11/30/2022]
Abstract
Summary Next-generation sequencing (NGS) enables reliable detection of resistance mutations in minority variants of human immunodeficiency virus type 1 (HIV-1). There is paucity of evidence for the association of minority resistance to treatment failure, and this requires evaluation. However, the tools for analyzing HIV-1 drug resistance (HIVDR) testing data are mostly web-based which requires uploading data to webservers. This is a challenge for laboratories with internet connectivity issues and instances with restricted data transfer across networks. We present QuasiFlow, a pipeline for reproducible analysis of NGS-based HIVDR testing data across different computing environments. Since QuasiFlow entirely depends on command-line tools and a local copy of the reference database, it eliminates challenges associated with uploading HIV-1 NGS data onto webservers. The pipeline takes raw sequence reads in FASTQ format as input and generates a user-friendly report in PDF/HTML format. The drug resistance scores obtained using QuasiFlow were 100% and 99.12% identical to those obtained using web-based HIVdb program and HyDRA web respectively at a mutation detection threshold of 20%. Availability and implementation QuasiFlow and corresponding documentation are publicly available at https://github.com/AlfredUg/QuasiFlow. The pipeline is implemented in Nextflow and requires regular updating of the Stanford HIV drug resistance interpretation algorithm. Supplementary information Supplementary data are available at Bioinformatics Advances online.
Collapse
Affiliation(s)
| | - Daudi Jjingo
- Department of Computer Science, Makerere University, Kampala 10207, Uganda,African Center of Excellence in Bioinformatics and Data Intensive Sciences, Makerere University, Kampala 10207, Uganda
| | - Ibra Lujumba
- Department of Immunology and Molecular Biology, Makerere University, Kampala 10206, Uganda
| | - Nicholas Bbosa
- Medical Research Council (MRC)/Uganda Virus Research Institute (UVRI) and London School of Hygiene and Tropical Medicine (LSHTM) Uganda Research Unit, Entebbe 31405, Uganda
| | - Daniel L Bugembe
- Medical Research Council (MRC)/Uganda Virus Research Institute (UVRI) and London School of Hygiene and Tropical Medicine (LSHTM) Uganda Research Unit, Entebbe 31405, Uganda
| | - David P Kateete
- Department of Immunology and Molecular Biology, Makerere University, Kampala 10206, Uganda
| | - I King Jordan
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Pontiano Kaleebu
- Department of General Virology, Uganda Virus Research Institute, Entebbe 31405, Uganda,Medical Research Council (MRC)/Uganda Virus Research Institute (UVRI) and London School of Hygiene and Tropical Medicine (LSHTM) Uganda Research Unit, Entebbe 31405, Uganda
| | | |
Collapse
|
9
|
Munyuza C, Ji H, Lee ER. Probe Capture Enrichment Methods for HIV and HCV Genome Sequencing and Drug Resistance Genotyping. Pathogens 2022; 11:693. [PMID: 35745547 PMCID: PMC9228464 DOI: 10.3390/pathogens11060693] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/09/2022] [Accepted: 06/14/2022] [Indexed: 01/01/2023] Open
Abstract
Human immunodeficiency virus (HIV) infections remain a significant public health concern worldwide. Over the years, sophisticated sequencing technologies such as next-generation sequencing (NGS) have emerged and been utilized to monitor the spread of HIV drug resistance (HIVDR), identify HIV drug resistance mutations, and characterize transmission dynamics. Similar applications also apply to the Hepatitis C virus (HCV), another bloodborne viral pathogen with significant intra-host genetic diversity. Several advantages to using NGS over conventional Sanger sequencing include increased data throughput, scalability, cost-effectiveness when batched sample testing is performed, and sensitivity for quantitative detection of minority resistant variants. However, NGS alone may fail to detect genomes from pathogens present in low copy numbers. As with all sequencing platforms, the primary determinant in achieving quality sequencing data is the quality and quantity of the initial template input. Samples containing degraded RNA/DNA and/or low copy number have been a consistent sequencing challenge. To overcome this limitation probe capture enrichment is a method that has recently been employed to target, enrich, and sequence the genome of a pathogen present in low copies, and for compromised specimens that contain poor quality nucleic acids. It involves the hybridization of sequence-specific DNA or RNA probes to a target sequence, which is followed by an enrichment step via PCR to increase the number of copies of the targeted sequences after which the samples are subjected to NGS procedures. This method has been performed on pathogens such as bacteria, fungus, and viruses and allows for the sequencing of complete genomes, with high coverage. Post NGS, data analysis can be performed through various bioinformatics pipelines which can provide information on genetic diversity, genotype, virulence, and drug resistance. This article reviews how probe capture enrichment helps to increase the likelihood of sequencing HIV and HCV samples that contain low viral loads and/or are compromised.
Collapse
Affiliation(s)
- Chantal Munyuza
- National HIV and Retrovirology Laboratories, National Microbiology Laboratory at JC Wilt Infectious Diseases Research Centre, Public Health Agency of Canada, Winnipeg, MB R3E 3R2, Canada; (C.M.); (H.J.)
| | - Hezhao Ji
- National HIV and Retrovirology Laboratories, National Microbiology Laboratory at JC Wilt Infectious Diseases Research Centre, Public Health Agency of Canada, Winnipeg, MB R3E 3R2, Canada; (C.M.); (H.J.)
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| | - Emma R. Lee
- National HIV and Retrovirology Laboratories, National Microbiology Laboratory at JC Wilt Infectious Diseases Research Centre, Public Health Agency of Canada, Winnipeg, MB R3E 3R2, Canada; (C.M.); (H.J.)
| |
Collapse
|