1
|
Guerrero JF, Lesko SL, Evans EL, Sherer NM. Studying Retroviral Life Cycles Using Visible Viruses and Live Cell Imaging. Annu Rev Virol 2024; 11:125-146. [PMID: 38876144 DOI: 10.1146/annurev-virology-100422-012608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2024]
Abstract
Viruses exploit key host cell factors to accomplish each individual stage of the viral replication cycle. To understand viral pathogenesis and speed the development of new antiviral strategies, high-resolution visualization of virus-host interactions is needed to define where and when these events occur within cells. Here, we review state-of-the-art live cell imaging techniques for tracking individual stages of viral life cycles, focusing predominantly on retroviruses and especially human immunodeficiency virus type 1, which is most extensively studied. We describe how visible viruses can be engineered for live cell imaging and how nonmodified viruses can, in some instances, be tracked and studied indirectly using cell biosensor systems. We summarize the ways in which live cell imaging has been used to dissect the retroviral life cycle. Finally, we discuss select challenges for the future including the need for better labeling strategies, increased resolution, and multivariate systems that will allow for the study of full viral replication cycles.
Collapse
Affiliation(s)
- Jorge F Guerrero
- McArdle Laboratory for Cancer Research, Department of Oncology, and Institute for Molecular Virology, University of Wisconsin-Madison, Madison, Wisconsin, USA;
| | - Sydney L Lesko
- McArdle Laboratory for Cancer Research, Department of Oncology, and Institute for Molecular Virology, University of Wisconsin-Madison, Madison, Wisconsin, USA;
| | - Edward L Evans
- Current affiliation: Department of Biomedical Engineering and Center for Quantitative Imaging, University of Wisconsin-Madison, Madison, Wisconsin, USA
- McArdle Laboratory for Cancer Research, Department of Oncology, and Institute for Molecular Virology, University of Wisconsin-Madison, Madison, Wisconsin, USA;
| | - Nathan M Sherer
- McArdle Laboratory for Cancer Research, Department of Oncology, and Institute for Molecular Virology, University of Wisconsin-Madison, Madison, Wisconsin, USA;
| |
Collapse
|
2
|
Loeb EJ, Havlik PL, Elmore ZC, Rosales A, Fergione SM, Gonzalez TJ, Smith TJ, Benkert AR, Fiflis DN, Asokan A. Capsid-mediated control of adeno-associated viral transcription determines host range. Cell Rep 2024; 43:113902. [PMID: 38431840 PMCID: PMC11150003 DOI: 10.1016/j.celrep.2024.113902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 01/13/2024] [Accepted: 02/16/2024] [Indexed: 03/05/2024] Open
Abstract
Adeno-associated virus (AAV) is a member of the genus Dependoparvovirus, which infects a wide range of vertebrate species. Here, we observe that, unlike most primate AAV isolates, avian AAV is transcriptionally silenced in human cells. By swapping the VP1 N terminus from primate AAVs (e.g., AAV8) onto non-mammalian isolates (e.g., avian AAV), we identify a minimal component of the AAV capsid that controls viral transcription and unlocks robust transduction in both human cells and mouse tissue. This effect is accompanied by increased AAV genome chromatin accessibility and altered histone methylation. Proximity ligation analysis reveals that host factors are selectively recruited by the VP1 N terminus of AAV8 but not avian AAV. Notably, these include AAV essential factors implicated in the nuclear factor κB pathway, chromatin condensation, and histone methylation. We postulate that the AAV capsid has evolved mechanisms to recruit host factors to its genome, allowing transcriptional activation in a species-specific manner.
Collapse
Affiliation(s)
- Ezra J Loeb
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Patrick L Havlik
- Department of Surgery, Duke University School of Medicine, Durham, NC, USA
| | - Zachary C Elmore
- Department of Surgery, Duke University School of Medicine, Durham, NC, USA
| | - Alan Rosales
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Sophia M Fergione
- Department of Surgery, Duke University School of Medicine, Durham, NC, USA
| | - Trevor J Gonzalez
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, USA
| | - Timothy J Smith
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, USA
| | - Abigail R Benkert
- Department of Surgery, Duke University School of Medicine, Durham, NC, USA
| | - David N Fiflis
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Aravind Asokan
- Department of Biomedical Engineering, Duke University, Durham, NC, USA; Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, USA; Department of Surgery, Duke University School of Medicine, Durham, NC, USA.
| |
Collapse
|
3
|
Hitchcock AM, Kufel WD, Dwyer KAM, Sidman EF. Lenacapavir: A novel injectable HIV-1 capsid inhibitor. Int J Antimicrob Agents 2024; 63:107009. [PMID: 37844807 DOI: 10.1016/j.ijantimicag.2023.107009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 09/06/2023] [Accepted: 10/01/2023] [Indexed: 10/18/2023]
Abstract
Patients living with multidrug-resistant (MDR) HIV have limited antiretroviral regimen options that provide durable viral suppression. Lenacapavir is a novel first-in-class inhibitor of HIV-1 capsid function with efficacy at various stages of the viral life cycle, and it is indicated for the treatment of MDR HIV-1 infection in combination with optimized background antiretroviral therapy. The favourable pharmacokinetic profile supports an every sixth month dosing interval of subcutaneous lenacapavir after an initial oral loading dose, which may advocate for continued adherence to antiretroviral therapy (ART) through the reduction of daily pill burden. The role of lenacapavir in promoting virologic suppression has been studied in patients with MDR HIV-1 on failing ART at baseline. Lenacapavir was well tolerated in clinical trials with the most common adverse effects including mild to moderate injection site reactions, gastrointestinal symptoms, and headache. Substitutions on the capsid molecule may confer resistance to lenacapavir by changing the binding potential. Cross-resistance to other antiretrovirals has not been observed. The unique mechanism of action, pharmacokinetics, and safety and efficacy of lenacapavir support its use for the management of MDR HIV-1 infection. Current studies are ongoing to evaluate the potential use of subcutaneous lenacapavir for pre-exposure prophylaxis (PrEP). Future studies will confirm the long-term clinical safety, efficacy, and resistance data for lenacapavir.
Collapse
Affiliation(s)
| | - Wesley D Kufel
- Upstate University Hospital, Syracuse, New York; Binghamton University School of Pharmacy and Pharmaceutical Sciences, Johnson City, New York
| | - Keri A Mastro Dwyer
- Binghamton University School of Pharmacy and Pharmaceutical Sciences, Johnson City, New York
| | | |
Collapse
|
4
|
Uchechukwu CF, Anyaduba UL, Udekwu CC, Orababa OQ, Kade AE. Desmoglein-2 and COVID-19 complications: insights into its role as a biomarker, pathogenesis and clinical implications. J Gen Virol 2023; 104. [PMID: 37815458 DOI: 10.1099/jgv.0.001902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/11/2023] Open
Abstract
Desmoglein-2 (DSG2) has emerged as a potential biomarker for coronavirus disease 2019 (COVID-19) complications, particularly cardiac and cardiovascular involvement. The expression of DSG2 in lung tissues has been detected at elevated levels, and circulating DSG2 levels correlate with COVID-19 severity. DSG2 may contribute to myocardial injury, cardiac dysfunction and vascular endothelial dysfunction in COVID-19. Monitoring DSG2 levels could aid in risk stratification, early detection and prognostication of COVID-19 complications. However, further research is required to validate DSG2 as a biomarker. Such research will aim to elucidate its precise role in pathogenesis, establishing standardized assays for its measurement and possibly identifying therapeutic targets.
Collapse
Affiliation(s)
- Chidiebere F Uchechukwu
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
- Warwick Medical School, University of Warwick, Coventry, UK
- School of Life Sciences, University of Warwick, Coventry, UK
- Michael Okpara University of Agriculture, Umudike, Nigeria
| | | | | | | | | |
Collapse
|
5
|
Ay S, Di Nunzio F. HIV-Induced CPSF6 Condensates. J Mol Biol 2023; 435:168094. [PMID: 37061085 DOI: 10.1016/j.jmb.2023.168094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 04/06/2023] [Accepted: 04/08/2023] [Indexed: 04/17/2023]
Abstract
Viruses are obligate parasites that rely on their host's cellular machinery for replication. To facilitate their replication cycle, many viruses have been shown to remodel the cellular architecture by inducing the formation of membraneless organelles (MLOs). Eukaryotic cells have evolved MLOs that are highly dynamic, self-organizing microenvironments that segregate biological processes and increase the efficiency of reactions by concentrating enzymes and substrates. In the context of viral infections, MLOs can be utilized by viruses to complete their replication cycle. This review focuses on the pathway used by the HIV-1 virus to remodel the nuclear landscape of its host, creating viral/host niches that enable efficient viral replication. Specifically, we discuss how the interaction between the HIV-1 capsid and the cellular factor CPSF6 triggers the formation of nuclear MLOs that support nuclear reverse transcription and viral integration in favored regions of the host chromatin. This review compiles current knowledge on the origin of nuclear HIV-MLOs and their role in early post-nuclear entry steps of the HIV-1 replication cycle.
Collapse
Affiliation(s)
- Selen Ay
- Advanced Molecular Virology Unit, Department of Virology, Institut Pasteur, Université Paris Cité, 75015 Paris, France
| | - Francesca Di Nunzio
- Advanced Molecular Virology Unit, Department of Virology, Institut Pasteur, Université Paris Cité, 75015 Paris, France.
| |
Collapse
|
6
|
Gutiérrez AB, Machorro-Martínez BI, Quintana J, Armas-Pérez JC, Mendoza P, Lucero JME, Chapela GA. HIV-1 immature virion and other networks formation with simple patchy disks. Mol Phys 2022. [DOI: 10.1080/00268976.2022.2129759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2022]
Affiliation(s)
- Anthony B. Gutiérrez
- Departamento de Química, Universidad Autónoma Metropolitana-Iztapalapa, México, México
| | | | - Jaqueline Quintana
- Instituto de Química, Universidad Nacional Autónoma de México, Coyoacán, Ciudad de México
| | - Julio C. Armas-Pérez
- División de Ciencias e Ingenierías, Campus León, Universidad de Guanajuato, León, México
| | - Paola Mendoza
- Departamento de Física, Universidad Autónoma Metropolitana-Iztapalapa, México, México
| | | | - Gustavo A. Chapela
- Departamento de Física, Universidad Autónoma Metropolitana-Iztapalapa, México, México
| |
Collapse
|
7
|
Gruenke PR, Aneja R, Welbourn S, Ukah OB, Sarafianos SG, Burke DH, Lange MJ. Selection and identification of an RNA aptamer that specifically binds the HIV-1 capsid lattice and inhibits viral replication. Nucleic Acids Res 2022; 50:1701-1717. [PMID: 35018437 PMCID: PMC8860611 DOI: 10.1093/nar/gkab1293] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 11/23/2021] [Accepted: 12/16/2021] [Indexed: 01/25/2023] Open
Abstract
The HIV-1 capsid core participates in several replication processes. The mature capsid core is a lattice composed of capsid (CA) monomers thought to assemble first into CA dimers, then into ∼250 CA hexamers and 12 CA pentamers. CA assembly requires conformational flexibility of each unit, resulting in the presence of unique, solvent-accessible surfaces. Significant advances have improved our understanding of the roles of the capsid core in replication; however, the contributions of individual CA assembly forms remain unclear and there are limited tools available to evaluate these forms in vivo. Here, we have selected aptamers that bind CA lattice tubes. We describe aptamer CA15-2, which selectively binds CA lattice, but not CA monomer or CA hexamer, suggesting that it targets an interface present and accessible only on CA lattice. CA15-2 does not compete with PF74 for binding, indicating that it likely binds a non-overlapping site. Furthermore, CA15-2 inhibits HIV-1 replication when expressed in virus producer cells, but not target cells, suggesting that it binds a biologically-relevant site during virus production that is either not accessible during post-entry replication steps or is accessible but unaltered by aptamer binding. Importantly, CA15-2 represents the first aptamer that specifically recognizes the HIV-1 CA lattice.
Collapse
Affiliation(s)
- Paige R Gruenke
- Department of Biochemistry, University of Missouri, Columbia, MO 65211, USA.,Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
| | - Rachna Aneja
- Department of Molecular Microbiology & Immunology, School of Medicine, University of Missouri, Columbia, MO 65211, USA
| | - Sarah Welbourn
- Emory Vaccine Center and Yerkes National Primate Research Center, Emory University, Atlanta, GA 30329, USA
| | - Obiaara B Ukah
- Department of Molecular Microbiology & Immunology, School of Medicine, University of Missouri, Columbia, MO 65211, USA
| | - Stefan G Sarafianos
- Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Donald H Burke
- Department of Biochemistry, University of Missouri, Columbia, MO 65211, USA.,Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA.,Department of Molecular Microbiology & Immunology, School of Medicine, University of Missouri, Columbia, MO 65211, USA
| | - Margaret J Lange
- Department of Molecular Microbiology & Immunology, School of Medicine, University of Missouri, Columbia, MO 65211, USA
| |
Collapse
|
8
|
Abstract
Nuclear pore complexes (NPCs) at the surface of nuclear membranes play a critical role in regulating the transport of both small molecules and macromolecules between the cell nucleus and cytoplasm via their multilayered spiderweb-like central channel. During mitosis, nuclear envelope breakdown leads to the rapid disintegration of NPCs, allowing some NPC proteins to play crucial roles in the kinetochore structure, spindle bipolarity, and centrosome homeostasis. The aberrant functioning of nucleoporins (Nups) and NPCs has been associated with autoimmune diseases, viral infections, neurological diseases, cardiomyopathies, and cancers, especially leukemia. This Special Issue highlights several new contributions to the understanding of NPC proteostasis.
Collapse
|