1
|
Morsica G, Messina E, Bagaglio S, Galli L, Lolatto R, Sampaolo M, Barakat M, Israel RJ, Castagna A, Clementi N. Clinico-Virological Outcomes and Mutational Profile of SARS-CoV-2 in Adults Treated with Ribavirin Aerosol for COVID-19 Pneumonia. Microorganisms 2024; 12:1146. [PMID: 38930529 PMCID: PMC11205916 DOI: 10.3390/microorganisms12061146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/27/2024] [Accepted: 05/30/2024] [Indexed: 06/28/2024] Open
Abstract
The emergence of new SARS-CoV-2 variants can affect vaccine efficacy, laboratory diagnosis and the therapies already available, triggering interest in the search for antiviral agents for SARS-CoV-2 infections. Ribavirin (RBV) is a broad-spectrum antiviral with demonstrated in vitro activity against multiple viruses, including SARS-CoV-2. This retrospective study evaluated the dynamics and viral clearance of SARS-CoV-2 in hospitalised adult participants (PTs) with COVID-19 pneumonia who received an RBV aerosol within a compassionate use study. The impact of RBV on the clinical outcome and the mutational profile of SARS-CoV-2 was also assessed. The median RNA values measured in nine PTs included in this study decreased from baseline to discharge (at BL, threshold cycle (Ct) = 22.4, IQR 19.84-5.07; at discharge, Ct = 27.92, IQR 26.43-36.11), with a significant decline in the Ct value evaluated by Friedman rank ANOVA analysis, p = 0.032. Seven out of nine PTs experienced a clinical improvement, while two PTs deceased during hospitalisation. In PTs with a favourable outcome, the virus clearance rate at discharge was 28.6%. The cumulative clearance rate was 71.4% within 14 days from discharge. A mutational pattern after RBV was detected in three out of five PTs in whom whole-genome sequencing was available. Our findings suggest that RBV limits SARS-CoV-2 replication, possibly resulting in a favourable clinical outcome. Ribavirin may also contribute to the mutational spectrum of SARS-CoV-2.
Collapse
Affiliation(s)
- Giulia Morsica
- Unit of Infectious Diseases, IRCCS San Raffaele Hospital, 20132 Milan, Italy; (E.M.); (S.B.); (L.G.); (R.L.); (A.C.)
| | - Emanuela Messina
- Unit of Infectious Diseases, IRCCS San Raffaele Hospital, 20132 Milan, Italy; (E.M.); (S.B.); (L.G.); (R.L.); (A.C.)
| | - Sabrina Bagaglio
- Unit of Infectious Diseases, IRCCS San Raffaele Hospital, 20132 Milan, Italy; (E.M.); (S.B.); (L.G.); (R.L.); (A.C.)
| | - Laura Galli
- Unit of Infectious Diseases, IRCCS San Raffaele Hospital, 20132 Milan, Italy; (E.M.); (S.B.); (L.G.); (R.L.); (A.C.)
| | - Riccardo Lolatto
- Unit of Infectious Diseases, IRCCS San Raffaele Hospital, 20132 Milan, Italy; (E.M.); (S.B.); (L.G.); (R.L.); (A.C.)
| | - Michela Sampaolo
- Laboratory of Microbiology and Virology, IRCCS San Raffaele Hospital, 20132 Milan, Italy; (M.S.); (N.C.)
| | | | | | - Antonella Castagna
- Unit of Infectious Diseases, IRCCS San Raffaele Hospital, 20132 Milan, Italy; (E.M.); (S.B.); (L.G.); (R.L.); (A.C.)
- Faculty of Medicine and Surgery, Vita-Salute University, 20132 Milan, Italy
| | - Nicola Clementi
- Laboratory of Microbiology and Virology, IRCCS San Raffaele Hospital, 20132 Milan, Italy; (M.S.); (N.C.)
- Laboratory of Microbiology and Virology, Vita-Salute San Raffaele University, 20132 Milan, Italy
| |
Collapse
|
2
|
Salem HF, Moubarak GA, Ali AA, Salama AAA, Salama AH. Budesonide-Loaded Bilosomes as a Targeted Delivery Therapeutic Approach Against Acute Lung Injury in Rats. J Pharm Sci 2023; 112:760-770. [PMID: 36228754 PMCID: PMC9549718 DOI: 10.1016/j.xphs.2022.10.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 10/02/2022] [Accepted: 10/02/2022] [Indexed: 11/17/2022]
Abstract
Budesonide (BUD), a glucocorticoids drug, inhibits all steps in the inflammatory response. It can reduce and treat inflammation and other symptoms associated with acute lung injury such as COVID-19. Loading BUD into bilosomes could boost its therapeutic activity, and lessen its frequent administration and side effects. Different bilosomal formulations were prepared where the independent variables were lipid type (Cholesterol, Phospholipon 80H, L-alpha phosphatidylcholine, and Lipoid S45), bile salt type (Na cholate and Na deoxycholate), and drug concentration (10, 20 mg). The measured responses were: vesicle size, entrapment efficiency, and release efficiency. One optimum formulation (composed of cholesterol, Na cholate, and 10 mg of BUD) was selected and investigated for its anti-inflammatory efficacy in vivo using Wistar albino male rats. Randomly allocated rats were distributed into four groups: The first: normal control group and received intranasal saline, the second one acted as the acute lung injury model received intranasal single dose of 2 mg/kg potassium dichromate (PD). Whereas the third and fourth groups received the market product (Pulmicort® nebulising suspension 0.5 mg/ml) and the optimized formulation (0.5 mg/kg; intranasal) for 7 days after PD instillation, respectively. Results showed that the optimized formulation decreased the pro-inflammatory cytokines TNF-α, and TGF-β contents as well as reduced PKC content in lung. These findings suggest the potentiality of BUD-loaded bilosomes for the treatment of acute lung injury with the ability of inhibiting the pro-inflammatory cytokines induced COVID-19.
Collapse
Affiliation(s)
- Heba F Salem
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Ghada Abdelsabour Moubarak
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ahram Canadian University, 6(th) of October City, Cairo, Egypt
| | - Adel A Ali
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Abeer A A Salama
- Pharmacology Department, National Research Centre, Dokki, Cairo 12622, Egypt
| | - Alaa H Salama
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ahram Canadian University, 6(th) of October City, Cairo, Egypt; Pharmaceutical Technology Department, National Research Centre, Dokki, Cairo 12622, Egypt.
| |
Collapse
|
3
|
Bafadhel M, Faner R, Taillé C, Russell REK, Welte T, Barnes PJ, Agustí A. Inhaled corticosteroids for the treatment of COVID-19. Eur Respir Rev 2022; 31:220099. [PMID: 36450371 PMCID: PMC9724831 DOI: 10.1183/16000617.0099-2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 10/09/2022] [Indexed: 12/02/2022] Open
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has caused severe illness and mortality for millions worldwide. Despite the development, approval and rollout of vaccination programmes globally to prevent infection by SARS-CoV-2 and the development of coronavirus disease 2019 (COVID-19), treatments are still urgently needed to improve outcomes. Early in the pandemic it was observed that patients with pre-existing asthma or COPD were underrepresented among those with COVID-19. Evidence from clinical studies indicates that the inhaled corticosteroids (ICS) routinely taken for asthma and COPD could have had a protective role in preventing severe COVID-19 and, therefore, may be a promising treatment for COVID-19. This review summarises the evidence supporting the beneficial effects of ICS on outcomes in patients with COVID-19 and explores the potential protective mechanisms.
Collapse
Affiliation(s)
- Mona Bafadhel
- King's Centre for Lung Health, School of Immunology and Microbial Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Rosa Faner
- CIBER Enfermedades Respiratorias, IDIBAPS, Barcelona, Spain
| | - Camille Taillé
- Department of Pulmonary Diseases, University Hospital Bichat-Claude Bernard, AP-HP Nord, University of Paris, Paris, France
| | - Richard E K Russell
- King's Centre for Lung Health, School of Immunology and Microbial Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Tobias Welte
- Department of Pulmonary and Infectious Diseases, Hannover University School of Medicine, Hannover, Germany
| | - Peter J Barnes
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Alvar Agustí
- Cátedra de Salud Respiratoria (University of Barcelona), Respiratory Institute (Hospital Clinic Barcelona), IDIBAPS and CIBERES, Barcelona, Spain
| |
Collapse
|
4
|
Cermola F, Amoroso F, Saracino F, Ibello E, De Cesare D, Fico A, Cobellis G, Scalera E, Casiraghi C, D'Aniello C, Patriarca EJ, Minchiotti G. Stabilization of cell-cell adhesions prevents symmetry breaking and locks in pluripotency in 3D gastruloids. Stem Cell Reports 2022; 17:2548-2564. [PMID: 36306780 PMCID: PMC9669408 DOI: 10.1016/j.stemcr.2022.09.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 09/26/2022] [Accepted: 09/27/2022] [Indexed: 11/06/2022] Open
Abstract
3D embryonic stem cell (ESC) aggregates self-organize into embryo-like structures named gastruloids that recapitulate the axial organization of post-implantation embryos. Crucial in this process is the symmetry-breaking event that leads to the emergence of asymmetry and spatially ordered structures from homogeneous cell aggregates. Here, we show that budesonide, a glucocorticoid drug widely used to treat asthma, prevents ESC aggregates to break symmetry. Mechanistically, the effect of budesonide is glucocorticoid receptor independent. RNA sequencing and lineage fate analysis reveal that budesonide counteracts exit from pluripotency and modifies the expression of a large set of genes associated with cell migration, A-P axis formation, and WNT signaling. This correlates with reduced phenotypic and molecular cell heterogeneity, persistence of E-CADHERIN at the cell-cell interface, and cell aggregate compaction. Our findings reveal that cell-cell adhesion properties control symmetry breaking and cell fate transition in 3D gastruloids and suggest a potential adverse effect of budesonide on embryo development.
Collapse
Affiliation(s)
- Federica Cermola
- Stem Cell Fate Laboratory, Institute of Genetics and Biophysics "A. Buzzati Traverso", CNR, Naples, Italy
| | - Filomena Amoroso
- Stem Cell Fate Laboratory, Institute of Genetics and Biophysics "A. Buzzati Traverso", CNR, Naples, Italy; Department of Precision Medicine, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Federica Saracino
- Stem Cell Fate Laboratory, Institute of Genetics and Biophysics "A. Buzzati Traverso", CNR, Naples, Italy
| | - Eduardo Ibello
- Stem Cell Fate Laboratory, Institute of Genetics and Biophysics "A. Buzzati Traverso", CNR, Naples, Italy; Department of Precision Medicine, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Dario De Cesare
- Stem Cell Fate Laboratory, Institute of Genetics and Biophysics "A. Buzzati Traverso", CNR, Naples, Italy
| | - Annalisa Fico
- Stem Cell Fate Laboratory, Institute of Genetics and Biophysics "A. Buzzati Traverso", CNR, Naples, Italy
| | - Gilda Cobellis
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Enrica Scalera
- Pharmacology and Toxicology Department, Corporate Pre-clinical R&D, Chiesi, Parma, Italy
| | - Costanza Casiraghi
- Pharmacology and Toxicology Department, Corporate Pre-clinical R&D, Chiesi, Parma, Italy
| | - Cristina D'Aniello
- Stem Cell Fate Laboratory, Institute of Genetics and Biophysics "A. Buzzati Traverso", CNR, Naples, Italy
| | - Eduardo Jorge Patriarca
- Stem Cell Fate Laboratory, Institute of Genetics and Biophysics "A. Buzzati Traverso", CNR, Naples, Italy.
| | - Gabriella Minchiotti
- Stem Cell Fate Laboratory, Institute of Genetics and Biophysics "A. Buzzati Traverso", CNR, Naples, Italy.
| |
Collapse
|
5
|
Polkinghorne A, Branley JM. Medications for early treatment of COVID-19 in Australia. Med J Aust 2022; 217 Suppl 9:S7-S13. [PMID: 36273391 PMCID: PMC9828711 DOI: 10.5694/mja2.51750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 09/13/2022] [Accepted: 09/20/2022] [Indexed: 11/07/2022]
Abstract
Early treatment of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections can prevent hospitalisation and death in patients with coronavirus disease 2019 (COVID-19) who have one or more risk factors for serious COVID-19 progression. While early treatment presents a range of logistical challenges, clinicians are nevertheless aided by a growing number of approved medications for early treatment of COVID-19. Medications include drugs that inhibit SARS-CoV-2 viral replication, anti-SARS-CoV-2 monoclonal antibody formulations that provide passive immunisation, and immunomodulatory drugs that suppress the body's inflammatory response. Several drugs with different modes of action are approved in Australia for early treatment of COVID-19, including nirmatrelvir plus ritonavir, molnupiravir, and monoclonal antibody formulations. Although these drugs are recommended, clinicians are encouraged to remain up to date on current indications, contraindications and the clinical efficacy of these drugs against SARS-CoV-2 variants currently circulating in communities. Other treatments, including hydroxychloroquine, ivermectin and dietary supplements, have been popularised but are not recommended for early treatment of COVID-19. As new drugs and new data on use of existing approved drugs become available, clinicians face a growing challenge in determining the optimal treatments from the array of options. As it stands, early treatment of COVID-19 needs to be individualised depending on age, pregnancy status, existing medications, and renal and liver disease status. Future treatments in development might have roles in patients with lower risk profiles and in reducing transmission as we learn to live with SARS-CoV-2.
Collapse
Affiliation(s)
- Adam Polkinghorne
- Pathology WestNepean HospitalSydneyNSW,Nepean Clinical SchoolUniversity of SydneySydneyNSW
| | - James M Branley
- Pathology WestNepean HospitalSydneyNSW,Nepean Clinical SchoolUniversity of SydneySydneyNSW
| |
Collapse
|
6
|
Abstract
PURPOSE OF REVIEW Chronic obstructive pulmonary disease (COPD) and COVID-19 have many potentially negative interrelationships, which may influence the course of infection and clinical outcomes. The aim of this review is to provide clinicians with an up-to-date perspective of the complex interactions between COPD and COVID-19. RECENT FINDINGS We consider mechanisms that could increase SARS-CoV-2 infection susceptibility in COPD, including increased ACE2 expression, reduced antiviral defence and dysfunctional immunity. We review evidence that COPD is associated with worse clinical outcomes from COVID-19 in analyses that have adjusted for confounding factors, and describe the mechanisms responsible. We discuss the use of inhaled corticosteroids in the context of susceptibility to COVID-19, and consider the impact of COVID-19 on the usual care of COPD patients. SUMMARY The current review highlights the evidence that COPD patients have worse outcomes from COVID-19, and the multiple mechanisms responsible.
Collapse
Affiliation(s)
- Dave Singh
- Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester and Manchester University NHS Foundation Trust
- Medicines Evaluation Unit, The Langley Building, Manchester, UK
| | - Alexander G Mathioudakis
- Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester and Manchester University NHS Foundation Trust
| | - Andrew Higham
- Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester and Manchester University NHS Foundation Trust
| |
Collapse
|
7
|
White JM, Schiffer JT, Bender Ignacio RA, Xu S, Kainov D, Ianevski A, Aittokallio T, Frieman M, Olinger GG, Polyak SJ. Drug Combinations as a First Line of Defense against Coronaviruses and Other Emerging Viruses. mBio 2021; 12:e0334721. [PMID: 34933447 PMCID: PMC8689562 DOI: 10.1128/mbio.03347-21] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The world was unprepared for coronavirus disease 2019 (COVID-19) and remains ill-equipped for future pandemics. While unprecedented strides have been made developing vaccines and treatments for COVID-19, there remains a need for highly effective and widely available regimens for ambulatory use for novel coronaviruses and other viral pathogens. We posit that a priority is to develop pan-family drug cocktails to enhance potency, limit toxicity, and avoid drug resistance. We urge cocktail development for all viruses with pandemic potential both in the short term (<1 to 2 years) and longer term with pairs of drugs in advanced clinical testing or repurposed agents approved for other indications. While significant efforts were launched against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), in vitro and in the clinic, many studies employed solo drugs and had disappointing results. Here, we review drug combination studies against SARS-CoV-2 and other viruses and introduce a model-driven approach to assess drug pairs with the highest likelihood of clinical efficacy. Where component agents lack sufficient potency, we advocate for synergistic combinations to achieve therapeutic levels. We also discuss issues that stymied therapeutic progress against COVID-19, including testing of agents with low likelihood of efficacy late in clinical disease and lack of focus on developing virologic surrogate endpoints. There is a need to expedite efficient clinical trials testing drug combinations that could be taken at home by recently infected individuals and exposed contacts as early as possible during the next pandemic, whether caused by a coronavirus or another viral pathogen. The approach herein represents a proactive plan for global viral pandemic preparedness.
Collapse
Affiliation(s)
- Judith M. White
- University of Virginia, Department of Cell Biology, Charlottesville, Virginia, USA
- University of Virginia, Department of Microbiology, Charlottesville, Virginia, USA
| | - Joshua T. Schiffer
- University of Washington, Division of Allergy and Infectious Diseases, Seattle, Washington, USA
- Fred Hutchinson Cancer Research Center, Vaccine and Infectious Diseases Division, Seattle, Washington, USA
| | - Rachel A. Bender Ignacio
- University of Washington, Division of Allergy and Infectious Diseases, Seattle, Washington, USA
- Fred Hutchinson Cancer Research Center, Vaccine and Infectious Diseases Division, Seattle, Washington, USA
| | - Shuang Xu
- Fred Hutchinson Cancer Research Center, Vaccine and Infectious Diseases Division, Seattle, Washington, USA
| | - Denis Kainov
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
- Institute of Technology, University of Tartu, Tartu, Estonia
- Institute for Molecular Medicine Finland, FIMM, University of Helsinki, Helsinki, Finland
| | - Aleksandr Ianevski
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
- Institute for Molecular Medicine Finland, FIMM, University of Helsinki, Helsinki, Finland
| | - Tero Aittokallio
- Institute for Molecular Medicine Finland, FIMM, University of Helsinki, Helsinki, Finland
- Oslo Centre for Biostatistics and Epidemiology (OCBE), University of Oslo, Oslo, Norway
- Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Matthew Frieman
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | | | - Stephen J. Polyak
- Virology Division, Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
- Department of Global Health, University of Washington, Seattle, Washington, USA
- Department of Microbiology, University of Washington, Seattle, Washington, USA
| |
Collapse
|
8
|
Halpin DMG, Vogelmeier CF, Agusti A. COVID-19 and COPD: lessons beyond the pandemic. Am J Physiol Lung Cell Mol Physiol 2021; 321:L978-L982. [PMID: 34585618 PMCID: PMC8598249 DOI: 10.1152/ajplung.00386.2021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Early in the COVID pandemic there were concerns about the outcomes for patients with COPD who developed COVID-19. Although the pandemic has made the diagnosis and routine management of COPD more difficult, the risk of patients developing COVID or of having poor outcomes is less than anticipated and there have been some unexpected findings that may lead to significant improvements in the management of COPD in future.
Collapse
Affiliation(s)
- David M G Halpin
- University of Exeter Medical School, College of Medicine and Health, University of Exeter, Exeter, United Kingdom
| | - Claus F Vogelmeier
- Department of Medicine, Pulmonary and Critical Care Medicine, University Medical Center Giessen and Marburg, Member of the German Center for Lung Research (DZL), Philipps-University Marburg, Marburg, Germany
| | - Alvar Agusti
- Cátedra Salut Respiratoria (University of Barcelona), Respiratory Institute (Hospital Clinic), IDIBAPS, CIBERES, Barcelona, Spain
| |
Collapse
|