1
|
Hurtado JI, López-Radcenco A, Izquierdo-García JL, Rodríguez F, Moyna G, Greif G, Nin N. A comparative NMR-based metabolomics study of lung parenchyma of severe COVID-19 patients. Front Mol Biosci 2023; 10:1295216. [PMID: 38033387 PMCID: PMC10684917 DOI: 10.3389/fmolb.2023.1295216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 10/30/2023] [Indexed: 12/02/2023] Open
Abstract
COVID-19 was the most significant infectious-agent-related cause of death in the 2020-2021 period. On average, over 60% of those admitted to ICU facilities with this disease died across the globe. In severe cases, COVID-19 leads to respiratory and systemic compromise, including pneumonia-like symptoms, acute respiratory distress syndrome, and multiorgan failure. While the upper respiratory tract and lungs are the principal sites of infection and injury, most studies on the metabolic signatures in COVID-19 patients have been carried out on serum and plasma samples. In this report we attempt to characterize the metabolome of lung parenchyma extracts from fatal COVID-19 cases and compare them with that from other respiratory diseases. Our findings indicate that the metabolomic profiles from fatal COVID-19 and non-COVID-19 cases are markedly different, with the former being the result of increased lactate and amino acid metabolism, altered energy pathways, oxidative stress, and inflammatory response. Overall, these findings provide additional insights into the pathophysiology of COVID-19 that could lead to the development of targeted therapies for the treatment of severe cases of the disease, and further highlight the potential of metabolomic approaches in COVID-19 research.
Collapse
Affiliation(s)
- Joaquín I. Hurtado
- Laboratorio de Interacción Hospedero Patógeno, Unidad de Biología Molecular, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | | | - José Luis Izquierdo-García
- Grupo de Resonancia Magnética Nuclear e Imagen en Biomedicina, Instituto Pluridisciplinar, Universidad Complutense de Madrid, Madrid, Spain
- Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense de Madrid, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
| | - Fernando Rodríguez
- Centro de Referencia COVID 1, Hospital Español, Administración de Servicios de Salud del Estado, Montevideo, Uruguay
| | - Guillermo Moyna
- Departamento de Química del Litoral, Universidad de la República, Paysandú, Uruguay
| | - Gonzalo Greif
- Laboratorio de Interacción Hospedero Patógeno, Unidad de Biología Molecular, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Nicolás Nin
- Centro de Referencia COVID 1, Hospital Español, Administración de Servicios de Salud del Estado, Montevideo, Uruguay
- Centro de Referencia COVID 2, Instituto Nacional de Ortopedia y Traumatología, Administración de Servicios de Salud del Estado, Montevideo, Uruguay
| |
Collapse
|
2
|
Turbett SE, Tomkins-Tinch CH, Anahtar MN, Dugdale CM, Hyle EP, Shenoy ES, Shaw B, Egbuonu K, Bowman KA, Zachary KC, Adams GC, Hooper DC, Ryan ET, LaRocque RC, Bassett IV, Triant VA, Siddle KJ, Rosenberg E, Sabeti PC, Schaffner SF, MacInnis BL, Lemieux JE, Charles RC. Distinguishing Severe Acute Respiratory Syndrome Coronavirus 2 Persistence and Reinfection: A Retrospective Cohort Study. Clin Infect Dis 2023; 76:850-860. [PMID: 36268576 PMCID: PMC9619827 DOI: 10.1093/cid/ciac830] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 09/06/2022] [Accepted: 10/17/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) reinfection is poorly understood, partly because few studies have systematically applied genomic analysis to distinguish reinfection from persistent RNA detection related to initial infection. We aimed to evaluate the characteristics of SARS-CoV-2 reinfection and persistent RNA detection using independent genomic, clinical, and laboratory assessments. METHODS All individuals at a large academic medical center who underwent a SARS-CoV-2 nucleic acid amplification test (NAAT) ≥45 days after an initial positive test, with both tests between 14 March and 30 December 2020, were analyzed for potential reinfection. Inclusion criteria required having ≥2 positive NAATs collected ≥45 days apart with a cycle threshold (Ct) value <35 at repeat testing. For each included subject, likelihood of reinfection was assessed by viral genomic analysis of all available specimens with a Ct value <35, structured Ct trajectory criteria, and case-by-case review by infectious diseases physicians. RESULTS Among 1569 individuals with repeat SARS-CoV-2 testing ≥45 days after an initial positive NAAT, 65 (4%) met cohort inclusion criteria. Viral genomic analysis characterized mutations present and was successful for 14/65 (22%) subjects. Six subjects had genomically supported reinfection, and 8 subjects had genomically supported persistent RNA detection. Compared to viral genomic analysis, clinical and laboratory assessments correctly distinguished reinfection from persistent RNA detection in 12/14 (86%) subjects but missed 2/6 (33%) genomically supported reinfections. CONCLUSIONS Despite good overall concordance with viral genomic analysis, clinical and Ct value-based assessments failed to identify 33% of genomically supported reinfections. Scaling-up genomic analysis for clinical use would improve detection of SARS-CoV-2 reinfections.
Collapse
Affiliation(s)
- Sarah E Turbett
- Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA.,Harvard Medical School, Boston, Massachusetts, USA.,Department of Pathology, Massachusetts General Hospital (MGH), Boston, Massachusetts, USA
| | - Christopher H Tomkins-Tinch
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, Massachusetts, USA.,Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, USA
| | - Melis N Anahtar
- Department of Pathology, Massachusetts General Hospital (MGH), Boston, Massachusetts, USA.,Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, Massachusetts, USA
| | - Caitlin M Dugdale
- Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA.,Harvard Medical School, Boston, Massachusetts, USA.,Medical Practice Evaluation Center, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Emily P Hyle
- Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA.,Harvard Medical School, Boston, Massachusetts, USA.,Medical Practice Evaluation Center, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Erica S Shenoy
- Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA.,Harvard Medical School, Boston, Massachusetts, USA.,Infection Control Unit, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Bennett Shaw
- Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA.,Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, Massachusetts, USA.,David Geffen School of Medicine at the University of California Los Angeles, Los Angeles, California, USA
| | | | - Kathryn A Bowman
- Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA.,Harvard Medical School, Boston, Massachusetts, USA.,Ragon Institute of MGH, MIT, and Harvard, Cambridge, Massachusetts, USA
| | - Kimon C Zachary
- Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA.,Harvard Medical School, Boston, Massachusetts, USA.,Infection Control Unit, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Gordon C Adams
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, Massachusetts, USA
| | - David C Hooper
- Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA.,Harvard Medical School, Boston, Massachusetts, USA.,Infection Control Unit, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Edward T Ryan
- Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA.,Harvard Medical School, Boston, Massachusetts, USA.,Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts, USA
| | - Regina C LaRocque
- Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA.,Harvard Medical School, Boston, Massachusetts, USA
| | - Ingrid V Bassett
- Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA.,Harvard Medical School, Boston, Massachusetts, USA.,Medical Practice Evaluation Center, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Virginia A Triant
- Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA.,Harvard Medical School, Boston, Massachusetts, USA.,Division of General Internal Medicine, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Katherine J Siddle
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, Massachusetts, USA
| | - Eric Rosenberg
- Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA.,Harvard Medical School, Boston, Massachusetts, USA.,Department of Pathology, Massachusetts General Hospital (MGH), Boston, Massachusetts, USA
| | - Pardis C Sabeti
- FAS Center for Systems Biology, Harvard University, Boston, Massachusetts, USA
| | - Stephen F Schaffner
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, Massachusetts, USA.,Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, USA.,Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts, USA
| | - Bronwyn L MacInnis
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, Massachusetts, USA.,Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts, USA
| | - Jacob E Lemieux
- Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA.,Harvard Medical School, Boston, Massachusetts, USA.,Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, Massachusetts, USA
| | - Richelle C Charles
- Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA.,Harvard Medical School, Boston, Massachusetts, USA.,Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts, USA
| |
Collapse
|
3
|
High-depth sequencing characterization of viral dynamics across tissues in fatal COVID-19 reveals compartmentalized infection. Nat Commun 2023; 14:574. [PMID: 36732505 PMCID: PMC9894515 DOI: 10.1038/s41467-022-34256-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 10/17/2022] [Indexed: 02/04/2023] Open
Abstract
SARS-CoV-2 distribution and circulation dynamics are not well understood due to challenges in assessing genomic data from tissue samples. We develop experimental and computational workflows for high-depth viral sequencing and high-resolution genomic analyses from formalin-fixed, paraffin-embedded tissues and apply them to 120 specimens from six subjects with fatal COVID-19. To varying degrees, viral RNA is present in extrapulmonary tissues from all subjects. The majority of the 180 viral variants identified within subjects are unique to individual tissue samples. We find more high-frequency (>10%) minor variants in subjects with a longer disease course, with one subject harboring ten such variants, exclusively in extrapulmonary tissues. One tissue-specific high-frequency variant was a nonsynonymous mutation in the furin-cleavage site of the spike protein. Our findings suggest adaptation and/or compartmentalized infection, illuminating the basis of extrapulmonary COVID-19 symptoms and potential for viral reservoirs, and have broad utility for investigating human pathogens.
Collapse
|
4
|
Panzera Y, Mirazo S, Baz M, Techera C, Grecco S, Cancela F, Fuques E, Condon E, Calleros L, Camilo N, Fregossi A, Vaz I, Pessina P, Deshpande N, Pérez R, Benech A. Detection and genome characterisation of SARS-CoV-2 P.6 lineage in dogs and cats living with Uruguayan COVID-19 patients. Mem Inst Oswaldo Cruz 2023; 117:e220177. [PMID: 36651456 PMCID: PMC9870267 DOI: 10.1590/0074-02760220177] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 11/07/2022] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections in domestic animals have occurred from the beginning of the pandemic to the present time. Therefore, from the perspective of One Health, investigating this topic is of global scientific and public interest. OBJECTIVES The present study aimed to determine the presence of SARS-CoV-2 in domestic animals whose owners had coronavirus disease 2019 (COVID-19). METHODS Nasopharyngeal and faecal samples were collected in Uruguay. Using quantitative polymerase chain reaction (qPCR), we analysed the presence of the SARS-CoV-2 genome. Complete genomes were obtained using ARTIC enrichment and Illumina sequencing. Sera samples were used for virus neutralisation assays. FINDINGS SARS-CoV-2 was detected in an asymptomatic dog and a cat. Viral genomes were identical and belonged to the P.6 Uruguayan SARS-CoV-2 lineage. Only antiserum from the infected cat contained neutralising antibodies against the ancestral SARS-CoV-2 strain and showed cross-reactivity against the Delta but not against the B.A.1 Omicron variant. MAIN CONCLUSIONS Domestic animals and the human SARS-CoV-2 P.6 variant comparison evidence a close relationship and gene flow between them. Different SARS-CoV-2 lineages infect dogs and cats, and no specific variants are adapted to domestic animals. This first record of SARS-CoV-2 in domestic animals from Uruguay supports regular surveillance of animals close to human hosts.
Collapse
Affiliation(s)
- Yanina Panzera
- Universidad de la República, Facultad de Ciencias, Instituto de Biología, Departamento de Biología Animal, Sección Genética Evolutiva, Montevideo, Uruguay,+ Corresponding author:
| | - Santiago Mirazo
- Universidad de la República, Facultad de Ciencias, Sección Virología, Montevideo, Uruguay,Universidad de la República, Facultad de Medicina, Instituto de Higiene, Departamento de Bacteriología y Virología, Montevideo, Uruguay
| | - Mariana Baz
- WHO Collaborating Centre for Reference and Research on Influenza, Peter Doherty Institute, Melbourne, Victoria, Australia
| | - Claudia Techera
- Universidad de la República, Facultad de Ciencias, Instituto de Biología, Departamento de Biología Animal, Sección Genética Evolutiva, Montevideo, Uruguay
| | - Sofía Grecco
- Universidad de la República, Facultad de Ciencias, Instituto de Biología, Departamento de Biología Animal, Sección Genética Evolutiva, Montevideo, Uruguay
| | - Florencia Cancela
- Universidad de la República, Facultad de Ciencias, Sección Virología, Montevideo, Uruguay
| | - Eddie Fuques
- Universidad de la República, Facultad de Ciencias, Instituto de Biología, Departamento de Biología Animal, Sección Genética Evolutiva, Montevideo, Uruguay
| | - Emma Condon
- Universidad de la República, Facultad de Ciencias, Instituto de Biología, Departamento de Biología Animal, Sección Genética Evolutiva, Montevideo, Uruguay
| | - Lucía Calleros
- Universidad de la República, Facultad de Ciencias, Instituto de Biología, Departamento de Biología Animal, Sección Genética Evolutiva, Montevideo, Uruguay
| | - Natalia Camilo
- Universidad de la República, Facultad de Veterinaria, Unidad de Clínica y Hospital Veterinario, Montevideo, Uruguay
| | - Andrea Fregossi
- Universidad de la República, Facultad de Veterinaria, Unidad de Clínica y Hospital Veterinario, Montevideo, Uruguay
| | - Inés Vaz
- Universidad de la República, Facultad de Veterinaria, Unidad de Clínica y Hospital Veterinario, Montevideo, Uruguay
| | - Paula Pessina
- Universidad de la República, Facultad de Veterinaria, Laboratorio Clínico del Hospital Veterinario, Montevideo, Uruguay
| | - Nikita Deshpande
- WHO Collaborating Centre for Reference and Research on Influenza, Peter Doherty Institute, Melbourne, Victoria, Australia
| | - Ruben Pérez
- Universidad de la República, Facultad de Ciencias, Instituto de Biología, Departamento de Biología Animal, Sección Genética Evolutiva, Montevideo, Uruguay
| | - Alejandro Benech
- Universidad de la República, Facultad de Veterinaria, Unidad de Clínica y Hospital Veterinario, Montevideo, Uruguay
| |
Collapse
|
5
|
Cancela F, Ramos N, Smyth DS, Etchebehere C, Berois M, Rodríguez J, Rufo C, Alemán A, Borzacconi L, López J, González E, Botto G, Thornhill SG, Mirazo S, Trujillo M. Wastewater surveillance of SARS-CoV-2 genomic populations on a country-wide scale through targeted sequencing. PLoS One 2023; 18:e0284483. [PMID: 37083889 PMCID: PMC10121012 DOI: 10.1371/journal.pone.0284483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 03/31/2023] [Indexed: 04/22/2023] Open
Abstract
SARS-CoV-2 surveillance of viral populations in wastewater samples is recognized as a useful tool for monitoring epidemic waves and boosting health preparedness. Next generation sequencing of viral RNA isolated from wastewater is a convenient and cost-effective strategy to understand the molecular epidemiology of SARS-CoV-2 and provide insights on the population dynamics of viral variants at the community level. However, in low- and middle-income countries, isolated groups have performed wastewater monitoring and data has not been extensively shared in the scientific community. Here we report the results of monitoring the co-circulation and abundance of variants of concern (VOCs) of SARS-CoV-2 in Uruguay, a small country in Latin America, between November 2020-July 2021 using wastewater surveillance. RNA isolated from wastewater was characterized by targeted sequencing of the Receptor Binding Domain region within the spike gene. Two computational approaches were used to track the viral variants. The results of the wastewater analysis showed the transition in the overall predominance of viral variants in wastewater from No-VOCs to successive VOCs, in agreement with clinical surveillance from sequencing of nasal swabs. The mutations K417T, E484K and N501Y, that characterize the Gamma VOC, were detected as early as December 2020, several weeks before the first clinical case was reported. Interestingly, a non-synonymous mutation described in the Delta VOC, L452R, was detected at a very low frequency since April 2021 when using a recently described sequence analysis tool (SAM Refiner). Wastewater NGS-based surveillance of SARS-CoV-2 is a reliable and complementary tool for monitoring the introduction and prevalence of VOCs at a community level allowing early public health decisions. This approach allows the tracking of symptomatic and asymptomatic individuals, who are generally under-reported in countries with limited clinical testing capacity. Our results suggests that wastewater-based epidemiology can contribute to improving public health responses in low- and middle-income countries.
Collapse
Affiliation(s)
- Florencia Cancela
- Sección Virología, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Natalia Ramos
- Sección Virología, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Davida S Smyth
- Department of Life Sciences, Texas A&M University-San Antonio, San Antonio, Texas, United States of America
| | - Claudia Etchebehere
- Departamento de Bioquímica y Genómica Microbiana, Instituto de Investigaciones Biológicas Clemente Estable, Ministerio de Educación y Cultura, Montevideo, Uruguay
| | - Mabel Berois
- Sección Virología, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Jesica Rodríguez
- Laboratorio de Alimentos y Nutrición, Polo Tecnológico de Pando, Facultad de Química, Universidad de la República, Montevideo, Uruguay
| | - Caterina Rufo
- Laboratorio de Alimentos y Nutrición, Polo Tecnológico de Pando, Facultad de Química, Universidad de la República, Montevideo, Uruguay
| | - Alicia Alemán
- Departamento de Medicina Preventiva, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Liliana Borzacconi
- Instituto de Ingeniería Química, Facultad de Ingeniería, Universidad de la República, Montevideo, Uruguay
| | - Julieta López
- Departamento de Ingeniería Ambiental, Facultad de Ingeniería, Universidad de la República, Montevideo, Uruguay
| | - Elizabeth González
- Departamento de Ingeniería Ambiental, Facultad de Ingeniería, Universidad de la República, Montevideo, Uruguay
| | - Germán Botto
- Departamento de Métodos Cuantitativos, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Starla G Thornhill
- Department of Life Sciences, Texas A&M University-San Antonio, San Antonio, Texas, United States of America
| | - Santiago Mirazo
- Sección Virología, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
- Departamento de Bacteriología y Virología, Instituto de Higiene, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Mónica Trujillo
- Department of Biological Sciences and Geology, Queensborough Community College of The City University of New York, Queens, New York, United States of America
| |
Collapse
|
6
|
Alteri C, Scutari R, Costabile V, Colagrossi L, Yu La Rosa K, Agolini E, Lanari V, Chiurchiù S, Romani L, Markowich AH, Bernaschi P, Russo C, Novelli A, Bernardi S, Campana A, Villani A, Perno CF. Epidemiological characterization of SARS-CoV-2 variants in children over the four COVID-19 waves and correlation with clinical presentation. Sci Rep 2022; 12:10194. [PMID: 35715488 PMCID: PMC9204374 DOI: 10.1038/s41598-022-14426-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 06/07/2022] [Indexed: 12/24/2022] Open
Abstract
Since the start of SARS-CoV-2 pandemic, children aged ≤ 12 years have always been defined as underrepresented in terms of SARS-CoV-2 infections' frequency and severity. By correlating SARS-CoV-2 transmission dynamics with clinical and virological features in 612 SARS-CoV-2 positive patients aged ≤ 12 years, we demonstrated a sizeable circulation of different SARS-CoV-2 lineages over the four pandemic waves in paediatric population, sustained by local transmission chains. Age < 5 years, highest viral load, gamma and delta clades positively influence this local transmission. No correlations between COVID-19 manifestations and lineages or transmission chains are seen, except for a negative correlation between B.1.1.7 and hospitalization.
Collapse
Affiliation(s)
- Claudia Alteri
- Multimodal Research Area, Bambino Gesù Children Hospital IRCCS, Rome, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Rossana Scutari
- Multimodal Research Area, Bambino Gesù Children Hospital IRCCS, Rome, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | | | - Luna Colagrossi
- Multimodal Research Area, Bambino Gesù Children Hospital IRCCS, Rome, Italy
- Microbiology and Diagnostics of Immunology Unit, Bambino Gesù Children Hospital IRCCS, Rome, Italy
| | - Katia Yu La Rosa
- Multimodal Research Area, Bambino Gesù Children Hospital IRCCS, Rome, Italy
- Microbiology and Diagnostics of Immunology Unit, Bambino Gesù Children Hospital IRCCS, Rome, Italy
| | - Emanuele Agolini
- Laboratory of Medical Genetics, Translational Cytogenomics Research Unit, Bambino Gesù Children Hospital IRCCS, Rome, Italy
| | - Valentina Lanari
- Laboratory of Medical Genetics, Translational Cytogenomics Research Unit, Bambino Gesù Children Hospital IRCCS, Rome, Italy
| | - Sara Chiurchiù
- Academic Department of Pediatrics, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Lorenza Romani
- Academic Department of Pediatrics, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | | | - Paola Bernaschi
- Microbiology and Diagnostics of Immunology Unit, Bambino Gesù Children Hospital IRCCS, Rome, Italy
| | - Cristina Russo
- Microbiology and Diagnostics of Immunology Unit, Bambino Gesù Children Hospital IRCCS, Rome, Italy
| | - Antonio Novelli
- Laboratory of Medical Genetics, Translational Cytogenomics Research Unit, Bambino Gesù Children Hospital IRCCS, Rome, Italy
| | - Stefania Bernardi
- Academic Department of Pediatrics, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Andrea Campana
- Academic Department of Pediatrics, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Alberto Villani
- Academic Department of Pediatrics, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Carlo Federico Perno
- Multimodal Research Area, Bambino Gesù Children Hospital IRCCS, Rome, Italy.
- Microbiology and Diagnostics of Immunology Unit, Bambino Gesù Children Hospital IRCCS, Rome, Italy.
| |
Collapse
|