1
|
Novotný P, Humpolíčková J, Nováková V, Stanchev S, Stříšovský K, Zgarbová M, Weber J, Kryštůfek R, Starková J, Hradilek M, Moravcová A, Günterová J, Bach K, Majer P, Konvalinka J, Majerová T. The zymogenic form of SARS-CoV-2 main protease: A discrete target for drug discovery. J Biol Chem 2024:108079. [PMID: 39675720 DOI: 10.1016/j.jbc.2024.108079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 12/04/2024] [Accepted: 12/06/2024] [Indexed: 12/17/2024] Open
Abstract
SARS-CoV-2 main protease (Mpro) autocatalytically releases itself out of the viral polyprotein to form a fully active mature dimer in a manner that is not fully understood. Here, we introduce several tools to help elucidate differences between cis (intramolecular) and trans (intermolecular) proteolytic processing and to evaluate inhibition of precursor Mpro. We found that many mutations at the P1 position of the N-terminal autoprocessing site do not block cis autoprocessing but do inhibit trans processing. Notably, substituting the wild-type glutamine at the P1 position with isoleucine retains Mpro in an unprocessed precursor form that can be purified and further studied. We also developed a cell-based reporter assay suitable for compound library screening and evaluation in HEK293T cells. This assay can detect both overall Mpro inhibition and the fraction of uncleaved preMpro through separable fluorescent signals. We observed that inhibitory compounds preferentially block mature Mpro. Bofutrelvir and a novel compound designed in-house showed the lowest selectivity between precursor and mature Mpro, indicating that inhibition of both forms may be possible. Additionally, we observed positive modulation of precursor activity at low concentrations of inhibitors. Our findings help expand understanding of the SARS-CoV-2 viral life cycle and may facilitate development of strategies to target preMpro for inhibition or premature activation of Mpro.
Collapse
Affiliation(s)
- Pavel Novotný
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, 166 10 Prague 6, Czech Republic; Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University in Prague, 128 43 Prague, Czech Republic
| | - Jana Humpolíčková
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, 166 10 Prague 6, Czech Republic
| | - Veronika Nováková
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, 166 10 Prague 6, Czech Republic; Department of Genetics and Microbiology, Faculty of Science, Charles University in Prague, 12843, Prague, Czech Republic
| | - Stancho Stanchev
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, 166 10 Prague 6, Czech Republic
| | - Kvido Stříšovský
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, 166 10 Prague 6, Czech Republic
| | - Michala Zgarbová
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, 166 10 Prague 6, Czech Republic; Department of Genetics and Microbiology, Faculty of Science, Charles University in Prague, 12843, Prague, Czech Republic
| | - Jan Weber
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, 166 10 Prague 6, Czech Republic
| | - Robin Kryštůfek
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, 166 10 Prague 6, Czech Republic; Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University in Prague, 128 43 Prague, Czech Republic
| | - Jana Starková
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, 166 10 Prague 6, Czech Republic
| | - Martin Hradilek
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, 166 10 Prague 6, Czech Republic
| | - Adéla Moravcová
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, 166 10 Prague 6, Czech Republic; Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, 166 28 Praha 6, Czech Republic
| | - Jana Günterová
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, 166 10 Prague 6, Czech Republic
| | - Kathrin Bach
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, 166 10 Prague 6, Czech Republic; Department of Genetics and Microbiology, Faculty of Science, Charles University in Prague, 12843, Prague, Czech Republic
| | - Pavel Majer
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, 166 10 Prague 6, Czech Republic
| | - Jan Konvalinka
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, 166 10 Prague 6, Czech Republic; Department of Biochemistry, Faculty of Science, Charles University in Prague, 12843, Prague, Czech Republic
| | - Taťána Majerová
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, 166 10 Prague 6, Czech Republic
| |
Collapse
|
2
|
Huang L, Gish M, Boehlke J, Jeep RH, Chen C. Assay Development and Validation for Innovative Antiviral Development Targeting the N-Terminal Autoprocessing of SARS-CoV-2 Main Protease Precursors. Viruses 2024; 16:1218. [PMID: 39205192 PMCID: PMC11359197 DOI: 10.3390/v16081218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/14/2024] [Accepted: 07/23/2024] [Indexed: 09/04/2024] Open
Abstract
The SARS-CoV-2 main protease (Mpro) is initially synthesized as part of polyprotein precursors that undergo autoproteolysis to release the free mature Mpro. To investigate the autoprocessing mechanism in transfected mammalian cells, we examined several fusion precursors, with the mature SARS-CoV-2 Mpro along with the flanking amino acids (to keep the native substrate sequences) sandwiched between different tags. Our analyses revealed differential proteolysis kinetics at the N- and C-terminal cleavage sites. Particularly, N-terminal processing is differentially influenced by various upstream fusion tags (GST, sGST, CD63, and Nsp4) and amino acid variations at the N-terminal P1 position, suggesting that precursor catalysis is flexible and subject to complex regulation. Mutating Q to E at the N-terminal P1 position altered both precursor catalysis and the properties of the released Mpro. Interestingly, the wild-type precursors exhibited different enzymatic activities compared to those of the released Mpro, displaying much lower susceptibility to known inhibitors targeting the mature form. These findings suggest the precursors as alternative targets for antiviral development. Accordingly, we developed and validated a high-throughput screening (HTS)-compatible platform for functional screening of compounds targeting either the N-terminal processing of the SARS-CoV-2 Mpro precursor autoprocessing or the released mature Mpro through different mechanisms of action.
Collapse
Affiliation(s)
| | | | | | | | - Chaoping Chen
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA; (L.H.); (M.G.); (J.B.); (R.H.J.)
| |
Collapse
|
3
|
Papaneophytou C. Breaking the Chain: Protease Inhibitors as Game Changers in Respiratory Viruses Management. Int J Mol Sci 2024; 25:8105. [PMID: 39125676 PMCID: PMC11311956 DOI: 10.3390/ijms25158105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 07/14/2024] [Accepted: 07/23/2024] [Indexed: 08/12/2024] Open
Abstract
Respiratory viral infections (VRTIs) rank among the leading causes of global morbidity and mortality, affecting millions of individuals each year across all age groups. These infections are caused by various pathogens, including rhinoviruses (RVs), adenoviruses (AdVs), and coronaviruses (CoVs), which are particularly prevalent during colder seasons. Although many VRTIs are self-limiting, their frequent recurrence and potential for severe health complications highlight the critical need for effective therapeutic strategies. Viral proteases are crucial for the maturation and replication of viruses, making them promising therapeutic targets. This review explores the pivotal role of viral proteases in the lifecycle of respiratory viruses and the development of protease inhibitors as a strategic response to these infections. Recent advances in antiviral therapy have highlighted the effectiveness of protease inhibitors in curtailing the spread and severity of viral diseases, especially during the ongoing COVID-19 pandemic. It also assesses the current efforts aimed at identifying and developing inhibitors targeting key proteases from major respiratory viruses, including human RVs, AdVs, and (severe acute respiratory syndrome coronavirus-2) SARS-CoV-2. Despite the recent identification of SARS-CoV-2, within the last five years, the scientific community has devoted considerable time and resources to investigate existing drugs and develop new inhibitors targeting the virus's main protease. However, research efforts in identifying inhibitors of the proteases of RVs and AdVs are limited. Therefore, herein, it is proposed to utilize this knowledge to develop new inhibitors for the proteases of other viruses affecting the respiratory tract or to develop dual inhibitors. Finally, by detailing the mechanisms of action and therapeutic potentials of these inhibitors, this review aims to demonstrate their significant role in transforming the management of respiratory viral diseases and to offer insights into future research directions.
Collapse
Affiliation(s)
- Christos Papaneophytou
- Department of Life Sciences, School of Life and Health Sciences, University of Nicosia, Nicosia 2417, Cyprus
| |
Collapse
|
4
|
Filippova TA, Masamrekh RA, Khudoklinova YY, Shumyantseva VV, Kuzikov AV. The multifaceted role of proteases and modern analytical methods for investigation of their catalytic activity. Biochimie 2024; 222:169-194. [PMID: 38494106 DOI: 10.1016/j.biochi.2024.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 03/07/2024] [Accepted: 03/11/2024] [Indexed: 03/19/2024]
Abstract
We discuss the diverse functions of proteases in the context of their biotechnological and medical significance, as well as analytical approaches used to determine the functional activity of these enzymes. An insight into modern approaches to studying the kinetics and specificity of proteases, based on spectral (absorption, fluorescence), mass spectrometric, immunological, calorimetric, and electrochemical methods of analysis is given. We also examine in detail electrochemical systems for determining the activity and specificity of proteases. Particular attention is given to exploring innovative electrochemical systems based on the detection of the electrochemical oxidation signal of amino acid residues, thereby eliminating the need for extra redox labels in the process of peptide synthesis. In the review, we highlight the main prospects for the further development of electrochemical systems for the study of biotechnologically and medically significant proteases, which will enable the miniaturization of the analytical process for determining the catalytic activity of these enzymes.
Collapse
Affiliation(s)
- Tatiana A Filippova
- Institute of Biomedical Chemistry, 10 bld. 8, Pogodinskaya str., 119121, Moscow, Russia; Pirogov Russian National Research Medical University, 1, Ostrovityanova Street, Moscow, 117513, Russia
| | - Rami A Masamrekh
- Institute of Biomedical Chemistry, 10 bld. 8, Pogodinskaya str., 119121, Moscow, Russia; Pirogov Russian National Research Medical University, 1, Ostrovityanova Street, Moscow, 117513, Russia
| | - Yulia Yu Khudoklinova
- Pirogov Russian National Research Medical University, 1, Ostrovityanova Street, Moscow, 117513, Russia
| | - Victoria V Shumyantseva
- Institute of Biomedical Chemistry, 10 bld. 8, Pogodinskaya str., 119121, Moscow, Russia; Pirogov Russian National Research Medical University, 1, Ostrovityanova Street, Moscow, 117513, Russia
| | - Alexey V Kuzikov
- Institute of Biomedical Chemistry, 10 bld. 8, Pogodinskaya str., 119121, Moscow, Russia; Pirogov Russian National Research Medical University, 1, Ostrovityanova Street, Moscow, 117513, Russia.
| |
Collapse
|
5
|
Abdel-Mawgod S, Zanaty A, Elhusseiny M, Said D, Samir A, Elsayed MM, Mahana O, Said M, Hussein AM, Hassan HM, Selim A, Shahien MA, Selim K. Genetic heterogeneity of chicken anemia virus isolated in selected Egyptian provinces as a preliminary investigation. Front Vet Sci 2024; 11:1362219. [PMID: 38840626 PMCID: PMC11150715 DOI: 10.3389/fvets.2024.1362219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 04/29/2024] [Indexed: 06/07/2024] Open
Abstract
Chicken anemia virus (CAV) is a widespread and economically significant pathogen in the poultry industry. In this study 110 samples were collected from various poultry farms in selected Egyptian provinces during 2021-2022 and were tested against CAV by Polymerase Chain Reaction (PCR), revealing 22 positive samples with 20% incidence rate. Full sequence analysis of five selected CAV strains revealed genetic variations in VP1, VP2, and VP3 genes. Phylogenetic analysis grouped the Egyptian strains with reference viruses, mainly in group II, while vaccines like Del-Rose were categorized in group III. Recombination events were detected between an Egyptian strain (genotype II) and the Del-Rose vaccine strain (genotype III), indicating potential recombination between live vaccine strains and field isolates. To evaluate pathogenicity, one Egyptian isolate (F883-2022 CAV) and Del-Rose vaccine were tested in Specific Pathogen Free (SPF) chicks. Chicks in the positive group displayed clinical symptoms, including weakness and stunted growth, with postmortem findings consistent with CAV infection. The vaccine group showed milder symptoms and less severe postmortem changes. This study provides important insights into the genetic diversity of CAV in selected Egyptian poultry farms showing recombination event between field strain and vaccine strains, highlighting the need for advanced vaccination programs, especially for broilers.
Collapse
Affiliation(s)
- Sara Abdel-Mawgod
- Reference Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, Agriculture Research Center, Giza, Egypt
| | - Ali Zanaty
- Reference Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, Agriculture Research Center, Giza, Egypt
| | - Mohamed Elhusseiny
- Reference Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, Agriculture Research Center, Giza, Egypt
| | - Dalia Said
- Reference Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, Agriculture Research Center, Giza, Egypt
| | - Abdelhafez Samir
- Reference Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, Agriculture Research Center, Giza, Egypt
| | - Moataz M. Elsayed
- Reference Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, Agriculture Research Center, Giza, Egypt
| | - Osama Mahana
- Reference Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, Agriculture Research Center, Giza, Egypt
| | - Mahmoud Said
- Reference Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, Agriculture Research Center, Giza, Egypt
| | - Ahmed M. Hussein
- Division of Pharmacology and Toxicology, Department of Pharmaceutical Sciences, University of Vienna, Vienna, Austria
| | - Heba M. Hassan
- Reference Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, Agriculture Research Center, Giza, Egypt
| | - Abdullah Selim
- Reference Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, Agriculture Research Center, Giza, Egypt
| | - Momtaz A. Shahien
- Reference Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, Agriculture Research Center, Giza, Egypt
| | - Karim Selim
- Reference Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, Agriculture Research Center, Giza, Egypt
| |
Collapse
|
6
|
Dixit H, Kulharia M, Verma SK. Metal-binding proteins and proteases in RNA viruses: unravelling functional diversity and expanding therapeutic horizons. J Virol 2023; 97:e0139923. [PMID: 37982624 PMCID: PMC10734521 DOI: 10.1128/jvi.01399-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 10/18/2023] [Indexed: 11/21/2023] Open
Abstract
IMPORTANCE Metal-binding proteins are pivotal components with diverse functions in organisms, including viruses. Despite their significance, many metalloproteins in viruses remain uncharacterized, posing challenges to understanding viral systems. This study addresses this knowledge gap by identifying and analyzing metal-binding proteins and proteases in RNA viruses. The findings emphasize the prevalence of these proteins as essential functional classes within viruses and shed light on the role of metal ions and metalloproteins in viral replication and pathogenesis. Moreover, this research serves as a crucial foundation for further investigations in this field, offering the potential for developing innovative antiviral strategies. Additionally, the study enhances our understanding of the distribution and evolutionary patterns of metal-binding proteases in major human viruses. Continually exploring metal-binding proteomes across diverse viruses will deepen our knowledge of metal-dependent biological processes and provide valuable insights for combating viral infections, including respiratory viruses and other life-threatening diseases.
Collapse
Affiliation(s)
- Himisha Dixit
- Centre for Computational Biology & Bioinformatics, Central University of Himachal Pradesh, Kangra, India
| | - Mahesh Kulharia
- Centre for Computational Biology & Bioinformatics, Central University of Himachal Pradesh, Kangra, India
| | | |
Collapse
|
7
|
Obaha A, Novinec M. Regulation of Peptidase Activity beyond the Active Site in Human Health and Disease. Int J Mol Sci 2023; 24:17120. [PMID: 38069440 PMCID: PMC10707025 DOI: 10.3390/ijms242317120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/01/2023] [Accepted: 12/02/2023] [Indexed: 12/18/2023] Open
Abstract
This comprehensive review addresses the intricate and multifaceted regulation of peptidase activity in human health and disease, providing a comprehensive investigation that extends well beyond the boundaries of the active site. Our review focuses on multiple mechanisms and highlights the important role of exosites, allosteric sites, and processes involved in zymogen activation. These mechanisms play a central role in shaping the complex world of peptidase function and are promising potential targets for the development of innovative drugs and therapeutic interventions. The review also briefly discusses the influence of glycosaminoglycans and non-inhibitory binding proteins on enzyme activities. Understanding their role may be a crucial factor in the development of therapeutic strategies. By elucidating the intricate web of regulatory mechanisms that control peptidase activity, this review deepens our understanding in this field and provides a roadmap for various strategies to influence and modulate peptidase activity.
Collapse
Affiliation(s)
| | - Marko Novinec
- Faculty of Chemistry and Chemical Technology, Department of Chemistry and Biochemistry, University of Ljubljana, Večna pot 113, SI-1000 Ljubljana, Slovenia;
| |
Collapse
|
8
|
Salikhov SI, Abdurakhmonov IY, Oshchepkova YI, Ziyavitdinov JF, Berdiev NS, Aisa HA, Shen J, Xu Y, Xu HE, Jiang X, Zhang L, Vypova NL, Allaberganov DS, Tagayalieva NA, Musabaev EI, Ibadova GA, Rajabov IB, Lokteva LM. Repurposing of Rutan showed effective treatment for COVID-19 disease. Front Med (Lausanne) 2023; 10:1310129. [PMID: 38093975 PMCID: PMC10716264 DOI: 10.3389/fmed.2023.1310129] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 11/10/2023] [Indexed: 12/20/2024] Open
Abstract
UNLABELLED Previously, from the tannic sumac plant (Rhus coriaria), we developed the Rutan 25 mg oral drug tablets with antiviral activity against influenza A and B viruses, adenoviruses, paramyxoviruses, herpes virus, and cytomegalovirus. Here, our re-purposing study demonstrated that Rutan at 25, 50, and 100 mg/kg provided a very effective and safe treatment for COVID-19 infection, simultaneously inhibiting two vital enzyme systems of the SARS-CoV-2 virus: 3C-like proteinase (3CLpro) and RNA-dependent RNA polymerase (RdRp). There was no drug accumulation in experimental animals' organs and tissues. A clinical study demonstrated a statistically significant decrease in the C-reactive protein and a reduction of the viremia period. In patients receiving Rutan 25 mg (children) and 100 mg (adults), the frequency of post-COVID-19 manifestations was significantly less than in the control groups not treated with Rutan tablets. Rutan, having antiviral activity, can provide safe treatment and prevention of COVID-19 in adults and children. CLINICAL TRIAL REGISTRATION ClinicalTrials.gov, ID NCT05862883.
Collapse
Affiliation(s)
| | | | | | | | - Nodir Sh. Berdiev
- A.S. Sadykov Institute of Bioorganic Chemistry (UzAS), Tashkent, Uzbekistan
| | - Haji Akber Aisa
- Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Ürümqi, China
| | - Jingshan Shen
- State Key Laboratory of Drug Research, CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Yechun Xu
- State Key Laboratory of Drug Research, CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - H. Eric Xu
- State Key Laboratory of Drug Research, CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Xiangrui Jiang
- State Key Laboratory of Drug Research, CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Leike Zhang
- Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Natalia L. Vypova
- A.S. Sadykov Institute of Bioorganic Chemistry (UzAS), Tashkent, Uzbekistan
| | | | | | - Erkin I. Musabaev
- Scientific-Research Institute of Virology of the Ministry of the Health of Uzbekistan, Tashkent, Uzbekistan
| | - Gulnara A. Ibadova
- Centre for the Development of Professional Qualification of Medical Workers, Tashkent, Uzbekistan
| | - Ilxom B. Rajabov
- Centre for the Development of Professional Qualification of Medical Workers, Tashkent, Uzbekistan
| | - Lyubov M. Lokteva
- Scientific-Research Institute of Virology of the Ministry of the Health of Uzbekistan, Tashkent, Uzbekistan
| |
Collapse
|
9
|
Yoshida S, Sako Y, Nikaido E, Ueda T, Kozono I, Ichihashi Y, Nakahashi A, Onishi M, Yamatsu Y, Kato T, Nishikawa J, Tachibana Y. Peptide-to-Small Molecule: Discovery of Non-Covalent, Active-Site Inhibitors of β-Herpesvirus Proteases. ACS Med Chem Lett 2023; 14:1558-1566. [PMID: 37974946 PMCID: PMC10641906 DOI: 10.1021/acsmedchemlett.3c00359] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/21/2023] [Accepted: 10/24/2023] [Indexed: 11/19/2023] Open
Abstract
Viral proteases, the key enzymes that regulate viral replication and assembly, are promising targets for antiviral drug discovery. Herpesvirus proteases are enzymes with no crystallographically confirmed noncovalent active-site binders, owing to their shallow and polar substrate-binding pockets. Here, we applied our previously reported "Peptide-to-Small Molecule" strategy to generate novel inhibitors of β-herpesvirus proteases. Rapid selection with a display technology was used to identify macrocyclic peptide 1 bound to the active site of human cytomegalovirus protease (HCMVPro) with high affinity, and pharmacophore queries were defined based on the results of subsequent intermolecular interaction analyses. Membrane-permeable small molecule 19, designed de novo according to this hypothesis, exhibited enzyme inhibitory activity (IC50 = 10-6 to 10-7 M) against β-herpesvirus proteases, and the design concept was proved by X-ray cocrystal analysis.
Collapse
Affiliation(s)
- Shuhei Yoshida
- Pharmaceutical
Research Division, Shionogi Pharmaceutical
Research Center, 3-1-1 Futaba-cho, Toyonaka, Osaka 561-0825, Japan
| | - Yusuke Sako
- Pharmaceutical
Research Division, Shionogi Pharmaceutical
Research Center, 3-1-1 Futaba-cho, Toyonaka, Osaka 561-0825, Japan
| | - Eiji Nikaido
- Pharmaceutical
Research Division, Shionogi Pharmaceutical
Research Center, 3-1-1 Futaba-cho, Toyonaka, Osaka 561-0825, Japan
| | - Taichi Ueda
- Pharmaceutical
Research Division, Shionogi Pharmaceutical
Research Center, 3-1-1 Futaba-cho, Toyonaka, Osaka 561-0825, Japan
| | - Iori Kozono
- Pharmaceutical
Research Division, Shionogi Pharmaceutical
Research Center, 3-1-1 Futaba-cho, Toyonaka, Osaka 561-0825, Japan
| | - Yusuke Ichihashi
- Pharmaceutical
Research Division, Shionogi Pharmaceutical
Research Center, 3-1-1 Futaba-cho, Toyonaka, Osaka 561-0825, Japan
| | - Atsufumi Nakahashi
- Pharmaceutical
Research Division, Shionogi Pharmaceutical
Research Center, 3-1-1 Futaba-cho, Toyonaka, Osaka 561-0825, Japan
| | - Motoyasu Onishi
- Pharmaceutical
Research Division, Shionogi Pharmaceutical
Research Center, 3-1-1 Futaba-cho, Toyonaka, Osaka 561-0825, Japan
| | - Yukiko Yamatsu
- Pharmaceutical
Research Division, Shionogi Pharmaceutical
Research Center, 3-1-1 Futaba-cho, Toyonaka, Osaka 561-0825, Japan
| | - Teruhisa Kato
- Pharmaceutical
Research Division, Shionogi Pharmaceutical
Research Center, 3-1-1 Futaba-cho, Toyonaka, Osaka 561-0825, Japan
| | - Junichi Nishikawa
- PeptiDream
Inc., 3-25-23 Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa 210-0821, Japan
| | - Yuki Tachibana
- Pharmaceutical
Research Division, Shionogi Pharmaceutical
Research Center, 3-1-1 Futaba-cho, Toyonaka, Osaka 561-0825, Japan
| |
Collapse
|
10
|
Barik S. Suppression of Innate Immunity by the Hepatitis C Virus (HCV): Revisiting the Specificity of Host-Virus Interactive Pathways. Int J Mol Sci 2023; 24:16100. [PMID: 38003289 PMCID: PMC10671098 DOI: 10.3390/ijms242216100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 10/31/2023] [Accepted: 11/06/2023] [Indexed: 11/26/2023] Open
Abstract
The hepatitis C virus (HCV) is a major causative agent of hepatitis that may also lead to liver cancer and lymphomas. Chronic hepatitis C affects an estimated 2.4 million people in the USA alone. As the sole member of the genus Hepacivirus within the Flaviviridae family, HCV encodes a single-stranded positive-sense RNA genome that is translated into a single large polypeptide, which is then proteolytically processed to yield the individual viral proteins, all of which are necessary for optimal viral infection. However, cellular innate immunity, such as type-I interferon (IFN), promptly thwarts the replication of viruses and other pathogens, which forms the basis of the use of conjugated IFN-alpha in chronic hepatitis C management. As a countermeasure, HCV suppresses this form of immunity by enlisting diverse gene products, such as HCV protease(s), whose primary role is to process the large viral polyprotein into individual proteins of specific function. The exact number of HCV immune suppressors and the specificity and molecular mechanism of their action have remained unclear. Nonetheless, the evasion of host immunity promotes HCV pathogenesis, chronic infection, and carcinogenesis. Here, the known and putative HCV-encoded suppressors of innate immunity have been reviewed and analyzed, with a predominant emphasis on the molecular mechanisms. Clinically, the knowledge should aid in rational interventions and the management of HCV infection, particularly in chronic hepatitis.
Collapse
Affiliation(s)
- Sailen Barik
- EonBio, 3780 Pelham Drive, Mobile, AL 36619, USA
| |
Collapse
|
11
|
Viral proteases as therapeutic targets. Mol Aspects Med 2022; 88:101159. [PMID: 36459838 PMCID: PMC9706241 DOI: 10.1016/j.mam.2022.101159] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 11/21/2022] [Accepted: 11/23/2022] [Indexed: 11/30/2022]
Abstract
Some medically important viruses-including retroviruses, flaviviruses, coronaviruses, and herpesviruses-code for a protease, which is indispensable for viral maturation and pathogenesis. Viral protease inhibitors have become an important class of antiviral drugs. Development of the first-in-class viral protease inhibitor saquinavir, which targets HIV protease, started a new era in the treatment of chronic viral diseases. Combining several drugs that target different steps of the viral life cycle enables use of lower doses of individual drugs (and thereby reduction of potential side effects, which frequently occur during long term therapy) and reduces drug-resistance development. Currently, several HIV and HCV protease inhibitors are routinely used in clinical practice. In addition, a drug including an inhibitor of SARS-CoV-2 main protease, nirmatrelvir (co-administered with a pharmacokinetic booster ritonavir as Paxlovid®), was recently authorized for emergency use. This review summarizes the basic features of the proteases of human immunodeficiency virus (HIV), hepatitis C virus (HCV), and SARS-CoV-2 and discusses the properties of their inhibitors in clinical use, as well as development of compounds in the pipeline.
Collapse
|
12
|
Qayed WS, Ferreira RS, Silva JRA. In Silico Study towards Repositioning of FDA-Approved Drug Candidates for Anticoronaviral Therapy: Molecular Docking, Molecular Dynamics and Binding Free Energy Calculations. Molecules 2022; 27:molecules27185988. [PMID: 36144718 PMCID: PMC9505381 DOI: 10.3390/molecules27185988] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/06/2022] [Accepted: 09/06/2022] [Indexed: 01/18/2023] Open
Abstract
The SARS-CoV-2 targets were evaluated for a set of FDA-approved drugs using a combination of drug repositioning and rigorous computational modeling methodologies such as molecular docking and molecular dynamics (MD) simulations followed by binding free energy calculations. Six FDA-approved drugs including, Ouabain, Digitoxin, Digoxin, Proscillaridin, Salinomycin and Niclosamide with promising anti-SARS-CoV-2 activity were screened in silico against four SARS-CoV-2 proteins—papain-like protease (PLpro), RNA-dependent RNA polymerase (RdRp), SARS-CoV-2 main protease (Mpro), and adaptor-associated kinase 1 (AAK1)—in an attempt to define their promising targets. The applied computational techniques suggest that all the tested drugs exhibited excellent binding patterns with higher scores and stable complexes compared to the native protein cocrystallized inhibitors. Ouabain was suggested to act as a dual inhibitor for both PLpro and Mpro enzymes, while Digitoxin bonded perfectly to RdRp. In addition, Salinomycin targeted PLpro. Particularly, Niclosamide was found to target AAK1 with greater affinity compared to the reference drug. Our study provides comprehensive molecular-level insights for identifying or designing novel anti-COVID-19 drugs.
Collapse
Affiliation(s)
- Wesam S. Qayed
- Medicinal Chemistry Department, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt
- Correspondence: (W.S.Q.); (J.R.A.S.)
| | - Rafaela S. Ferreira
- Laboratório de Planejamento e Desenvolvimento de Fármacos, Instituto de Ciências Exatas e Naturais, Universidade Federal do Pará, Belém 66075-110, Brazil
| | - José Rogério A. Silva
- Laboratório de Planejamento e Desenvolvimento de Fármacos, Instituto de Ciências Exatas e Naturais, Universidade Federal do Pará, Belém 66075-110, Brazil
- Correspondence: (W.S.Q.); (J.R.A.S.)
| |
Collapse
|
13
|
Fé LXSGM, Cipolatti EP, Pinto MCC, Branco S, Nogueira FCS, Ortiz GMD, Pinheiro ADS, Manoel EA. Enzymes in the time of COVID-19: An overview about the effects in the human body, enzyme market, and perspectives for new drugs. Med Res Rev 2022; 42:2126-2167. [PMID: 35762498 PMCID: PMC9350392 DOI: 10.1002/med.21919] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 01/27/2022] [Accepted: 06/08/2022] [Indexed: 12/11/2022]
Abstract
The rising pandemic caused by a coronavirus, resulted in a scientific quest to discover some effective treatments against its etiologic agent, the severe acute respiratory syndrome‐coronavirus 2 (SARS‐CoV‐2). This research represented a significant scientific landmark and resulted in many medical advances. However, efforts to understand the viral mechanism of action and how the human body machinery is subverted during the infection are still ongoing. Herein, we contributed to this field with this compilation of the roles of both viral and human enzymes in the context of SARS‐CoV‐2 infection. In this sense, this overview reports that proteases are vital for the infection to take place: from SARS‐CoV‐2 perspective, the main protease (Mpro) and papain‐like protease (PLpro) are highlighted; from the human body, angiotensin‐converting enzyme‐2, transmembrane serine protease‐2, and cathepsins (CatB/L) are pointed out. In addition, the influence of the virus on other enzymes is reported as the JAK/STAT pathway and the levels of lipase, enzymes from the cholesterol metabolism pathway, amylase, aspartate aminotransferase, alanine aminotransferase, lactate dehydrogenase, and glyceraldehyde 3‐phosphate dehydrogenase are also be disturbed in SARS‐CoV‐2 infection. Finally, this paper discusses the importance of detailed enzymatic studies for future treatments against SARS‐CoV‐2, and how some issues related to the syndrome treatment can create opportunities in the biotechnological market of enzymes and the development of new drugs.
Collapse
Affiliation(s)
- Luana Xavier Soares Gomes Moura Fé
- Departamento de Biotecnologia Farmacêutica, Faculdade de Farmácia, Centro de Ciências da Saúde (CCS), Universidade Federal do Rio de Janeiro (UFRJ)-Cidade Universitária, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Eliane Pereira Cipolatti
- Departamento de Biotecnologia Farmacêutica, Faculdade de Farmácia, Centro de Ciências da Saúde (CCS), Universidade Federal do Rio de Janeiro (UFRJ)-Cidade Universitária, Rio de Janeiro, Rio de Janeiro, Brazil.,Departamento de Engenharia Química, Instituto de Tecnologia, Universidade Federal Rural do Rio de Janeiro (UFRRJ), Seropédica, Rio de Janeiro, Brazil
| | - Martina Costa Cerqueira Pinto
- Departamento de Bioquímica, Instituto de Química, Centro de Tecnologia (CT), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Rio de Janeiro, Brazil.,Chemical Engineering Program, Instituto Alberto Luiz Coimbra de Pós-graduação e Pesquisa de Engenharia (COPPE), Centro de Tecnologia (CT), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Rio de Janeiro, Brazil
| | - Suema Branco
- Biofísica Ambiental, Instituto de Biofísica Carlos Chagas Filho, Centro de Ciências da Saúde (CCS), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Rio de Janeiro, Brazil
| | - Fábio César Sousa Nogueira
- Departamento de Bioquímica, Instituto de Química, Centro de Tecnologia (CT), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Rio de Janeiro, Brazil
| | - Gisela Maria Dellamora Ortiz
- Departamento de Fármacos e Medicamentos, Faculdade de Farmácia, Centro de Ciências da Saúde (CCS), Universidade Federal do Rio de Janeiro (UFRJ)-Cidade Universitária, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Anderson de Sá Pinheiro
- Departamento de Bioquímica, Instituto de Química, Centro de Tecnologia (CT), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Rio de Janeiro, Brazil
| | - Evelin Andrade Manoel
- Departamento de Biotecnologia Farmacêutica, Faculdade de Farmácia, Centro de Ciências da Saúde (CCS), Universidade Federal do Rio de Janeiro (UFRJ)-Cidade Universitária, Rio de Janeiro, Rio de Janeiro, Brazil.,Departamento de Bioquímica, Instituto de Química, Centro de Tecnologia (CT), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
14
|
Brewitz L, Kamps JJAG, Lukacik P, Strain‐Damerell C, Zhao Y, Tumber A, Malla TR, Orville AM, Walsh MA, Schofield CJ. Mass Spectrometric Assays Reveal Discrepancies in Inhibition Profiles for the SARS-CoV-2 Papain-Like Protease. ChemMedChem 2022; 17:e202200016. [PMID: 35085423 PMCID: PMC9015526 DOI: 10.1002/cmdc.202200016] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 01/26/2022] [Indexed: 11/20/2022]
Abstract
The two SARS-CoV-2 proteases, i. e. the main protease (Mpro ) and the papain-like protease (PLpro ), which hydrolyze the viral polypeptide chain giving functional non-structural proteins, are essential for viral replication and are medicinal chemistry targets. We report a high-throughput mass spectrometry (MS)-based assay which directly monitors PLpro catalysis in vitro. The assay was applied to investigate the effect of reported small-molecule PLpro inhibitors and selected Mpro inhibitors on PLpro catalysis. The results reveal that some, but not all, PLpro inhibitor potencies differ substantially from those obtained using fluorescence-based assays. Some substrate-competing Mpro inhibitors, notably PF-07321332 (nirmatrelvir) which is in clinical development, do not inhibit PLpro . Less selective Mpro inhibitors, e. g. auranofin, inhibit PLpro , highlighting the potential for dual PLpro /Mpro inhibition. MS-based PLpro assays, which are orthogonal to widely employed fluorescence-based assays, are of utility in validating inhibitor potencies, especially for inhibitors operating by non-covalent mechanisms.
Collapse
Affiliation(s)
- Lennart Brewitz
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial ResearchUniversity of Oxford12 Mansfield RoadOX1 3TAOxfordUK
| | - Jos J. A. G. Kamps
- Diamond Light Source Ltd.Harwell Science and Innovation CampusOX11 0DEDidcotUK
- Research Complex at HarwellHarwell Science and Innovation CampusOX11 0FADidcotUK
| | - Petra Lukacik
- Diamond Light Source Ltd.Harwell Science and Innovation CampusOX11 0DEDidcotUK
- Research Complex at HarwellHarwell Science and Innovation CampusOX11 0FADidcotUK
| | - Claire Strain‐Damerell
- Diamond Light Source Ltd.Harwell Science and Innovation CampusOX11 0DEDidcotUK
- Research Complex at HarwellHarwell Science and Innovation CampusOX11 0FADidcotUK
| | - Yilin Zhao
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial ResearchUniversity of Oxford12 Mansfield RoadOX1 3TAOxfordUK
| | - Anthony Tumber
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial ResearchUniversity of Oxford12 Mansfield RoadOX1 3TAOxfordUK
| | - Tika R. Malla
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial ResearchUniversity of Oxford12 Mansfield RoadOX1 3TAOxfordUK
| | - Allen M. Orville
- Diamond Light Source Ltd.Harwell Science and Innovation CampusOX11 0DEDidcotUK
- Research Complex at HarwellHarwell Science and Innovation CampusOX11 0FADidcotUK
| | - Martin A. Walsh
- Diamond Light Source Ltd.Harwell Science and Innovation CampusOX11 0DEDidcotUK
- Research Complex at HarwellHarwell Science and Innovation CampusOX11 0FADidcotUK
| | - Christopher J. Schofield
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial ResearchUniversity of Oxford12 Mansfield RoadOX1 3TAOxfordUK
| |
Collapse
|