1
|
Zhang W, Zhang C, Zhang Y, Zhou X, Dong B, Tan H, Su H, Sun X. Multifaceted roles of mitochondria in asthma. Cell Biol Toxicol 2024; 40:85. [PMID: 39382744 PMCID: PMC11464602 DOI: 10.1007/s10565-024-09928-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 10/02/2024] [Indexed: 10/10/2024]
Abstract
Mitochondria are essential organelles within cells, playing various roles in numerous cellular processes, including differentiation, growth, apoptosis, energy conversion, metabolism, and cellular immunity. The phenotypic variation of mitochondria is specific to different tissues and cell types, resulting in significant differences in their function, morphology, and molecular characteristics. Asthma is a chronic, complex, and heterogeneous airway disease influenced by external factors such as environmental pollutants and allergen exposure, as well as internal factors at the tissue, cellular, and genetic levels, including lung and airway structural cells, immune cells, granulocytes, and mast cells. Therefore, a comprehensive understanding of the specific responses of mitochondria to various external environmental stimuli and internal changes are crucial for elucidating the pathogenesis of asthma. Previous research on mitochondrial-targeted therapy for asthma has primarily focused on antioxidants. Consequently, it is necessary to summarize the multifaceted roles of mitochondria in the pathogenesis of asthma to discover additional strategies targeting mitochondria in this context. In this review, our goal is to describe the changes in mitochondrial function in response to various exposure factors across different cell types and other relevant factors in the context of asthma, utilizing a new mitochondrial terminology framework that encompasses cell-dependent mitochondrial characteristics, molecular features, mitochondrial activity, function, and behavior.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Pediatrics, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Chenyu Zhang
- Department of Pediatrics, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Yi Zhang
- Department of Pediatrics, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Xuehua Zhou
- Department of Pediatrics, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Bo Dong
- Department of Pediatrics, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Hong Tan
- Department of Pediatrics, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Hui Su
- Department of Geriatrics, Xijing Hospital, The Fourth Military Medical University, Xi'an, China.
| | - Xin Sun
- Department of Pediatrics, Xijing Hospital, The Fourth Military Medical University, Xi'an, China.
| |
Collapse
|
2
|
Zar HJ, Cacho F, Kootbodien T, Mejias A, Ortiz JR, Stein RT, Hartert TV. Early-life respiratory syncytial virus disease and long-term respiratory health. THE LANCET. RESPIRATORY MEDICINE 2024; 12:810-821. [PMID: 39265601 DOI: 10.1016/s2213-2600(24)00246-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/28/2024] [Accepted: 07/29/2024] [Indexed: 09/14/2024]
Abstract
Respiratory syncytial virus (RSV) is a leading cause of lower respiratory tract infection (LRTI), hospital admission, and mortality in children worldwide. Early-life RSV LRTI has also been associated with subsequent long-term respiratory sequelae, including recurrent LRTI, recurrent wheezing, asthma, and lung function impairment, and these effects can persist into adulthood as chronic respiratory disease. New preventive measures (maternal vaccine or long-acting monoclonal antibodies) have been licensed to reduce the burden of acute RSV LRTI in infants and children at high risk through passive immunisation. Studies of these RSV prevention products show high efficacy and effectiveness, particularly for preventing severe RSV LRTI, with implementation in many high-income countries, but limited access in low-income and middle-income countries (LMICs). These interventions might also reduce the risk of additional health outcomes and long-term morbidity. This Series paper provides the evidence for the long-term effects of early-life RSV disease, discusses mechanisms of disease development, and addresses the potential full public health value of prevention of RSV illness. Further research is needed to determine whether prevention of RSV LRTI or delay of RSV illness in early life might prevent or ameliorate the development of associated long-term respiratory disease. This potential further underscores the urgency for access and availability of new interventions to prevent early-life RSV LRTI in LMICs.
Collapse
Affiliation(s)
- Heather J Zar
- Department of Paediatrics and Child Health, Red Cross War Memorial Children's Hospital and SA-MRC Unit on Child & Adolescent Health, University of Cape Town, Cape Town, South Africa.
| | - Ferdinand Cacho
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Tahira Kootbodien
- Department of Paediatrics and Child Health, Red Cross War Memorial Children's Hospital and SA-MRC Unit on Child & Adolescent Health, University of Cape Town, Cape Town, South Africa
| | - Asuncion Mejias
- Department of Infectious Disease, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Justin R Ortiz
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Renato T Stein
- Department of Pediatrics, School of Medicine, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
| | - Tina V Hartert
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
3
|
Berdnikovs S, Newcomb DC, Hartert TV. How early life respiratory viral infections impact airway epithelial development and may lead to asthma. Front Pediatr 2024; 12:1441293. [PMID: 39156016 PMCID: PMC11327159 DOI: 10.3389/fped.2024.1441293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 07/25/2024] [Indexed: 08/20/2024] Open
Abstract
Childhood asthma is a common chronic disease of the airways that results from host and environment interactions. Most risk factor studies of asthma point to the first year of life as a susceptibility window of mucosal exposure that directly impacts the airway epithelium and airway epithelial cell development. The development of the airway epithelium, which forms a competent barrier resulting from coordinated interactions of different specialized cell subsets, occurs during a critical time frame in normal postnatal development in the first year of life. Understanding the normal and aberrant developmental trajectory of airway epithelial cells is important in identifying pathways that may contribute to barrier dysfunction and asthma pathogenesis. Respiratory viruses make first contact with and infect the airway mucosa. Human rhinovirus (HRV) and respiratory syncytial virus (RSV) are mucosal pathogens that are consistently identified as asthma risk factors. Respiratory viruses represent a unique early life exposure, different from passive irritant exposures which injure the developing airway epithelium. To replicate, respiratory viruses take over the host cell transcriptional and translational processes and exploit host cell energy metabolism. This takeover impacts the development and differentiation processes of airway epithelial cells. Therefore, delineating the mechanisms through which early life respiratory viral infections alter airway epithelial cell development will allow us to understand the maturation and heterogeneity of asthma and develop tools tailored to prevent disease in specific children. This review will summarize what is understood about the impact of early life respiratory viruses on the developing airway epithelium and define critical gaps in our knowledge.
Collapse
Affiliation(s)
- Sergejs Berdnikovs
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Dawn C. Newcomb
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Tina V. Hartert
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, United States
| |
Collapse
|
4
|
Dai J, Feng Y, Liao Y, Tan L, Sun Y, Song C, Qiu X, Ding C. Virus infection and sphingolipid metabolism. Antiviral Res 2024; 228:105942. [PMID: 38908521 DOI: 10.1016/j.antiviral.2024.105942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 06/14/2024] [Accepted: 06/19/2024] [Indexed: 06/24/2024]
Abstract
Cellular sphingolipids have vital roles in human virus replication and spread as they are exploited by viruses for cell entry, membrane fusion, genome replication, assembly, budding, and propagation. Intracellular sphingolipid biosynthesis triggers conformational changes in viral receptors and facilitates endosomal escape. However, our current understanding of how sphingolipids precisely regulate viral replication is limited, and further research is required to comprehensively understand the relationships between viral replication and endogenous sphingolipid species. Emerging evidence now suggests that targeting and manipulating sphingolipid metabolism enzymes in host cells is a promising strategy to effectively combat viral infections. Additionally, serum sphingolipid species and concentrations could function as potential serum biomarkers to help monitor viral infection status in different patients. In this work, we comprehensively review the literature to clarify how viruses exploit host sphingolipid metabolism to accommodate viral replication and disrupt host innate immune responses. We also provide valuable insights on the development and use of antiviral drugs in this area.
Collapse
Affiliation(s)
- Jun Dai
- Experimental Animal Center, Zunyi Medical University, Zunyi, 563099, China
| | - Yiyi Feng
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China; Laboratory of Veterinary Microbiology and Animal Infectious Diseases, College of Animal Sciences and Veterinary Medicine, Guangxi University, Nanning, 530004, Guangxi China
| | - Ying Liao
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Lei Tan
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Yingjie Sun
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Cuiping Song
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Xusheng Qiu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China.
| | - Chan Ding
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
5
|
Witonsky JI, Elhawary JR, Eng C, Oh SS, Salazar S, Contreras MG, Medina V, Secor EA, Zhang P, Everman JL, Fairbanks-Mahnke A, Pruesse E, Sajuthi SP, Chang CH, Guerrero TR, Fuentes KC, Lopez N, Montanez-Lopez CA, Otero RA, Rivera RC, Rodriguez L, Vazquez G, Hu D, Huntsman S, Jackson ND, Li Y, Morin A, Nieves NA, Rios C, Serrano G, Williams BJM, Ziv E, Moore CM, Sheppard D, Burchard EG, Seibold MA, Rodriguez Santana JR. The Puerto Rican Infant Metagenomic and Epidemiologic Study of Respiratory Outcomes (PRIMERO): Design and Baseline Characteristics for a Birth Cohort Study of Early-life Viral Respiratory Illnesses and Airway Dysfunction in Puerto Rican Children. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.04.15.24305359. [PMID: 38699325 PMCID: PMC11065009 DOI: 10.1101/2024.04.15.24305359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2024]
Abstract
Epidemiologic studies demonstrate an association between early-life respiratory illnesses (RIs) and the development of childhood asthma. However, it remains uncertain whether these children are predisposed to both conditions or if early-life RIs induce alterations in airway function, immune responses, or other human biology that contribute to the development of asthma. Puerto Rican children experience a disproportionate burden of early-life RIs and asthma, making them an important population for investigating this complex interplay. PRIMERO, the Puerto Rican Infant Metagenomics and Epidemiologic Study of Respiratory Outcomes , recruited pregnant women and their newborns to investigate how the airways develop in early life among infants exposed to different viral RIs, and will thus provide a critical understanding of childhood asthma development. As the first asthma birth cohort in Puerto Rico, PRIMERO will prospectively follow 2,100 term healthy infants. Collected samples include post-term maternal peripheral blood, infant cord blood, the child's peripheral blood at the year two visit, and the child's nasal airway epithelium, collected using minimally invasive nasal swabs, at birth, during RIs over the first two years of life, and at annual healthy visits until age five. Herein, we describe the study's design, population, recruitment strategy, study visits and procedures, and primary outcomes.
Collapse
|
6
|
Morris DR, Qu Y, Jones-Hall YL, Liu T, Ivanciuc T, Garofalo RP, Casola A. Hypoxia-inducible-factors differentially contribute to clinical disease and the control of viral replication during RSV infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.15.553422. [PMID: 37645750 PMCID: PMC10461990 DOI: 10.1101/2023.08.15.553422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Hypoxia-inducible-factors (HIF) are transcription factors that regulate cellular adaptation to hypoxic conditions, enabling cells to survive in low-oxygen environments. Viruses have evolved to stabilize this pathway to promote successful viral infection, therefore modulation of HIFs could represent a novel antiviral strategy. In previous in vitro studies, we found that respiratory syncytial virus (RSV), a leading cause of respiratory illness, stabilizes HIFs under normoxic conditions, with inhibition of HIF-1α resulting in reduced viral replication. Despite several HIF modulating compounds being tested/approved for use in other non-infectious models, little is known about their efficacy against respiratory viruses using relevant animal models. This study aimed to characterize the disease modulating properties and antiviral potential of anti-HIF-1α (PX478) and anti-HIF-2α (PT2385) in RSV-infected BALB/c mice. We found that inhibition of HIF-1α worsen clinical disease parameters, while simultaneously improving airway function. Additionally, anti-HIF-1α results in significantly reduced viral titer at early and peak time points of RSV replication, followed by a loss in viral clearance when given every day, but not every-other-day. In contrast, inhibition of HIF-2α was associated with improved clinical parameters, with no changes in airway function, and amelioration of interstitial pneumonia. Furthermore, anti-HIF-2α reduced early and peak lung viral replication, with no impairment of viral clearance. Analysis of lung cells found significant modification in the T cell compartment that correlated with changes in lung pathology and viral titers in response to each HIF inhibitor administration. These data underscore the complex role of HIFs in RSV infection and highlight the need for careful therapeutic consideration.
Collapse
Affiliation(s)
- Dorothea R. Morris
- Department of Microbiology & Immunology, The University of Texas Medical Branch, Galveston, TX, USA
- School of Population & Public Health, The University of Texas Medical Branch, Galveston, TX, USA
- Department of Pediatrics, The University of Texas Medical Branch, Galveston, TX, USA
| | - Yue Qu
- Department of Pediatrics, The University of Texas Medical Branch, Galveston, TX, USA
| | - Yava L. Jones-Hall
- School of Veterinary Medicine and Biomedical Science, Texas A&M University, College Station, TX, USA
| | - Tianshuang Liu
- Department of Pediatrics, The University of Texas Medical Branch, Galveston, TX, USA
| | - Teodora Ivanciuc
- Department of Pediatrics, The University of Texas Medical Branch, Galveston, TX, USA
| | - Roberto P. Garofalo
- Department of Microbiology & Immunology, The University of Texas Medical Branch, Galveston, TX, USA
- Department of Pediatrics, The University of Texas Medical Branch, Galveston, TX, USA
| | - Antonella Casola
- Department of Microbiology & Immunology, The University of Texas Medical Branch, Galveston, TX, USA
- Department of Pediatrics, The University of Texas Medical Branch, Galveston, TX, USA
| |
Collapse
|
7
|
Chen LF, Cai JX, Zhang JJ, Tang YJ, Chen JY, Xiong S, Li YL, Zhang H, Liu Z, Li MM. Respiratory syncytial virus co-opts hypoxia-inducible factor-1α-mediated glycolysis to favor the production of infectious virus. mBio 2023; 14:e0211023. [PMID: 37796013 PMCID: PMC10653832 DOI: 10.1128/mbio.02110-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 08/22/2023] [Indexed: 10/06/2023] Open
Abstract
IMPORTANCE Respiratory syncytial virus (RSV) is the leading etiological agent of lower respiratory tract illness. However, efficacious vaccines or antiviral drugs for treating RSV infections are currently not available. Indeed, RSV depends on host cells to provide energy needed to produce progeny virions. Glycolysis is a series of oxidative reactions used to metabolize glucose and provide energy to host cells. Therefore, glycolysis may be helpful for RSV infection. In this study, we show that RSV increases glycolysis by inducing the stabilization, transcription, translation, and activation of hypoxia-inducible factor (HIF)-1α in infected cells, which is important for the production of progeny RSV virions. This study contributes to understanding the molecular mechanism by which HIF-1α-mediated glycolysis controls RSV infection and reveals an effective target for the development of highly efficient anti-RSV drugs.
Collapse
Affiliation(s)
- Li-Feng Chen
- Department of Dermatology, The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong, China
| | - Jun-Xing Cai
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, Guangdong, China
| | - Jing-Jing Zhang
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, Guangdong, China
| | - Yu-Jun Tang
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, Guangdong, China
| | - Jia-Yi Chen
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, Guangdong, China
| | - Si Xiong
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, Guangdong, China
| | - Yao-Lan Li
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, Guangdong, China
| | - Hong Zhang
- Department of Dermatology, The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong, China
| | - Zhong Liu
- Guangzhou Jinan Biomedicine Research and Development Center, Guangdong Provincial Key Laboratory of Bioengineering Medicine, College of Life Science and Technology, Jinan University, Guangzhou, Guangdong, China
| | - Man-Mei Li
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, Guangdong, China
| |
Collapse
|
8
|
Rosas-Salazar C, Hasegawa K, Hartert TV. Progress in understanding whether respiratory syncytial virus infection in infancy causes asthma in childhood. J Allergy Clin Immunol 2023; 152:866-869. [PMID: 37604311 PMCID: PMC10962220 DOI: 10.1016/j.jaci.2023.08.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 08/02/2023] [Accepted: 08/06/2023] [Indexed: 08/23/2023]
Affiliation(s)
| | - Kohei Hasegawa
- Department of Emergency Medicine, Harvard Medical School, Massachusetts General Hospital, Boston, Mass
| | - Tina V Hartert
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tenn; Department of Medicine, Vanderbilt University School of Medicine, Vanderbilt University Medical Center, Nashville, Tenn.
| |
Collapse
|
9
|
Rosas‐Salazar C, Hartert TV. Infant respiratory syncytial virus infection and childhood asthma: A shift in the paradigm? Clin Transl Med 2023; 13:e1414. [PMID: 37700493 PMCID: PMC10497811 DOI: 10.1002/ctm2.1414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 09/05/2023] [Indexed: 09/14/2023] Open
Affiliation(s)
| | - Tina V. Hartert
- Department of PediatricsVanderbilt University Medical CenterNashvilleTennesseeUSA
- Department of MedicineVanderbilt University Medical CenterNashvilleTennesseeUSA
| |
Collapse
|
10
|
Rosas-Salazar C, Chirkova T, Gebretsadik T, Chappell JD, Peebles RS, Dupont WD, Jadhao SJ, Gergen PJ, Anderson LJ, Hartert TV. Respiratory syncytial virus infection during infancy and asthma during childhood in the USA (INSPIRE): a population-based, prospective birth cohort study. Lancet 2023; 401:1669-1680. [PMID: 37086744 PMCID: PMC10367596 DOI: 10.1016/s0140-6736(23)00811-5] [Citation(s) in RCA: 65] [Impact Index Per Article: 65.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 01/19/2023] [Accepted: 01/31/2023] [Indexed: 04/24/2023]
Abstract
BACKGROUND Early-life severe respiratory syncytial virus (RSV) infection has been associated with the onset of childhood wheezing illnesses. However, the relationship between RSV infection during infancy and the development of childhood asthma is unclear. We aimed to assess the association between RSV infection during infancy and childhood asthma. METHODS INSPIRE is a large, population-based, birth cohort of healthy infants with non-low birthweight born at term between June and December, 2012, or between June and December, 2013. Infants were recruited from 11 paediatric practices across middle Tennessee, USA. We ascertained RSV infection status (no infection vs infection) in the first year of life using a combination of passive and active surveillance with viral identification through molecular and serological techniques. Children were then followed up prospectively for the primary outcome of 5-year current asthma, which we analysed in all participants who completed 5-year follow-up. Statistical models, which were done for children with available data, were adjusted for child's sex, race and ethnicity, any breastfeeding, day-care attendance during infancy, exposure to second-hand smoke in utero or during early infancy, and maternal asthma. FINDINGS Of 1946 eligible children who were enrolled in the study, 1741 (89%) had available data to assess RSV infection status in the first year of life. The proportion of children with RSV infection during infancy was 944 (54%; 95% CI 52-57) of 1741 children. The proportion of children with 5-year current asthma was lower among those without RSV infection during infancy (91 [16%] of 587) than those with RSV infection during infancy (139 [21%] of 670; p=0·016). Not being infected with RSV during infancy was associated with a 26% lower risk of 5-year current asthma than being infected with RSV during infancy (adjusted RR 0·74, 95% CI 0·58-0·94, p=0·014). The estimated proportion of 5-year current asthma cases that could be prevented by avoiding RSV infection during infancy was 15% (95% CI 2·2-26·8). INTERPRETATION Among healthy children born at term, not being infected with RSV in the first year of life was associated with a substantially reduced risk of developing childhood asthma. Our findings show an age-dependent association between RSV infection during infancy and childhood asthma. However, to definitively establish causality, the effect of interventions that prevent, delay, or decrease the severity of the initial RSV infection on childhood asthma will need to be studied. FUNDING US National Institutes of Health.
Collapse
Affiliation(s)
| | - Tatiana Chirkova
- Department of Pediatrics, Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, GA, USA
| | - Tebeb Gebretsadik
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - James D Chappell
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - R Stokes Peebles
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - William D Dupont
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Samadhan J Jadhao
- Department of Pediatrics, Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, GA, USA
| | - Peter J Gergen
- Division of Allergy, Immunology and Transplantation, National Institute of Allergy and Infectious Diseases, Bethesda, MA, USA
| | - Larry J Anderson
- Department of Pediatrics, Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, GA, USA
| | - Tina V Hartert
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, USA; Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|
11
|
Ortiz JR, Laufer RS, Brunwasser SM, Coulibaly F, Diallo F, Doumbia M, Driscoll AJ, Fell DB, Haidara FC, Hartert TV, Keita AM, Neuzil KM, Snyder BM, Sow S, Fitzpatrick MC. Model-estimated impacts of pediatric respiratory syncytial virus prevention programs in Mali on asthma prevalence. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. GLOBAL 2023; 2:100092. [PMID: 37215432 PMCID: PMC10193369 DOI: 10.1016/j.jacig.2023.100092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 12/21/2022] [Accepted: 02/02/2023] [Indexed: 05/24/2023]
Abstract
Background Respiratory syncytial virus (RSV) is a leading cause of lower respiratory tract infection (LRTI) in young children and is associated with subsequent recurrent wheezing illness and asthma (wheeze/asthma). RSV prevention may therefore reduce wheeze/asthma prevalence. Objectives We estimated the contribution of RSV LRTI and the impact of RSV prevention on recurrent wheeze/asthma in Mali. Methods We simulated 12 consecutive monthly birth cohorts in Mali and estimated RSV LRTI cases through 2 years and recurrent wheeze/asthma prevalence at 6 years under different RSV prevention scenarios: status quo, seasonal birth-dose extended half-life mAb, and seasonal birth-dose extended half-life mAb followed by 2 doses of pediatric vaccine (mAb + vaccine). We used World Health Organization (WHO) Preferred Product Characteristics for RSV prevention, demographic and RSV epidemiologic data from Mali, regional recurrent wheeze/asthma prevalence, and relative risk of recurrent wheeze/asthma given early childhood RSV LRTI. Results Among the simulated cohort of 778,680 live births, 10.0% had RSV LRTI by 2 years and 89.6% survived to 6 years. We estimated that 13.4% of all recurrent wheeze/asthma at 6 years was attributable to RSV LRTI. Recurrent wheeze/asthma prevalence at 6 years was 145.0 per 10,000 persons (RSV LRTI attributable) and 1084.2 per 10,000 persons (total). In mAb and mAb + vaccine scenarios, RSV LRTI cases decreased by 11.8% and 44.4%, respectively, and recurrent wheeze/asthma prevalence decreased by 11.8% and 44.4% (RSV LRTI attributable) and 1.6% and 5.9% (total). Conclusion In Mali, RSV prevention programs may have a meaningful impact on chronic respiratory disease, strengthening the case for investment in RSV prevention.
Collapse
Affiliation(s)
- Justin R. Ortiz
- University of Maryland School of Medicine, Baltimore, Md
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, Md
| | - Rachel S. Laufer
- University of Maryland School of Medicine, Baltimore, Md
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, Md
| | - Steven M. Brunwasser
- Vanderbilt University Medical Center, Nashville, Tenn
- Rowan University, Glassboro, NJ
| | - Flanon Coulibaly
- Centre pour le Développement des Vaccins, Ministère de la Santé, Bamako, Mali
| | - Fatoumata Diallo
- Centre pour le Développement des Vaccins, Ministère de la Santé, Bamako, Mali
| | - Moussa Doumbia
- Centre pour le Développement des Vaccins, Ministère de la Santé, Bamako, Mali
| | - Amanda J. Driscoll
- University of Maryland School of Medicine, Baltimore, Md
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, Md
| | - Deshayne B. Fell
- School of Epidemiology and Public Health, University of Ottawa, and CHEO Research Institute, Ottawa, Ontario, Canada
| | - Fadima C. Haidara
- Centre pour le Développement des Vaccins, Ministère de la Santé, Bamako, Mali
| | | | - Adama M. Keita
- Centre pour le Développement des Vaccins, Ministère de la Santé, Bamako, Mali
| | - Kathleen M. Neuzil
- University of Maryland School of Medicine, Baltimore, Md
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, Md
| | | | - Samba Sow
- Centre pour le Développement des Vaccins, Ministère de la Santé, Bamako, Mali
| | - Meagan C. Fitzpatrick
- University of Maryland School of Medicine, Baltimore, Md
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, Md
| |
Collapse
|
12
|
Lu Y, Xu S, Sun H, Shan J, Shen C, Ji J, Lin L, Xu J, Peng L, Dai C, Xie T. Analysis of temporal metabolic rewiring for human respiratory syncytial virus infection by integrating metabolomics and proteomics. Metabolomics 2023; 19:30. [PMID: 36991292 PMCID: PMC10057675 DOI: 10.1007/s11306-023-01991-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 03/05/2023] [Indexed: 03/31/2023]
Abstract
INTRODUCTION Human respiratory syncytial virus (HRSV) infection causes significant morbidity, and no effective treatments are currently available. Viral infections induce substantial metabolic changes in the infected cells to optimize viral production. Metabolites that reflect the interactions between host cells and viruses provided an opportunity to identify the pathways underlying severe infections. OBJECTIVE To better understand the metabolic changes caused by HRSV infection, we analyzed temporal metabolic profiling to provide novel targets for therapeutic strategies for inhaled HRSV infection. METHODS The epithelial cells and BALB/c mice were infected with HRSV. Protein and mRNA levels of inflammation factors were measured by using quantitative reverse transcription polymerase chain reaction and enzyme-linked immunosorbent assay. Untargeted metabolomics, lipidomics and proteomics were performed using liquid chromatography coupled with mass spectrometry to profile the metabolic phenotypic alterations in HRSV infection. RESULTS In this study, we evaluated the inflammatory responses in vivo and in vitro and investigated the temporal metabolic rewiring of HRSV infection in epithelial cells. We combined metabolomics and proteomic analyses to demonstrate that the redox imbalance was further provoked by increasing glycolysis and anaplerotic reactions. These responses created an oxidant-rich microenvironment that elevated reactive oxygen species levels and exacerbated glutathione consumption. CONCLUSION These observations indicate that adjusting for metabolic events during a viral infection could represent a valuable approach for reshaping the outcome of infections.
Collapse
Affiliation(s)
- Yao Lu
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Shan Xu
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Huan Sun
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Jinjun Shan
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Cunsi Shen
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Jianjian Ji
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Lili Lin
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Jianya Xu
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Linxiu Peng
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Chen Dai
- Experimental Teaching Center of Life Science, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Tong Xie
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| |
Collapse
|
13
|
Brasier AR. Special Issue "Next-Generation Technologies to Understand Mechanisms of Virus Infections". Viruses 2022; 15:33. [PMID: 36680073 PMCID: PMC9861918 DOI: 10.3390/v15010033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
RNA viruses are responsible for substantial morbidity and health burden [...].
Collapse
Affiliation(s)
- Allan R Brasier
- Institute for Clinical and Translational Research, University of Wisconsin-Madison, Madison, WI 53705, USA
| |
Collapse
|
14
|
RELA∙8-Oxoguanine DNA Glycosylase1 Is an Epigenetic Regulatory Complex Coordinating the Hexosamine Biosynthetic Pathway in RSV Infection. Cells 2022; 11:cells11142210. [PMID: 35883652 PMCID: PMC9319012 DOI: 10.3390/cells11142210] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 07/12/2022] [Accepted: 07/12/2022] [Indexed: 11/16/2022] Open
Abstract
Respiratory syncytial virus (RSV), or human orthopneumovirus, is a negative-sense RNA virus that is the causative agent of severe lower respiratory tract infections in children and is associated with exacerbations of adult lung disease. The mechanisms how severe and/or repetitive virus infections cause declines in pulmonary capacity are not fully understood. We have recently discovered that viral replication triggers epithelial plasticity and metabolic reprogramming involving the hexosamine biosynthetic pathway (HBP). In this study, we examine the relationship between viral induced innate inflammation and the activation of hexosamine biosynthesis in small airway epithelial cells. We observe that RSV induces ~2-fold accumulation of intracellular UDP-GlcNAc, the end-product of the HBP and the obligate substrate of N glycosylation. Using two different silencing approaches, we observe that RSV replication activates the HBP pathway in a manner dependent on the RELA proto-oncogene (65 kDa subunit). To better understand the effect of RSV on the cellular N glycoproteome, and its RELA dependence, we conduct affinity enriched LC-MS profiling in wild-type and RELA-silenced cells. We find that RSV induces the accumulation of 171 N glycosylated peptides in a RELA-dependent manner; these proteins are functionally enriched in integrins and basal lamina formation. To elaborate this mechanism of HBP expression, we demonstrate that RSV infection coordinately induces the HBP pathway enzymes in a manner requiring RELA; these genes include Glutamine-Fructose-6-Phosphate Transaminase 1 (GFPT)-1/2, Glucosamine-Phosphate N-Acetyltransferase (GNPNAT)-1, phosphoglucomutase (PGM)-3 and UDP-N-Acetylglucosamine Pyrophosphorylase (UAP)-1. Using small-molecule inhibitor(s) of 8-oxoguanine DNA glycosylase1 (OGG1), we observe that OGG1 is also required for the expression of HBP pathway. In proximity ligation assays, RSV induces the formation of a nuclear and mitochondrial RELA∙OGG1 complex. In co-immunoprecipitaton (IP) experiments, we discover that RSV induces Ser 536-phosphorylated RELA to complex with OGG1. Chromatin IP experiments demonstrate a major role of OGG1 in supporting the recruitment of RELA and phosphorylated RNA Pol II to the HBP pathway genes. We conclude that the RELA∙OGG1 complex is an epigenetic regulator mediating metabolic reprogramming and N glycoprotein modifications of integrins in response to RSV. These findings have implications for viral-induced adaptive epithelial responses.
Collapse
|
15
|
Ng YS, Lee DY, Liu CH, Tung CY, He ST, Wang HC. White Spot Syndrome Virus Triggers a Glycolytic Pathway in Shrimp Immune Cells (Hemocytes) to Benefit Its Replication. Front Immunol 2022; 13:901111. [PMID: 35860260 PMCID: PMC9289281 DOI: 10.3389/fimmu.2022.901111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 05/30/2022] [Indexed: 11/13/2022] Open
Abstract
White spot syndrome virus (WSSV) is the causative agent of a shrimp disease that inflicts in huge economic losses in shrimp-farming industry. WSSV triggers aerobic glycolysis in shrimp immune cells (hemocytes), but how this virus regulates glycolytic enzymes or pathway is yet to be characterized. Therefore, mRNA levels and activity of four important glycolytic enzymes, Hexokinase (HK), Phosphofructokinase (PFK), Pyruvate kinase (PK), and Lactate dehydrogenase (LDH), were measured in WSSV-infected shrimp hemocytes. Gene expression of HK and PFK, but not LDH or PK, was increased at the viral genome replication stage (12 hpi); furthermore, activity of these enzymes, except HK, was concurrently increased. However, there was no increased enzyme activity at the viral late stage (24 hpi). In vivo dsRNA silencing and glycolysis disruption by 2-DG further confirmed the role of glycolysis in virus replication. Based on tracing studies using stable isotope labeled glucose, glycolysis was activated at the viral genome replication stage, but not at the viral late stage. This study demonstrated that WSSV enhanced glycolysis by activating glycolytic enzyme at the viral genome replication stage, providing energy and biomolecules for virus replication.
Collapse
Affiliation(s)
- Yen Siong Ng
- Department of Biotechnology and Bioindustry Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan
| | - Der-Yen Lee
- Graduate Institute of Integrated Medicine, China Medical University, Taichung, Taiwan
| | - Chun-Hung Liu
- Department of Aquaculture, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - Cheng-Yi Tung
- Department of Biotechnology and Bioindustry Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan
| | - Shu-Ting He
- Department of Biotechnology and Bioindustry Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan
| | - Han-Ching Wang
- Department of Biotechnology and Bioindustry Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan
- International Center for the Scientific Development of Shrimp Aquaculture, National Cheng Kung University, Tainan, Taiwan
- *Correspondence: Han-Ching Wang,
| |
Collapse
|
16
|
Cruz-Pulido D, Ouma WZ, Kenney SP. Differing coronavirus genres alter shared host signaling pathways upon viral infection. Sci Rep 2022; 12:9744. [PMID: 35697915 PMCID: PMC9189807 DOI: 10.1038/s41598-022-13396-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 05/24/2022] [Indexed: 11/11/2022] Open
Abstract
Coronaviruses are important viral pathogens across a range of animal species including humans. They have a high potential for cross-species transmission as evidenced by the emergence of COVID-19 and may be the origin of future pandemics. There is therefore an urgent need to study coronaviruses in depth and to identify new therapeutic targets. This study shows that distant coronaviruses such as Alpha-, Beta-, and Deltacoronaviruses can share common host immune associated pathways and genes. Differentially expressed genes (DEGs) in the transcription profile of epithelial cell lines infected with swine acute diarrhea syndrome, severe acute respiratory syndrome coronavirus 2, or porcine deltacoronavirus, showed that DEGs within 10 common immune associated pathways were upregulated upon infection. Twenty Three pathways and 21 DEGs across 10 immune response associated pathways were shared by these viruses. These 21 DEGs can serve as focused targets for therapeutics against newly emerging coronaviruses. We were able to show that even though there is a positive correlation between PDCoV and SARS-CoV-2 infections, these viruses could be using different strategies for efficient replication in their cells from their natural hosts. To the best of our knowledge, this is the first report of comparative host transcriptome analysis across distant coronavirus genres.
Collapse
Affiliation(s)
- Diana Cruz-Pulido
- Department of Veterinary Preventive Medicine, The Ohio State University, Columbus, OH, 43210, USA
- Department of Animal Sciences, Center for Food Animal Health, The Ohio State University, Wooster, OH, 44691, USA
| | | | - Scott P Kenney
- Department of Veterinary Preventive Medicine, The Ohio State University, Columbus, OH, 43210, USA.
- Department of Animal Sciences, Center for Food Animal Health, The Ohio State University, Wooster, OH, 44691, USA.
| |
Collapse
|