2
|
Symmonds J, Gaufin T, Xu C, Raehtz KD, Ribeiro RM, Pandrea I, Apetrei C. Making a Monkey out of Human Immunodeficiency Virus/Simian Immunodeficiency Virus Pathogenesis: Immune Cell Depletion Experiments as a Tool to Understand the Immune Correlates of Protection and Pathogenicity in HIV Infection. Viruses 2024; 16:972. [PMID: 38932264 PMCID: PMC11209256 DOI: 10.3390/v16060972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/31/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024] Open
Abstract
Understanding the underlying mechanisms of HIV pathogenesis is critical for designing successful HIV vaccines and cure strategies. However, achieving this goal is complicated by the virus's direct interactions with immune cells, the induction of persistent reservoirs in the immune system cells, and multiple strategies developed by the virus for immune evasion. Meanwhile, HIV and SIV infections induce a pandysfunction of the immune cell populations, making it difficult to untangle the various concurrent mechanisms of HIV pathogenesis. Over the years, one of the most successful approaches for dissecting the immune correlates of protection in HIV/SIV infection has been the in vivo depletion of various immune cell populations and assessment of the impact of these depletions on the outcome of infection in non-human primate models. Here, we present a detailed analysis of the strategies and results of manipulating SIV pathogenesis through in vivo depletions of key immune cells populations. Although each of these methods has its limitations, they have all contributed to our understanding of key pathogenic pathways in HIV/SIV infection.
Collapse
Affiliation(s)
- Jen Symmonds
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA; (J.S.); (C.X.); (K.D.R.); (I.P.)
- Department of Infectious Diseases and Microbiology, School of Public Health, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Thaidra Gaufin
- Tulane National Primate Research Center, Tulane University, Covington, LA 70433, USA;
| | - Cuiling Xu
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA; (J.S.); (C.X.); (K.D.R.); (I.P.)
- Division of Infectious Diseases, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Kevin D. Raehtz
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA; (J.S.); (C.X.); (K.D.R.); (I.P.)
- Division of Infectious Diseases, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Ruy M. Ribeiro
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | - Ivona Pandrea
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA; (J.S.); (C.X.); (K.D.R.); (I.P.)
- Department of Infectious Diseases and Microbiology, School of Public Health, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Cristian Apetrei
- Department of Infectious Diseases and Microbiology, School of Public Health, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Division of Infectious Diseases, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| |
Collapse
|
3
|
Le Hingrat Q, Sette P, Xu C, Rahmberg AR, Tarnus L, Annapureddy H, Kleinman A, Brocca-Cofano E, Sivanandham R, Sivanandham S, He T, Capreri DJ, Ma D, Estes JD, Brenchley JM, Apetrei C, Pandrea I. Prolonged experimental CD4 + T-cell depletion does not cause disease progression in SIV-infected African green monkeys. Nat Commun 2023; 14:979. [PMID: 36813761 PMCID: PMC9946951 DOI: 10.1038/s41467-023-36379-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 01/23/2023] [Indexed: 02/24/2023] Open
Abstract
CD4+ T-cell depletion is a hallmark of HIV infection, leading to impairment of cellular immunity and opportunistic infections, but its contribution to SIV/HIV-associated gut dysfunction is unknown. Chronically SIV-infected African Green Monkeys (AGMs) partially recover mucosal CD4+ T-cells, maintain gut integrity and do not progress to AIDS. Here we assess the impact of prolonged, antibody-mediated CD4 + T-cell depletion on gut integrity and natural history of SIV infection in AGMs. All circulating CD4+ T-cells and >90% of mucosal CD4+ T-cells are depleted. Plasma viral loads and cell-associated viral RNA in tissues are lower in CD4+-cell-depleted animals. CD4+-cell-depleted AGMs maintain gut integrity, control immune activation and do not progress to AIDS. We thus conclude that CD4+ T-cell depletion is not a determinant of SIV-related gut dysfunction, when gastrointestinal tract epithelial damage and inflammation are absent, suggesting that disease progression and resistance to AIDS are independent of CD4+ T-cell restoration in SIVagm-infected AGMs.
Collapse
Affiliation(s)
- Quentin Le Hingrat
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA.,Division of Infectious Diseases, Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Paola Sette
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA.,Division of Infectious Diseases, Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Cuiling Xu
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA.,Division of Infectious Diseases, Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Andrew R Rahmberg
- Barrier Immunity Section, Lab of Viral Diseases, Division of Intramural Research, NIAID, NIH, Bethesda, MD, USA
| | - Lilas Tarnus
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA.,Division of Infectious Diseases, Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Haritha Annapureddy
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Adam Kleinman
- Division of Infectious Diseases, Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Egidio Brocca-Cofano
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Ranjit Sivanandham
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Sindhuja Sivanandham
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Tianyu He
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Daniel J Capreri
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Dongzhu Ma
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA.,Division of Infectious Diseases, Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jacob D Estes
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Portland, OR, USA.,Division of Pathobiology and Immunology, Oregon National Primate Research Center, Oregon Health & Science University, Portland, OR, USA
| | - Jason M Brenchley
- Barrier Immunity Section, Lab of Viral Diseases, Division of Intramural Research, NIAID, NIH, Bethesda, MD, USA
| | - Cristian Apetrei
- Division of Infectious Diseases, Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA.,Department of Infectious Diseases and Microbiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Ivona Pandrea
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA. .,Department of Infectious Diseases and Microbiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
4
|
Jasinska AJ, Apetrei C, Pandrea I. Walk on the wild side: SIV infection in African non-human primate hosts-from the field to the laboratory. Front Immunol 2023; 13:1060985. [PMID: 36713371 PMCID: PMC9878298 DOI: 10.3389/fimmu.2022.1060985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 12/15/2022] [Indexed: 01/15/2023] Open
Abstract
HIV emerged following cross-species transmissions of simian immunodeficiency viruses (SIVs) that naturally infect non-human primates (NHPs) from Africa. While HIV replication and CD4+ T-cell depletion lead to increased gut permeability, microbial translocation, chronic immune activation, and systemic inflammation, the natural hosts of SIVs generally avoid these deleterious consequences when infected with their species-specific SIVs and do not progress to AIDS despite persistent lifelong high viremia due to long-term coevolution with their SIV pathogens. The benign course of natural SIV infection in the natural hosts is in stark contrast to the experimental SIV infection of Asian macaques, which progresses to simian AIDS. The mechanisms of non-pathogenic SIV infections are studied mainly in African green monkeys, sooty mangabeys, and mandrills, while progressing SIV infection is experimentally modeled in macaques: rhesus macaques, pigtailed macaques, and cynomolgus macaques. Here, we focus on the distinctive features of SIV infection in natural hosts, particularly (1): the superior healing properties of the intestinal mucosa, which enable them to maintain the integrity of the gut barrier and prevent microbial translocation, thus avoiding excessive/pathologic immune activation and inflammation usually perpetrated by the leaking of the microbial products into the circulation; (2) the gut microbiome, the disruption of which is an important factor in some inflammatory diseases, yet not completely understood in the course of lentiviral infection; (3) cell population shifts resulting in target cell restriction (downregulation of CD4 or CCR5 surface molecules that bind to SIV), control of viral replication in the lymph nodes (expansion of natural killer cells), and anti-inflammatory effects in the gut (NKG2a/c+ CD8+ T cells); and (4) the genes and biological pathways that can shape genetic adaptations to viral pathogens and are associated with the non-pathogenic outcome of the natural SIV infection. Deciphering the protective mechanisms against SIV disease progression to immunodeficiency, which have been established through long-term coevolution between the natural hosts and their species-specific SIVs, may prompt the development of novel therapeutic interventions, such as drugs that can control gut inflammation, enhance gut healing capacities, or modulate the gut microbiome. These developments can go beyond HIV infection and open up large avenues for correcting gut damage, which is common in many diseases.
Collapse
Affiliation(s)
- Anna J. Jasinska
- Division of Infectious Diseases, Department of Medicine (DOM), School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Cristian Apetrei
- Division of Infectious Diseases, Department of Medicine (DOM), School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
- Department of Infectious Diseases and Immunology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, United States
| | - Ivona Pandrea
- Department of Infectious Diseases and Immunology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, United States
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
5
|
Associations between NK Cells in Different Immune Organs and Cellular SIV DNA and RNA in Regional HLADR - CD4 + T Cells in Chronically SIV mac239-Infected, Treatment-Naïve Rhesus Macaques. Viruses 2022; 14:v14112513. [PMID: 36423122 PMCID: PMC9697022 DOI: 10.3390/v14112513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 11/10/2022] [Accepted: 11/10/2022] [Indexed: 11/16/2022] Open
Abstract
With the development of NK cell-directed therapeutic strategies, the actual effect of NK cells on the cellular SIV DNA levels of the virus in SIV-infected macaques in vivo remains unclear. In this study, five chronically SIVmac239-infected, treatment-naïve rhesus macaques were euthanized, and the blood, spleen, pararectal/paracolonic lymph nodes (PaLNs), and axillary lymph nodes (ALNs) were collected. The distributional, phenotypic, and functional profiles of NK cells were detected by flow cytometry. The highest frequency of NK cells was found in PBMC, followed by the spleen, while only 0~0.5% were found in LNs. Peripheral NK cells also exhibited higher cytotoxic potential (CD56- CD16+ NK subsets) and IFN-γ-producing capacity but low PD-1 and Tim-3 levels than those in the spleen and LNs. Our results demonstrated a significant positive correlation between the frequency of NK cells and the ratios of cellular SIV DNA/RNA in HLADR- CD4+ T cells (r = 0.6806, p < 0.001) in SIV-infected macaques, despite no discrepancies in the cellular SIV DNA or RNA levels that were found among the blood, spleen, and LNs. These findings showed a profile of NK cell frequencies and NK cytotoxicity levels in different immune organs from chronically SIVmac239-infected, treatment-naïve rhesus macaques. It was suggested that NK cell frequencies could be closely related to SIV DNA/RNA levels, which could affect the transcriptional activity of SIV proviruses. However, the cytotoxicity effect of NK cells on the latent SIV viral load in LNs could be limited due to the sparse abundance of NK cells in LNs. The development of NK cell-directed treatment approaches aiming for HIV clearance remains challenging.
Collapse
|
6
|
Pandrea I, Brooks K, Desai RP, Tare M, Brenchley JM, Apetrei C. I've looked at gut from both sides now: Gastrointestinal tract involvement in the pathogenesis of SARS-CoV-2 and HIV/SIV infections. Front Immunol 2022; 13:899559. [PMID: 36032119 PMCID: PMC9411647 DOI: 10.3389/fimmu.2022.899559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 07/25/2022] [Indexed: 01/08/2023] Open
Abstract
The lumen of the gastrointestinal (GI) tract contains an incredibly diverse and extensive collection of microorganisms that can directly stimulate the immune system. There are significant data to demonstrate that the spatial localization of the microbiome can impact viral disease pathogenesis. Here we discuss recent studies that have investigated causes and consequences of GI tract pathologies in HIV, SIV, and SARS-CoV-2 infections with HIV and SIV initiating GI pathology from the basal side and SARS-CoV-2 from the luminal side. Both these infections result in alterations of the intestinal barrier, leading to microbial translocation, persistent inflammation, and T-cell immune activation. GI tract damage is one of the major contributors to multisystem inflammatory syndrome in SARS-CoV-2-infected individuals and to the incomplete immune restoration in HIV-infected subjects, even in those with robust viral control with antiretroviral therapy. While the causes of GI tract pathologies differ between these virus families, therapeutic interventions to reduce microbial translocation-induced inflammation and improve the integrity of the GI tract may improve the prognoses of infected individuals.
Collapse
Affiliation(s)
- Ivona Pandrea
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
- Department of Infectious Diseases and Microbiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, United States
| | - Kelsie Brooks
- Barrier Immunity Section, Laboratory of Viral Diseases, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Rahul P. Desai
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
- Division of Infectious Diseases, Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Minali Tare
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
- Division of Infectious Diseases, Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Jason M. Brenchley
- Barrier Immunity Section, Laboratory of Viral Diseases, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Cristian Apetrei
- Department of Infectious Diseases and Microbiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, United States
- Division of Infectious Diseases, Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|