1
|
Hoyle VJ, Schultz M, McGinnity Schneider EJ, Roy BG, Fuchs M. Lack of Vertical Transmission of Grapevine Red Blotch Virus by Spissistilus festinus and Sex-Associated Differences in Horizontal Transmission. INSECTS 2024; 15:1014. [PMID: 39769616 PMCID: PMC11679970 DOI: 10.3390/insects15121014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 12/15/2024] [Accepted: 12/19/2024] [Indexed: 01/11/2025]
Abstract
Grapevine red blotch is an emerging disease that threatens vineyard productions in North America. Grapevine red blotch virus (GRBV, species Grablovirus vitis, genus Grablovirus, family Geminiviridae), the causal agent of red blotch disease, is transmitted by Spissistilus festinus (Hemiptera: Membracidae) in a circulative, non-propagative mode. To gain new insight into GRBV-S. festinus interactions, we delved into vertical transmission and documented a lack of transovarial transmission. In addition, we investigated S. festinus sex differences in the horizontal transmission of GRBV by creating small arenas with 30 detached trifoliates of common snap bean, an experimental host of GRBV, and a preferred feeding host of S. festinus. Tracking the movement of viruliferous males, females, or a combination of the two sexes over two weeks in replicated experiments demonstrated that male S. festinus dispersed more than females with specimens of both sexes predominantly grouping together on trifoliates spatially surrounding the trifoliate onto which they were released. These behaviors resulted in a greater rate of GRBV transmission by S. festinus males (17%, 20 of 120) than females (4%, 5 of 120) or mixed-sex cohorts (9%, 17 of 180). In arenas with aviruliferous S. festinus and one (single) or four (hotspot) GRBV-infected trifoliates out of 30 total trifoliates, a higher GRBV transmission rate by males was confirmed in both single infection (50%, 30 of 60) and hotspot infection (83%, 50 of 60) arenas than by females in single infection (35%, 21 of 60) and hotspot infection (67%, 40 of 60) arenas. These findings highlighted sex-associated differences in the transmission of GRBV by S. festinus and a positive correlation between the initial virus prevalence and the rate of transmission. Finally, the secondary spread of GRBV resulted primarily from S. festinus dispersal by walking or jumping. Together, these unique GRBV transmission features support the need to characterize dispersal behaviors of S. festinus in vineyard ecosystems.
Collapse
Affiliation(s)
- Victoria J. Hoyle
- School of Integrative Plant Science, Plant Pathology and Plant-Microbe Biology, Cornell University, Geneva, NY 14456, USA; (E.J.M.S.); (B.G.R.); (M.F.)
| | - Mackenzi Schultz
- College of Agriculture, Food and Natural Resources, University of Missouri, Columbia, MO 65203, USA
| | - Elliot J. McGinnity Schneider
- School of Integrative Plant Science, Plant Pathology and Plant-Microbe Biology, Cornell University, Geneva, NY 14456, USA; (E.J.M.S.); (B.G.R.); (M.F.)
| | - Brandon G. Roy
- School of Integrative Plant Science, Plant Pathology and Plant-Microbe Biology, Cornell University, Geneva, NY 14456, USA; (E.J.M.S.); (B.G.R.); (M.F.)
| | - Marc Fuchs
- School of Integrative Plant Science, Plant Pathology and Plant-Microbe Biology, Cornell University, Geneva, NY 14456, USA; (E.J.M.S.); (B.G.R.); (M.F.)
| |
Collapse
|
2
|
Hoyle VJ, McGinnity Schneider EJ, McLane HL, Wunsch AO, Fendell-Hummel HG, Cooper ML, Fuchs MF. Assessing the Potential of Tortistilus (Hemiptera: Membracidae) from Northern California Vineyards as Vector Candidates of Grapevine Red Blotch Virus. INSECTS 2024; 15:664. [PMID: 39336632 PMCID: PMC11432720 DOI: 10.3390/insects15090664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/28/2024] [Accepted: 08/30/2024] [Indexed: 09/30/2024]
Abstract
Ceresini treehoppers are present in northern California vineyard ecosystems, including the closely related Spissistilus and Tortistilus (Hemiptera: Membracidae). These membracids are not direct pests of wine grapes, but S. festinus is a vector of grapevine red blotch virus (GRBV). No information is available on the ability of Tortistilus spp. to transmit GRBV. In this study, Tortistilus were collected on yellow panel cards across 102 vineyard sites and surrounding areas in Napa Valley, California, USA in 2021-2023. Specimens were morphotyped, sexed and tested for GRBV ingestion and acquisition by multiplex PCR or qPCR. Phylogenetic analysis of the partial sequence of mt-COI and ITS gene fragments of a subset of 40 Tortistilus specimens revealed clustering in a monophyletic clade with T. wickhami with the former barcode sequence. Only 6% (48/758) of the T. wickhami tested positive for GRBV, but none of the heads with salivary glands (0%, 0/50) of the dissected specimens tested positive for GRBV, indicating no virus acquisition. In contrast, half of the dissected heads with salivary glands of S. festinus (52%, 12/23), from the same collection vineyard sites, tested positive for GRBV. Together, our findings confirmed the presence of T. wickhami in northern California vineyards and suggested a dubious role of this treehopper as a vector of GRBV.
Collapse
Affiliation(s)
- Victoria J Hoyle
- School of Integrative Plant Science, Plant Pathology and Plant-Microbe Biology, Cornell University, Geneva, NY 14456, USA
| | - Elliot J McGinnity Schneider
- School of Integrative Plant Science, Plant Pathology and Plant-Microbe Biology, Cornell University, Geneva, NY 14456, USA
| | - Heather L McLane
- School of Integrative Plant Science, Plant Pathology and Plant-Microbe Biology, Cornell University, Geneva, NY 14456, USA
| | - Anna O Wunsch
- School of Integrative Plant Science, Plant Pathology and Plant-Microbe Biology, Cornell University, Geneva, NY 14456, USA
| | | | - Monica L Cooper
- University of California Cooperative Extension, Napa, CA 94559, USA
| | - Marc F Fuchs
- School of Integrative Plant Science, Plant Pathology and Plant-Microbe Biology, Cornell University, Geneva, NY 14456, USA
| |
Collapse
|
3
|
Chooi KM, Bell VA, Blouin AG, Sandanayaka M, Gough R, Chhagan A, MacDiarmid RM. The New Zealand perspective of an ecosystem biology response to grapevine leafroll disease. Adv Virus Res 2024; 118:213-272. [PMID: 38461030 DOI: 10.1016/bs.aivir.2024.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2024]
Abstract
Grapevine leafroll-associated virus 3 (GLRaV-3) is a major pathogen of grapevines worldwide resulting in grapevine leafroll disease (GLD), reduced fruit yield, berry quality and vineyard profitability. Being graft transmissible, GLRaV-3 is also transmitted between grapevines by multiple hemipteran insects (mealybugs and soft scale insects). Over the past 20 years, New Zealand has developed and utilized integrated pest management (IPM) solutions that have slowly transitioned to an ecosystem-based biological response to GLD. These IPM solutions and combinations are based on a wealth of research within the temperate climates of New Zealand's nation-wide grape production. To provide context, the grapevine viruses present in the national vineyard estate and how these have been identified are described; the most pathogenic and destructive of these is GLRaV-3. We provide an overview of research on GLRaV-3 genotypes and biology within grapevines and describe the progressive development of GLRaV-3/GLD diagnostics based on molecular, serological, visual, and sensor-based technologies. Research on the ecology and control of the mealybugs Pseudococcus calceolariae and P. longispinus, the main insect vectors of GLRaV-3 in New Zealand, is described together with the implications of mealybug biological control agents and prospects to enhance their abundance and/or fitness in the vineyard. Virus transmission by mealybugs is described, with emphasis on understanding the interactions between GLRaV-3, vectors, and plants (grapevines, alternative hosts, or non-hosts of the virus). Disease management through grapevine removal and the economic influence of different removal strategies is detailed. Overall, the review summarizes research by an interdisciplinary team working in close association with the national industry body, New Zealand Winegrowers. Teamwork and communication across the whole industry has enabled implementation of research for the management of GLD.
Collapse
Affiliation(s)
- Kar Mun Chooi
- The New Zealand Institute for Plant & Food Research Limited, Auckland, New Zealand
| | - Vaughn A Bell
- The New Zealand Institute for Plant and Food Research Limited, Havelock North, New Zealand.
| | | | | | - Rebecca Gough
- The New Zealand Institute for Plant & Food Research Limited, Auckland, New Zealand
| | - Asha Chhagan
- The New Zealand Institute for Plant & Food Research Limited, Auckland, New Zealand
| | - Robin M MacDiarmid
- The New Zealand Institute for Plant & Food Research Limited, Auckland, New Zealand; The University of Auckland, Auckland, New Zealand
| |
Collapse
|
4
|
Flasco MT, Fuchs MF. Two Distinct Genotypes of Spissistilus festinus (Say, 1830) Reproduce and Differentially Transmit Grapevine Red Blotch Virus. INSECTS 2023; 14:831. [PMID: 37887843 PMCID: PMC10607809 DOI: 10.3390/insects14100831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/18/2023] [Accepted: 10/19/2023] [Indexed: 10/28/2023]
Abstract
Two phenotypically similar but genetically distinct genotypes of Spissistilus festinus (Say, 1830) (Hemiptera: Membracidae), a pest of legume crops in Southern United States and a vector of grapevine red blotch virus (GRBV) in California vineyards, exist. No information is available on whether the two S. festinus genotypes, i.e., California (CA) and Southeastern (SE), are sexually compatible or whether the SE genotype can transmit GRBV. In this study, we established mixed mating S. festinus pairs for which the F1 offspring varied phenotypically compared with the offspring of same genotype pairs but acquired GRBV isolate NY175 at similar rates (p = 0.96) and with a similar viral genome copy number (p = 0.34). Likewise, rates of GRBV acquisition were alike for the two parental CA (58%, 61/105) and SE (61%, 65/106) genotypes (p = 0.74), though the GRBV copy number in the salivary glands was overall significantly higher for SE than CA individuals (p = 0.02). Furthermore, the GRBV transmission rate was significantly higher for the SE genotype (89%, 16/18) than the CA genotype (50%, 8/16) (p = 0.04). These results revealed the existence of two sexually compatible S. festinus genotypes with distinct GRBV transmission abilities, suggesting the need to study GRBV ecology in Southeastern United States and areas where the two genotypes might co-exist.
Collapse
Affiliation(s)
- Madison T. Flasco
- Plant Pathology and Plant-Microbe Biology, School of Integrative Plant Science, Cornell University, Geneva, NY 14456, USA;
| | | |
Collapse
|
5
|
Krenz B, Fuchs M, Thompson JR. Grapevine red blotch disease: A comprehensive Q&A guide. PLoS Pathog 2023; 19:e1011671. [PMID: 37824437 PMCID: PMC10569545 DOI: 10.1371/journal.ppat.1011671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2023] Open
Affiliation(s)
- Björn Krenz
- German Collection of Microorganisms and Cell Cultures DSMZ GmbH, Braunschweig, Germany
| | - Marc Fuchs
- School of Integrative Plant Science, Plant Pathology and Plant-Microbe Biology, Cornell University, Geneva, New York, United States of America
| | - Jeremy R. Thompson
- Plant Health and Environment Laboratory, Ministry for Primary Industries, Auckland, New Zealand
| |
Collapse
|
6
|
Flasco MT, Cieniewicz EJ, Pethybridge SJ, Fuchs MF. Distinct Red Blotch Disease Epidemiological Dynamics in Two Nearby Vineyards. Viruses 2023; 15:1184. [PMID: 37243269 PMCID: PMC10223151 DOI: 10.3390/v15051184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 05/12/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023] Open
Abstract
Grapevine red blotch virus (GRBV) causes red blotch disease and is transmitted by the three-cornered alfalfa hopper, Spissistilus festinus. GRBV isolates belong to a minor phylogenetic clade 1 and a predominant clade 2. Spatiotemporal disease dynamics were monitored in a 1-hectare 'Merlot' vineyard planted in California in 2015. Annual surveys first revealed disease onset in 2018 and a 1.6% disease incidence in 2022. Ordinary runs and phylogenetic analyses documented significant aggregation of vines infected with GRBV clade 1 isolates in one corner of the vineyard (Z = -4.99), despite being surrounded by clade 2 isolates. This aggregation of vines harboring isolates from a non-prevalent clade is likely due to infected rootstock material at planting. GRBV clade 1 isolates were predominant in 2018-2019 but displaced by clade 2 isolates in 2021-2022, suggesting an influx of the latter isolates from outside sources. This study is the first report of red blotch disease progress immediately after vineyard establishment. A nearby 1.5-hectare 'Cabernet Sauvignon' vineyard planted in 2008 with clone 4 (CS4) and 169 (CS169) vines was also surveyed. Most CS4 vines that exhibited disease symptoms one-year post-planting, likely due to infected scion material, were aggregated (Z = -1.73). GRBV isolates of both clades were found in the CS4 vines. Disease incidence was only 1.4% in non-infected CS169 vines in 2022 with sporadic infections of isolates from both clades occurring via secondary spread. Through disentangling GRBV infections due to the planting material and S. festinus-mediated transmission, this study illustrated how the primary virus source influences epidemiological dynamics of red blotch disease.
Collapse
Affiliation(s)
- Madison T. Flasco
- School of Integrative Plant Science, Plant Pathology and Plant-Microbe Biology Section, Cornell University, Geneva, NY 14456, USA; (S.J.P.); (M.F.F.)
| | | | - Sarah J. Pethybridge
- School of Integrative Plant Science, Plant Pathology and Plant-Microbe Biology Section, Cornell University, Geneva, NY 14456, USA; (S.J.P.); (M.F.F.)
| | - Marc F. Fuchs
- School of Integrative Plant Science, Plant Pathology and Plant-Microbe Biology Section, Cornell University, Geneva, NY 14456, USA; (S.J.P.); (M.F.F.)
| |
Collapse
|
7
|
Flasco MT, Hoyle V, Cieniewicz EJ, Loeb G, McLane H, Perry K, Fuchs MF. The Three-Cornered Alfalfa Hopper, Spissistilus festinus, Is a Vector of Grapevine Red Blotch Virus in Vineyards. Viruses 2023; 15:v15040927. [PMID: 37112907 PMCID: PMC10142188 DOI: 10.3390/v15040927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 03/29/2023] [Accepted: 04/05/2023] [Indexed: 04/29/2023] Open
Abstract
Spissistilus festinus (Hemiptera: Membracidae) transmit grapevine red blotch virus (GRBV, Grablovirus, Geminiviridae) in greenhouse settings; however, their role as a vector of GRBV in vineyards is unknown. Following controlled exposures of aviruliferous S. festinus for two weeks on infected, asymptomatic vines in a California vineyard in June and a 48 h gut clearing on alfalfa, a nonhost of GRBV, approximately half of the released insects tested positive for GRBV (45%, 46 of 102), including in the salivary glands of dissected individuals (11%, 3 of 27), indicating acquisition. Following controlled exposures of viruliferous S. festinus for two to six weeks on GRBV-negative vines in vineyards in California and New York in June, transmission of GRBV was detected when two S. festinus were restricted to a single leaf (3%, 2 of 62 in California; 10%, 5 of 50 in New York) but not with cohorts of 10-20 specimens on entire or half shoots. This work was consistent with greenhouse assays in which transmission was most successful with S. festinus exposed to a single leaf (42%, 5 of 12), but rarely occurred on half shoots (8%, 1 of 13), and never on entire shoots (0%, 0 of 18), documenting that the transmission of GRBV is facilitated through the feeding of fewer S. festinus on a restricted area of grapevine tissue. This work demonstrates S. festinus is a GRBV vector of epidemiological importance in vineyards.
Collapse
Affiliation(s)
- Madison T Flasco
- School of Integrative Plant Science, Plant Pathology and Plant-Microbe Biology, Cornell University, Geneva, NY 14456, USA
| | - Victoria Hoyle
- School of Integrative Plant Science, Plant Pathology and Plant-Microbe Biology, Cornell University, Geneva, NY 14456, USA
| | | | - Greg Loeb
- Department of Entomology, Cornell University, Geneva, NY 14456, USA
| | - Heather McLane
- School of Integrative Plant Science, Plant Pathology and Plant-Microbe Biology, Cornell University, Geneva, NY 14456, USA
| | - Keith Perry
- School of Integrative Plant Science, Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, NY 14853, USA
| | - Marc F Fuchs
- School of Integrative Plant Science, Plant Pathology and Plant-Microbe Biology, Cornell University, Geneva, NY 14456, USA
| |
Collapse
|
8
|
Potential Implications and Management of Grapevine Viruses in Mexico: A Review. INTERNATIONAL JOURNAL OF PLANT BIOLOGY 2023. [DOI: 10.3390/ijpb14010015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Worldwide, virus infections in grapevines are of concern due to the potential for economic loss. Although the grape industry in Mexico is relatively small and focused mainly on the local market, production dates back to the time of the Spanish colonization. This manuscript discusses the findings on grapevine viruses in Mexico. Nine viruses have been identified in the last fifty years, including grapevine red blotch virus (GRBV), grapevine leafroll-associated virus 3 (GLRaV-3), grapevine fanleaf virus (GFLV), and grapevine virus A (GVA). Important information is provided about these viruses and viral pathogens that have not yet been reported in Mexico, but represent an ongoing threat to plant health and grapevine production in other viticultural regions of the world. Strategies for virus control in vineyards are described. The information discussed here should be shared with growers and stakeholders to prevent future negative impacts on the Mexican grapevine industry and to save ancient grapevine accessions.
Collapse
|