1
|
Song C, Li H, Han Y, Luo J, Zhao Y, Zhou C, Zhang A, Wang H. Host restriction factor Rab11a limits porcine epidemic diarrhea virus invasion of cells via fusion peptide-mediated membrane fusion. Int J Biol Macromol 2024; 279:135299. [PMID: 39233171 DOI: 10.1016/j.ijbiomac.2024.135299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 08/11/2024] [Accepted: 09/01/2024] [Indexed: 09/06/2024]
Abstract
Porcine epidemic diarrhea virus (PEDV) causes enormous economic losses to the pork industry, and its extensive cell tropism poses a substantial challenge to public health and safety. However, the invasion mechanisms and relevant host factors of PEDV remain poorly understood. In this study, we identified 422 differentially expressed genes related to PEDV infection through transcriptome analysis. Among these, Annexin A2 (ANXA2), Prohibitin-2 (PHB2), and Caveolin-2 (CAV2) were identified through screening and verifying as having a specific interaction with the PEDV S protein, and positive regulation of PEDV internalization was validated by siRNA and overexpression tests. Subsequently, using host membrane protein interaction networks and co-immunoprecipitation analysis, we found that ANXA2 PHB2 or CAV2 directly interact with Rab11a. Next, we constructed a pseudovirus model (LV-PEDV S-GFP) to further confirm that the downregulation of Rab11a could promote PEDV invasion. In detail, ANXA2, PHB2, or CAV2 promoted PEDV invasion via downregulating Rab11a. Furthermore, we showed that the S-protein fusion peptide (FP) was sufficient for S-protein interaction with ANXA2, PHB2, CAV2, and Rab11a, and the addition of exogenous GTP could regulate the efficiency of PEDV invasion. Collectively, ANXA2, PHB2, or CAV2 influenced the membrane fusion of PEDV with host cells through the host restriction factor Rab11a. This study could be targeted for future research to develop strategies for the control of PEDV.
Collapse
Affiliation(s)
- Cailiang Song
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610000, China; Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Chengdu 610064, China
| | - Hao Li
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610000, China; Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Chengdu 610064, China
| | - Yun Han
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610000, China; Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Chengdu 610064, China
| | - Jinchao Luo
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610000, China; Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Chengdu 610064, China
| | - Yu Zhao
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610000, China; Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Chengdu 610064, China
| | - Changyu Zhou
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610000, China; Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Chengdu 610064, China
| | - Anyun Zhang
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610000, China; Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Chengdu 610064, China.
| | - Hongning Wang
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610000, China; Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Chengdu 610064, China.
| |
Collapse
|
2
|
Redondo-Calvo FJ, Rabanal-Ruiz Y, Verdugo-Moreno G, Bejarano-Ramírez N, Bodoque-Villar R, Durán-Prado M, Illescas S, Chicano-Galvez E, Gómez-Romero FJ, Martinez-Alarcón J, Arias-Pardilla J, Lopez-Juarez P, Padin JF, Peinado JR, Serrano-Oviedo L. Longitudinal Assessment of Nasopharyngeal Biomarkers Post-COVID-19: Unveiling Persistent Markers and Severity Correlations. J Proteome Res 2024; 23:5064-5084. [PMID: 39392878 DOI: 10.1021/acs.jproteome.4c00536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2024]
Abstract
SARS-CoV-19 infection provokes a variety of symptoms; most patients present mild/moderate symptoms, whereas a small proportion of patients progress to severe illness with multiorgan failure accompanied by metabolic disturbances requiring ICU-level care. Given the importance of the disease, researchers focused on identifying severity-associated biomarkers in infected patients as well as markers associated with patients suffering long-COVID. However, little is known about the presence of biomarkers that remain a few years after SARS-CoV-2 infection once the patients fully recover of the symptoms. In this study, we evaluated the presence of persistent biomarkers in the nasopharyngeal tract two years after SARS-Cov-2 infection in fully asymptomatic patients, taking into account the severity of their infection (mild/moderate and severe infections). In addition to the direct identification of several components of the Coronavirus Infection Pathway in those individuals that suffered severe infections, we describe herein 371 proteins and their associated canonical pathways that define the different adverse effects of SARS-CoV-2 infections. The persistence of these biomarkers for up to two years after infection, along with their ability to distinguish the severity of the infection endured, highlights the surprising presence of persistent nasopharyngeal exudate changes in fully recovered patients.
Collapse
Affiliation(s)
- Francisco Javier Redondo-Calvo
- Department of Anesthesiology and Critical Care Medicine, University General Hospital, SESCAM, Ciudad Real 13004, Spain
- Traslational Investigation Unit, University General Hospital, SESCAM. Research Institute of Castilla-La Mancha (IDISCAM), Ciudad Real 13004, Spain
- Faculty of Medicine, University of Castilla-La Mancha, Castilla La Mancha, Ciudad Real 13071, Spain
| | - Yoana Rabanal-Ruiz
- Oxidative Stress and Neurodegeneration Group, Medical Sciences Department, Medical School, UCLM, Regional Centre for Biomedical Research, Research Institute of Castilla-La Mancha (IDISCAM), University of Castilla-La Mancha, Ciudad Real 13071, Spain
- Department of Medical Sciences, School of Medicine at Ciudad Real, University of Castilla-La Mancha, Ciudad Real 13071, Spain
| | - Gema Verdugo-Moreno
- Traslational Investigation Unit, University General Hospital, SESCAM. Research Institute of Castilla-La Mancha (IDISCAM), Ciudad Real 13004, Spain
| | - Natalia Bejarano-Ramírez
- Traslational Investigation Unit, University General Hospital, SESCAM. Research Institute of Castilla-La Mancha (IDISCAM), Ciudad Real 13004, Spain
- Faculty of Medicine, University of Castilla-La Mancha, Castilla La Mancha, Ciudad Real 13071, Spain
- Department of Pediatrics, University General Hospital, Ciudad Real 13004, Spain
| | - Raquel Bodoque-Villar
- Traslational Investigation Unit, University General Hospital, SESCAM. Research Institute of Castilla-La Mancha (IDISCAM), Ciudad Real 13004, Spain
| | - Mario Durán-Prado
- Oxidative Stress and Neurodegeneration Group, Medical Sciences Department, Medical School, UCLM, Regional Centre for Biomedical Research, Research Institute of Castilla-La Mancha (IDISCAM), University of Castilla-La Mancha, Ciudad Real 13071, Spain
- Department of Medical Sciences, School of Medicine at Ciudad Real, University of Castilla-La Mancha, Ciudad Real 13071, Spain
| | - Soledad Illescas
- Department of Microbiology, University General Hospital, Ciudad Real 13004, Spain
| | - Eduardo Chicano-Galvez
- IMIBIC Mass Spectrometry and Molecular Imaging Unit (IMSMI). Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Reina Sofia University Hospital, University of Cordoba (UCO), Córdoba 14004, Spain
| | - Francisco Javier Gómez-Romero
- Traslational Investigation Unit, University General Hospital, SESCAM. Research Institute of Castilla-La Mancha (IDISCAM), Ciudad Real 13004, Spain
| | | | - Javier Arias-Pardilla
- Traslational Investigation Unit, University General Hospital, SESCAM. Research Institute of Castilla-La Mancha (IDISCAM), Ciudad Real 13004, Spain
| | - Pilar Lopez-Juarez
- Traslational Investigation Unit, University General Hospital, SESCAM. Research Institute of Castilla-La Mancha (IDISCAM), Ciudad Real 13004, Spain
| | - Juan Fernando Padin
- Oxidative Stress and Neurodegeneration Group, Medical Sciences Department, Medical School, UCLM, Regional Centre for Biomedical Research, Research Institute of Castilla-La Mancha (IDISCAM), University of Castilla-La Mancha, Ciudad Real 13071, Spain
- Department of Medical Sciences, School of Medicine at Ciudad Real, University of Castilla-La Mancha, Ciudad Real 13071, Spain
| | - Juan Ramón Peinado
- Oxidative Stress and Neurodegeneration Group, Medical Sciences Department, Medical School, UCLM, Regional Centre for Biomedical Research, Research Institute of Castilla-La Mancha (IDISCAM), University of Castilla-La Mancha, Ciudad Real 13071, Spain
- Department of Medical Sciences, School of Medicine at Ciudad Real, University of Castilla-La Mancha, Ciudad Real 13071, Spain
| | - Leticia Serrano-Oviedo
- Traslational Investigation Unit, University General Hospital, SESCAM. Research Institute of Castilla-La Mancha (IDISCAM), Ciudad Real 13004, Spain
| |
Collapse
|
3
|
Song C, Li H, Han Y, Wang K, Yan W, Yang X, Zhang A, Wang H. Host restriction factor Rab11a limits Porcine deltacoronavirus invasion of cells via fusion peptide-mediated membrane fusion. Vet Microbiol 2024; 298:110246. [PMID: 39244909 DOI: 10.1016/j.vetmic.2024.110246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/26/2024] [Accepted: 08/30/2024] [Indexed: 09/10/2024]
Abstract
Porcine deltacoronavirus (PDCoV) poses a serious threat to pork industry and has the potential for cross-species transmission. Yet, the invasion mechanisms and host factors involved are still unknown. In the present work, using siRNA interference and co-immunoprecipitation, we identified Annexin A2 (ANXA2), Prohibitin-2 (PHB2), or Caveolin-2 (CAV2) as host factors positively regulating the internalization of PDCoV. We further found that Rab11a co-localized with PDCoV S and inhibited PDCoV internalization. Subsequently, a pseudoviral infection model (LV-PDCoV S-GFP) was constructed, and ANXA2 or CAV2 promoted PDCoV invasion by downregulating Rab11a. Our results also indicated that ANXA2, CAV2, and Rab11a interact with the S protein via S-FP, thereby regulating virus-host membrane fusion. Through LV-PDCoV S-GFP infection, we found that Rab11a may act as a host restriction factor, and it could regulate the invasion efficiency of PDCoV by adding of exogenous GTP. These findings revealed that Rab11a was an exciting target to restrict fusion of PDCoV with host cell membranes. AVAILABILITY OF DATA AND MATERIAL: Not applicable.
Collapse
Affiliation(s)
- Cailiang Song
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610000, China; Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Chengdu 610064, China
| | - Hao Li
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610000, China; Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Chengdu 610064, China
| | - Yun Han
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610000, China; Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Chengdu 610064, China
| | - Kailu Wang
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610000, China; Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Chengdu 610064, China
| | - Wenjun Yan
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610000, China; Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Chengdu 610064, China
| | - Xin Yang
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610000, China; Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Chengdu 610064, China.
| | - Anyun Zhang
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610000, China; Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Chengdu 610064, China.
| | - Hongning Wang
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610000, China; Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Chengdu 610064, China.
| |
Collapse
|
4
|
Nahalka J. 1-L Transcription of SARS-CoV-2 Spike Protein S1 Subunit. Int J Mol Sci 2024; 25:4440. [PMID: 38674024 PMCID: PMC11049929 DOI: 10.3390/ijms25084440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/10/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024] Open
Abstract
The COVID-19 pandemic prompted rapid research on SARS-CoV-2 pathogenicity. Consequently, new data can be used to advance the molecular understanding of SARS-CoV-2 infection. The present bioinformatics study discusses the "spikeopathy" at the molecular level and focuses on the possible post-transcriptional regulation of the SARS-CoV-2 spike protein S1 subunit in the host cell/tissue. A theoretical protein-RNA recognition code was used to check the compatibility of the SARS-CoV-2 spike protein S1 subunit with mRNAs in the human transcriptome (1-L transcription). The principle for this method is elucidated on the defined RNA binding protein GEMIN5 (gem nuclear organelle-associated protein 5) and RNU2-1 (U2 spliceosomal RNA). Using the method described here, it was shown that 45% of the genes/proteins identified by 1-L transcription of the SARS-CoV-2 spike protein S1 subunit are directly linked to COVID-19, 39% are indirectly linked to COVID-19, and 16% cannot currently be associated with COVID-19. The identified genes/proteins are associated with stroke, diabetes, and cardiac injury.
Collapse
Affiliation(s)
- Jozef Nahalka
- Institute of Chemistry, Centre for Glycomics, Slovak Academy of Sciences, Dubravska Cesta 9, SK-84538 Bratislava, Slovakia;
- Institute of Chemistry, Centre of Excellence for White-Green Biotechnology, Slovak Academy of Sciences, Trieda Andreja Hlinku 2, SK-94976 Nitra, Slovakia
| |
Collapse
|
5
|
Gabdoulkhakova AG, Mingaleeva RN, Romozanova AM, Sagdeeva AR, Filina YV, Rizvanov AA, Miftakhova RR. Immunology of SARS-CoV-2 Infection. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:65-83. [PMID: 38467546 DOI: 10.1134/s0006297924010048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/17/2023] [Accepted: 11/18/2023] [Indexed: 03/13/2024]
Abstract
According to the data from the World Health Organization, about 800 million of the world population had contracted coronavirus infection caused by SARS-CoV-2 by mid-2023. Properties of this virus have allowed it to circulate in the human population for a long time, evolving defense mechanisms against the host immune system. Severity of the disease depends largely on the degree of activation of the systemic immune response, including overstimulation of macrophages and monocytes, cytokine production, and triggering of adaptive T- and B-cell responses, while SARS-CoV-2 evades the immune system actions. In this review, we discuss immune responses triggered in response to the SARS-CoV-2 virus entry into the cell and malfunctions of the immune system that lead to the development of severe disease.
Collapse
Affiliation(s)
- Aida G Gabdoulkhakova
- Kazan Federal University, Kazan, 420008, Russia.
- Kazan State Medical Academy - Branch Campus of the Federal State Budgetary Educational Institution of Further Professional Education "Russian Medical Academy of Continuous Professional Education" of the Ministry of Health of the Russian Federation, Kazan, 420012, Russia
| | | | | | | | | | - Albert A Rizvanov
- Kazan Federal University, Kazan, 420008, Russia
- Division of Medical and Biological Sciences, Tatarstan Academy of Sciences, Kazan, 420111, Russia
| | | |
Collapse
|
6
|
Zheng Y, Schupp JC, Adams T, Clair G, Justet A, Ahangari F, Yan X, Hansen P, Carlon M, Cortesi E, Vermant M, Vos R, De Sadeleer LJ, Rosas IO, Pineda R, Sembrat J, Königshoff M, McDonough JE, Vanaudenaerde BM, Wuyts WA, Kaminski N, Ding J. Unagi: Deep Generative Model for Deciphering Cellular Dynamics and In-Silico Drug Discovery in Complex Diseases. RESEARCH SQUARE 2023:rs.3.rs-3676579. [PMID: 38196613 PMCID: PMC10775382 DOI: 10.21203/rs.3.rs-3676579/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
Human diseases are characterized by intricate cellular dynamics. Single-cell sequencing provides critical insights, yet a persistent gap remains in computational tools for detailed disease progression analysis and targeted in-silico drug interventions. Here, we introduce UNAGI, a deep generative neural network tailored to analyze time-series single-cell transcriptomic data. This tool captures the complex cellular dynamics underlying disease progression, enhancing drug perturbation modeling and discovery. When applied to a dataset from patients with Idiopathic Pulmonary Fibrosis (IPF), UNAGI learns disease-informed cell embeddings that sharpen our understanding of disease progression, leading to the identification of potential therapeutic drug candidates. Validation via proteomics reveals the accuracy of UNAGI's cellular dynamics analyses, and the use of the Fibrotic Cocktail treated human Precision-cut Lung Slices confirms UNAGI's predictions that Nifedipine, an antihypertensive drug, may have antifibrotic effects on human tissues. UNAGI's versatility extends to other diseases, including a COVID dataset, demonstrating adaptability and confirming its broader applicability in decoding complex cellular dynamics beyond IPF, amplifying its utility in the quest for therapeutic solutions across diverse pathological landscapes.
Collapse
Affiliation(s)
- Yumin Zheng
- Quantitative Life Sciences, Faculty of Medicine & Health Sciences, McGill University, Montreal, QC, Canada
- Meakins-Christie Laboratories, Translational Research in Respiratory Diseases Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Jonas C. Schupp
- Pulmonary, Critical Care and Sleep Medicine, Yale University, School of Medicine, New Haven, CT, United States
| | - Taylor Adams
- Pulmonary, Critical Care and Sleep Medicine, Yale University, School of Medicine, New Haven, CT, United States
| | - Geremy Clair
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, United States
| | - Aurelien Justet
- Pulmonary, Critical Care and Sleep Medicine, Yale University, School of Medicine, New Haven, CT, United States
| | - Farida Ahangari
- Pulmonary, Critical Care and Sleep Medicine, Yale University, School of Medicine, New Haven, CT, United States
| | - Xiting Yan
- Pulmonary, Critical Care and Sleep Medicine, Yale University, School of Medicine, New Haven, CT, United States
| | - Paul Hansen
- Meakins-Christie Laboratories, Translational Research in Respiratory Diseases Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Marianne Carlon
- Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), Department of Chronic Diseases and Metabolism, KU Leuven, Belgium
| | - Emanuela Cortesi
- Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), Department of Chronic Diseases and Metabolism, KU Leuven, Belgium
| | - Marie Vermant
- Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), Department of Chronic Diseases and Metabolism, KU Leuven, Belgium
| | - Robin Vos
- Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), Department of Chronic Diseases and Metabolism, KU Leuven, Belgium
| | - Laurens J. De Sadeleer
- Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), Department of Chronic Diseases and Metabolism, KU Leuven, Belgium
| | - Ivan O Rosas
- Division of Pulmonary, Critical Care and Sleep Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Ricardo Pineda
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - John Sembrat
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Melanie Königshoff
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - John E. McDonough
- Pulmonary, Critical Care and Sleep Medicine, Yale University, School of Medicine, New Haven, CT, United States
| | - Bart M. Vanaudenaerde
- Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), Department of Chronic Diseases and Metabolism, KU Leuven, Belgium
| | - Wim A. Wuyts
- Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), Department of Chronic Diseases and Metabolism, KU Leuven, Belgium
| | - Naftali Kaminski
- Pulmonary, Critical Care and Sleep Medicine, Yale University, School of Medicine, New Haven, CT, United States
| | - Jun Ding
- Quantitative Life Sciences, Faculty of Medicine & Health Sciences, McGill University, Montreal, QC, Canada
- Meakins-Christie Laboratories, Translational Research in Respiratory Diseases Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
- Mila - Quebec AI Institute, Montreal, QC, Canada
| |
Collapse
|
7
|
Faridah IN, Dania H, Maliza R, Chou WH, Wang WH, Chen YH, Perwitasari DA, Chang WC. Genetic Association Studies of MICB and PLCE1 with Severity of Dengue in Indonesian and Taiwanese Populations. Diagnostics (Basel) 2023; 13:3365. [PMID: 37958261 PMCID: PMC10647310 DOI: 10.3390/diagnostics13213365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 10/19/2023] [Accepted: 10/22/2023] [Indexed: 11/15/2023] Open
Abstract
Dengue is an arboviral disease that has spread globally and become a major public health concern. A small proportion of patients may progress from symptomatic dengue fever (DF) to dengue hemorrhagic fever (DHF) or dengue shock syndrome (DSS). Findings from a previous genome-wide association study (GWAS) demonstrated that variations in the major histocompatibility complex (MHC) class I chain-related B (MICB) and the phospholipase C epsilon 1 (PLCE1) genes were related to DSS in a Vietnamese population. This study investigated associations of variations in MICB (rs3132468) and PLCE1 (rs3740360, rs3765524) with dengue severity and thrombocytopenia in both the Indonesian and Taiwanese populations. We sampled 160 patients from the Indonesian population and 273 patients from the Taiwanese population. None of the patients had DSS in the Taiwanese population. Based on age demographics, we found that dengue is more prevalent among younger individuals in the Indonesian population, whereas it has a greater impact on adults in the Taiwanese population. Our results showed the association between MICB rs3132468 and DSS. In addition, an association was identified between PLCE1 rs3740360 and DHF in secondary dengue in Indonesian patients. However, there is no association of MICB or PLCE1 variants with thrombocytopenia. This study highlights the value of genetic testing, which might be included in the clinical pathway for specific patients who can be protected from severe dengue.
Collapse
Affiliation(s)
- Imaniar Noor Faridah
- Department of Clinical Pharmacy, School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei 11031, Taiwan; (I.N.F.); (W.-H.C.)
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, University of Ahmad Dahlan, Yogyakarta 55164, Indonesia;
| | - Haafizah Dania
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, University of Ahmad Dahlan, Yogyakarta 55164, Indonesia;
| | - Rita Maliza
- Biology Department, Faculty of Mathematics and Natural Sciences, Andalas University, Padang 25175, Indonesia;
| | - Wan-Hsuan Chou
- Department of Clinical Pharmacy, School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei 11031, Taiwan; (I.N.F.); (W.-H.C.)
| | - Wen-Hung Wang
- School of Medicine, College of Medicine, National Sun Yat-sen University, Kaohsiung 80424, Taiwan;
| | - Yen-Hsu Chen
- School of Medicine, College of Medicine, National Sun Yat-sen University, Kaohsiung 80424, Taiwan;
- Division of Infectious Disease, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Dyah Aryani Perwitasari
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, University of Ahmad Dahlan, Yogyakarta 55164, Indonesia;
| | - Wei-Chiao Chang
- Department of Clinical Pharmacy, School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei 11031, Taiwan; (I.N.F.); (W.-H.C.)
- Master Program for Clinical Pharmacogenomics and Pharmacoproteomics, School of Pharmacy, Taipei Medical University, Taipei 11031, Taiwan
- Integrative Research Center for Critical Care, Wan Fang Hospital, Taipei Medical University, Taipei 11696, Taiwan
- Department of Pharmacy, Wan Fang Hospital, Taipei Medical University, Taipei 11696, Taiwan
| |
Collapse
|
8
|
Li M, Zhang X, Huang K, Du Z. Identification of Host Factors Interacting with a γ-Shaped RNA Element from a Plant Virus-Associated Satellite RNA. Viruses 2023; 15:2039. [PMID: 37896816 PMCID: PMC10611174 DOI: 10.3390/v15102039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 09/28/2023] [Accepted: 09/29/2023] [Indexed: 10/29/2023] Open
Abstract
Previously, we identified a highly conserved, γ-shaped RNA element (γRE) from satellite RNAs of cucumber mosaic virus (CMV), and we determined γRE to be structurally required for satRNA survival and the inhibition of CMV replication. It remains unknown how γRE biologically functions. In this work, pull-down assays were used to screen candidates of host factors from Nicotiana benthamiana plants using biotin-labeled γRE as bait. Nine host factors were found to interact specifically with γRE. Then, all of these host factors were down-regulated individually in N. benthamiana plants via tobacco rattle virus-induced gene silencing and tested with infection by GFP-expressing CMV (CMV-gfp) and the isolate T1 of satRNA (sat-T1). Out of nine candidates, three host factors, namely histone H3, GTPase Ran3, and eukaryotic translation initiation factor 4A, were extremely important for infection by CMV-gfp and sat-T1. Moreover, we found that cytosolic glyceraldehyde-3-phosphate dehydrogenase 2 contributed to the replication of CMV and sat-T1, but also negatively regulated CMV 2b activity. Collectively, our work provides essential clues for uncovering the mechanism by which satRNAs inhibit CMV replication.
Collapse
Affiliation(s)
| | | | | | - Zhiyou Du
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| |
Collapse
|