1
|
Song J, Wang M, Zhou L, Tian P, Sun J, Sun Z, Guo C, Wu Y, Zhang G. A novel conserved B-cell epitope in pB602L of African swine fever virus. Appl Microbiol Biotechnol 2024; 108:78. [PMID: 38194141 PMCID: PMC10776737 DOI: 10.1007/s00253-023-12921-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 11/27/2023] [Accepted: 12/01/2023] [Indexed: 01/10/2024]
Abstract
African swine fever virus (ASFV) is a complex DNA virus and the only member of the Asfarviridae family. It causes high mortality and severe economic losses in pigs. The ASFV pB602L protein plays a key role in virus assembly and functions as a molecular chaperone of the major capsid protein p72. In addition, pB602L is an important target for the development of diagnostic tools for African swine fever (ASF) because it is a highly immunogenic antigen against ASFV. In this study, we expressed and purified ASFV pB602L and validated its immunogenicity in serum from naturally infected pigs with ASFV. Furthermore, we successfully generated an IgG2a κ subclass monoclonal antibody (mAb 7E7) against pB602L using hybridoma technology. Using western blot and immunofluorescence assays, mAb 7E7 specifically recognized the ASFV Pig/HLJ/2018/strain and eukaryotic recombinant ASFV pB602L protein in vitro. The 474SKENLTPDE482 epitope in the ASFV pB602L C-terminus was identified as the minimal linear epitope for mAb 7E7 binding, with dozens of truncated pB602l fragments characterized by western blot assay. We also showed that this antigenic epitope sequence has a high conservation and antigenic index. Our study contributes to improved vaccine and antiviral development and provides new insights into the serologic diagnosis of ASF. KEY POINTS: • We developed a monoclonal antibody against ASFV pB602L, which can specifically recognize the ASFV Pig/HLJ/2018/ strain. • This study found one novel conserved B-cell epitope 474SKENLTPDE482. • In the 3D structure, 474SKENLTPDE482 is exposed on the surface of ASFV pB602L, forming a curved linear structure.
Collapse
Affiliation(s)
- Jinxing Song
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China
| | - Mengxiang Wang
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China
| | - Lei Zhou
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China
| | - Panpan Tian
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China
| | - Junru Sun
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China
| | - Zhuoya Sun
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China
| | - Chenyun Guo
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China
| | - Yanan Wu
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China.
| | - Gaiping Zhang
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China.
- Longhu Laboratory, Zhengzhou, 450046, China.
- Agriculture Sciences, Peking University, Beijing, 100871, China.
| |
Collapse
|
2
|
Chen J, Shi Z, Luo J, Jia C, Zhang X, Wei J, Li S, Zhu Y, Xi T, Zhou J, He Y, Shi X, Liao H, Tian H, Zheng H. Development and optimization of a double antigen sandwich ELISA detecting for Senecavirus A antibodies based on VP2 protein. Microbiol Spectr 2024:e0204324. [PMID: 39436135 DOI: 10.1128/spectrum.02043-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 09/16/2024] [Indexed: 10/23/2024] Open
Abstract
Senecavirus A (SVA) is an emerging viral pathogen that threatens the global swine industry significantly. The major clinical symptoms of SVA-infected animals are vesicular lesions, but various diseases can cause the same symptoms, which makes it difficult to distinguish SVA from other vesicular diseases clinically. The absence of an effective and safe vaccine necessitates the development of a simple, specific, and sensitive serological detection method for SVA antibodies. The VP2 protein of SVA, characterized by high immunogenicity and sequence conservatism, is an essential target for serological diagnosis. In this study, a double-antigen sandwich enzyme-linked immunosorbent assay [ELISA (DAgS-ELISA)] based on VP2 protein expressed by Escherichia coli was established for SVA antibody detection. With a cutoff value of 0.237, this assay demonstrated outstanding performance, showing high sensitivity and sharp specificity, which is manifested in the absence of cross-reaction with classical swine fever virus (CSFV), African swine fever virus (ASFV), pseudorabies virus (PRV), and porcine reproductive and respiratory syndrome virus (PRRSV), and foot-and-mouth disease virus (FMDV) serotype A and O. Additionally, the repeatability of the method is remarkable, as shown by the coefficients variation (CV) of both the intra- and inter-assay below 10%. By detecting 166 clinical sera, it was found that the kappa value of the DAgS-ELISA was 0.78 compared with that of the virus neutralization test (VNT), indicating a high level of consistency. In general, this method has high sensitivity, sharp specificity, remarkable repeatability, sound consistency, and low cost, making it a reliable and effective tool for detecting SVA antibodies.IMPORTANCESVA has rapidly become prevalent in many countries, and its outbreaks have threatened the global swine industry significantly. The major clinical symptoms of SVA-infected animals are vesicular lesions that are similar to other vesicular diseases, making it difficult to distinguish SVA. Currently, no commercial vaccines are available for SVA; therefore, effective diagnosis of SVA infection is vital for its prevention and control. In this study, VP2 protein of SVA was expressed by E. coli, and a double-antigen sandwich enzyme-linked immunosorbent assay [ELISA (DAgS-ELISA)] for SVA antibodies detection was successfully established based on the VP2 protein. The DAgS-ELISA has a high sensitivity, sharp specificity, remarkable repeatability, sound consistency, and low cost for detecting SVA antibodies. Therefore, the DAgS-ELISA established in this study may be a reliable and effective tool for detecting SVA antibodies and may be used to strengthen the monitoring and prevention of SVA epidemic in the long run.
Collapse
Affiliation(s)
- Jie Chen
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, China
| | - Zhengwang Shi
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, China
| | - Juncong Luo
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, China
| | - Caixia Jia
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, China
| | - Xiaoyang Zhang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, China
| | - Juanjuan Wei
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, China
| | - Shuaipeng Li
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, China
| | - Yuqian Zhu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, China
| | - Tao Xi
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, China
| | - Jing Zhou
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, China
| | - Yindi He
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, China
| | - Xintai Shi
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, China
| | - Huanchen Liao
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, China
| | - Hong Tian
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, China
| | - Haixue Zheng
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, China
| |
Collapse
|
3
|
Zhao X, Ma L, Jin Y, Barkema HW, Kastelic JP, Wang L, Wen K, Liu G. Rapid and reliable detection of Leishmania antibodies in canine serum with double-antigen sandwich homogeneous chemical luminescence. Parasit Vectors 2024; 17:323. [PMID: 39080758 PMCID: PMC11290120 DOI: 10.1186/s13071-024-06389-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 07/03/2024] [Indexed: 08/02/2024] Open
Abstract
BACKGROUND Leishmaniasis, caused by Leishmania spp. parasites, is an important zoonotic disease globally, posing severe threats to humans and animals. In the absence of effective vaccines, reliable serological diagnostic methods are critical for disease control. However, the enzyme-linked immunosorbent assay (ELISA) and immunochromatographic assay have limitations due to complexity, time required and/or sensitivity. Therefore, our objective was to develop an accurate, rapid and user-friendly detection method of canine leishmania antibody based on double-antigen sandwich homogeneous chemical luminescence. METHODS Homogeneous chemiluminescent technology was employed, and expressed recombinant fusion proteins containing full-length K9, K39 and K26 repeat sequences were used as diagnostic antigens. To establish a dual-antigen sandwich serological assay capable of detecting various antibody types, a factorial design was used to optimize concentrations of diagnostic antigen-receptor microspheres and of biotinylated diagnostic antigens, as well as of reaction solution composition and reaction duration. To evaluate and validate this newly developed method, we collected 41 Leishmania-positive serum samples, 30 Leishmania-negative control serum samples and 78 clinical serum samples for which no diagnostic information was available. Comparative analyses were performed using parasitological testing and an indirect ELISA as reference methods, focusing on diagnostic sensitivity and specificity. RESULTS Sodium dodecyl sulfate-polyacrylamide gel electrophoresis confirmed the purification of the diagnostic antigens, which exhibited clear bands without impurities. Based on results from the 41 Leishmania-positive samples and 30 Leishmania-negative samples, there was sufficient sensitivity to detect samples diluted up to 256-fold, with analytical specificity of 100%. Overall diagnostic sensitivity was 100% and diagnostic specificity was 93.3%. Diagnostic performance was highly consistent between the newly developed method and the indirect ELISA (Kappa = 0.82, P < 0.01). Testing could be completed within 35 min with the new method CONCLUSIONS: We have developed a novel double-antigen sandwich homogeneous chemical luminescence method to detect canine Leishmania antibodies, with high sensitively and specificity, a short incubation interval and a simple protocol. This streamlined approach not only offers a sensitive and efficient method for clinical diagnosis but also has great potential for use in automated testing.
Collapse
Affiliation(s)
- Xiangjun Zhao
- National Key Laboratory of Veterinary Public Health Safety, Beijing Key Laboratory of Detection Technology for Animal Derived Food Safety, Beijing Laboratory for Food Quality and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Licai Ma
- Beijing Weideweikang Biotechnology Co., Ltd, Beijing, 100080, People's Republic of China
| | - Yipeng Jin
- National Key Laboratory of Veterinary Public Health Safety, Beijing Key Laboratory of Detection Technology for Animal Derived Food Safety, Beijing Laboratory for Food Quality and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Herman W Barkema
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - John P Kastelic
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Lu Wang
- National Key Laboratory of Veterinary Public Health Safety, Beijing Key Laboratory of Detection Technology for Animal Derived Food Safety, Beijing Laboratory for Food Quality and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Kai Wen
- National Key Laboratory of Veterinary Public Health Safety, Beijing Key Laboratory of Detection Technology for Animal Derived Food Safety, Beijing Laboratory for Food Quality and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, People's Republic of China.
| | - Gang Liu
- National Key Laboratory of Veterinary Public Health Safety, Beijing Key Laboratory of Detection Technology for Animal Derived Food Safety, Beijing Laboratory for Food Quality and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, People's Republic of China.
- Veterinary Teaching Hospital, College of Veterinary Medicine, China Agricultural University, Beijing, China.
| |
Collapse
|
4
|
Noll JCG, Rani R, Butt SL, Fernandes MHV, do Nascimento GM, Martins M, Caserta LC, Covaleda L, Diel DG. Identification of an Immunodominant B-Cell Epitope in African Swine Fever Virus p30 Protein and Evidence of p30 Antibody-Mediated Antibody Dependent Cellular Cytotoxicity. Viruses 2024; 16:758. [PMID: 38793639 PMCID: PMC11125664 DOI: 10.3390/v16050758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/12/2024] [Accepted: 04/16/2024] [Indexed: 05/26/2024] Open
Abstract
African Swine Fever Virus (ASFV) is a large dsDNA virus that encodes at least 150 proteins. The complexity of ASFV and lack of knowledge of effector immune functions and protective antigens have hindered the development of safe and effective ASF vaccines. In this study, we constructed four Orf virus recombinant vectors expressing individual ASFV genes B602L, -CP204L, E184L, and -I73R (ORFVΔ121-ASFV-B602L, -CP204L, -E184L, and -I73R). All recombinant viruses expressed the heterologous ASFV proteins in vitro. We then evaluated the immunogenicity of the recombinants by immunizing four-week-old piglets. In two independent animal studies, we observed high antibody titers against ASFV p30, encoded by CP204L gene. Using Pepscan ELISA, we identified a linear B-cell epitope of 12 amino acids in length (Peptide 15) located in an exposed loop region of p30 as an immunodominant ASFV epitope. Additionally, antibodies elicited against ASFV p30 presented antibody-dependent cellular cytotoxicity (ADCC) activity. These results underscore the role of p30 on antibody responses elicited against ASFV and highlight an important functional epitope that contributes to p30-specific antibody responses.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Diego G. Diel
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA (S.L.B.); (M.H.V.F.); (M.M.); (L.C.C.); (L.C.)
| |
Collapse
|
5
|
Tian P, Sun Z, Wang M, Song J, Sun J, Zhou L, Jiang D, Zhang A, Wu Y, Zhang G. Identification of a novel linear B-cell epitope on the p30 protein of African swine fever virus using monoclonal antibodies. Virus Res 2024; 341:199328. [PMID: 38262569 PMCID: PMC10839582 DOI: 10.1016/j.virusres.2024.199328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/18/2024] [Accepted: 01/20/2024] [Indexed: 01/25/2024]
Abstract
The outbreak of African Swine Fever (ASF) has caused huge economic losses to the pig industry. There are no safe and effective vaccines or diagnostics available. The p30 protein serves as a key target for the detection of ASFV antibodies and is an essential antigenic protein for early serological diagnosis. Here, the p30 protein was purified after being expressed in E. coli and its immunogenicity was verified in sera from pigs naturally infected with ASFV. Furthermore, a monoclonal antibody (McAb) designated as McAb 1B4G2-4 (subtype IgG1/kappa-type) was produced and it was verified to specifically recognize the ASFV Pig/HLJ/2018/strain and eukaryotic recombinant ASFV p30 protein. The epitope identified by McAb 1B4G2-4, defining the unique B-cell epitope 164HNFIQTI170, was located using peptide scanning. Comparing amino acid (aa) sequence revealed that this epitope is conserved in all reference ASFV strains from different regions of China, including the highly pathogenic strain Georgia 2007/1 (NC_044959.2) that is widely distributed. It is also exposed to the surface of the p30 protein, suggesting that it could be an important B-cell epitope. Our study may serve as a basis for the development of serological diagnostic methods and subunit vaccines.
Collapse
Affiliation(s)
- Panpan Tian
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China; Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
| | - Zhuoya Sun
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China; Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
| | - Mengxiang Wang
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China; Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
| | - Jinxing Song
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China; Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
| | - Junru Sun
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China; Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
| | - Lei Zhou
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China; Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
| | - Dawei Jiang
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China; Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China; Longhu Laboratory, Zhengzhou 450046, China
| | - Angke Zhang
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China; Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
| | - Yanan Wu
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China; Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China.
| | - Gaiping Zhang
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China; Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China; Longhu Laboratory, Zhengzhou 450046, China.
| |
Collapse
|
6
|
Feng L, Shi Z, Luo J, Zhang X, Wei J, Zhou J, Liao H, Wang W, Tian H, Zheng H. WITHDRAWN: Development of a double-antigen sandwich ELISA for African swine fever virus antibody detection based on K205R protein. Int J Biol Macromol 2024; 254:127724. [PMID: 37898252 DOI: 10.1016/j.ijbiomac.2023.127724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 10/23/2023] [Accepted: 10/25/2023] [Indexed: 10/30/2023]
Abstract
This article has been withdrawn at the request of the author(s) and/or editor. The Publisher apologizes for any inconvenience this may cause. The full Elsevier Policy on Article Withdrawal can be found at https://www.elsevier.com/about/policies/article-withdrawal.
Collapse
Affiliation(s)
- Lu Feng
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China
| | - Zhengwang Shi
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China
| | - Juncong Luo
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China
| | - Xiaoyang Zhang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China
| | - Juanjuan Wei
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China
| | - Jing Zhou
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China
| | - Huancheng Liao
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China
| | - Wanying Wang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China
| | - Hong Tian
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China.
| | - Haixue Zheng
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China.
| |
Collapse
|
7
|
Jin J, Bai Y, Zhang Y, Lu W, Zhang S, Zhao X, Sun Y, Wu Y, Zhang A, Zhang G, Sun A, Zhuang G. Establishment and characterization of a novel indirect ELISA method based on ASFV antigenic epitope-associated recombinant protein. Int J Biol Macromol 2023; 253:127311. [PMID: 37865977 DOI: 10.1016/j.ijbiomac.2023.127311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 10/05/2023] [Accepted: 10/06/2023] [Indexed: 10/24/2023]
Abstract
African Swine Fever (ASF) is an acute and highly lethal disease in pigs caused by African Swine Fever Virus (ASFV). Viral proteins have been commonly used as antigenic targets for the development of ASF diagnostic methods. However, the prokaryotic expression of viral proteins has deficiencies such as instability, insolubility, and high cost in eukaryotic situations. This study screened and verified ASFV-encoded p72, p54, and p30 protein antigenic epitopes. Subsequently, a novel antigenic epitope-associated recombinant protein was designed based on an ideal structural protein and expressed in Escherichia coli (E. coli). Western blot analysis indicated that the recombinant protein could specifically react with the monoclonal antibody (mAb) of p72 and polyclonal antibodies of p54 and p30, respectively. Next, an ASF indirect ELISA (iELISA) method was established based on the recombinant protein, which has no specific reaction with sera of other important pig viral diseases. Meanwhile, it shows a sensitivity to detecting dilutions of ASF-positive reference serum up to 1:6400. The clinical sample detection results showed a high coincidence rate of 98 % with a commercial competition ELISA kit. In conclusion, we established a novel specific, and sensitive ASF serologic detection method that opens new avenues for ASF serodiagnostic method development.
Collapse
Affiliation(s)
- Jiaxin Jin
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China; International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Yilin Bai
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Yuanyuan Zhang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China; International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Wenlong Lu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China; International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Shuai Zhang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China; International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Xuyang Zhao
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China; International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Yaning Sun
- Key Laboratory of Animal Immunology, Ministry of Agriculture and Rural Affairs & Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Yanan Wu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China; International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Angke Zhang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China; International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Gaiping Zhang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China; International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China; Longhu Laboratory of Advanced Immunology, Zhengzhou, China
| | - Aijun Sun
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China; International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China.
| | - Guoqing Zhuang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China; International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China.
| |
Collapse
|
8
|
Hu Z, Tian X, Lai R, Wang X, Li X. Current detection methods of African swine fever virus. Front Vet Sci 2023; 10:1289676. [PMID: 38144466 PMCID: PMC10739333 DOI: 10.3389/fvets.2023.1289676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 11/24/2023] [Indexed: 12/26/2023] Open
Abstract
African swine fever (ASF), caused by the African swine fever virus (ASFV), is a highly contagious and notifiable animal disease in domestic pigs and wild boars, as designated by the World Organization for Animal Health (WOAH). The effective diagnosis of ASF holds great importance in promptly controlling its spread due to its increasing prevalence and the continuous emergence of variant strains. This paper offers a comprehensive review of the most common and up-to-date methods established for various genes/proteins associated with ASFV. The discussed methods primarily focus on the detection of viral genomes or particles, as well as the detection of ASFV associated antibodies. It is anticipated that this paper will serve as a reference for choosing appropriate diagnostic methods in diverse application scenarios, while also provide direction for the development of innovative technologies in the future.
Collapse
Affiliation(s)
- Zhiqiang Hu
- Shandong Engineering Laboratory of Pig and Poultry Healthy Breeding and Disease Diagnosis Technology, Xiajin New Hope Liuhe Agriculture and Animal Husbandry Co., Ltd., Dezhou, China
- Shandong New Hope Liuhe Co., Ltd., Qingdao, China
- Shandong New Hope Liuhe Agriculture and Animal Husbandry Technology Co., Ltd., (NHLH Academy of Swine Research), Dezhou, China
- China Agriculture Research System-Yangling Comprehensive Test Station, Xianyang, China
| | - Xiaogang Tian
- Shandong Engineering Laboratory of Pig and Poultry Healthy Breeding and Disease Diagnosis Technology, Xiajin New Hope Liuhe Agriculture and Animal Husbandry Co., Ltd., Dezhou, China
- Shandong New Hope Liuhe Co., Ltd., Qingdao, China
- Shandong New Hope Liuhe Agriculture and Animal Husbandry Technology Co., Ltd., (NHLH Academy of Swine Research), Dezhou, China
| | - Ranran Lai
- Shandong Engineering Laboratory of Pig and Poultry Healthy Breeding and Disease Diagnosis Technology, Xiajin New Hope Liuhe Agriculture and Animal Husbandry Co., Ltd., Dezhou, China
- Shandong New Hope Liuhe Co., Ltd., Qingdao, China
- Shandong New Hope Liuhe Agriculture and Animal Husbandry Technology Co., Ltd., (NHLH Academy of Swine Research), Dezhou, China
| | - Xinglong Wang
- College of Veterinary Medicine, Northwest A&F University, Xianyang, China
| | - Xiaowen Li
- Shandong Engineering Laboratory of Pig and Poultry Healthy Breeding and Disease Diagnosis Technology, Xiajin New Hope Liuhe Agriculture and Animal Husbandry Co., Ltd., Dezhou, China
- Shandong New Hope Liuhe Co., Ltd., Qingdao, China
- Shandong New Hope Liuhe Agriculture and Animal Husbandry Technology Co., Ltd., (NHLH Academy of Swine Research), Dezhou, China
- China Agriculture Research System-Yangling Comprehensive Test Station, Xianyang, China
- College of Veterinary Medicine, Northwest A&F University, Xianyang, China
- Key Laboratory of Feed and Livestock and Poultry Products Quality and Safety Control, Ministry of Agriculture and Rural Affairs, New Hope Liuhe Co., Ltd., Chengdu, China
| |
Collapse
|
9
|
Jung MC, Le VP, Yoon SW, Le TN, Trinh TBN, Kim HK, Kang JA, Lim JW, Yeom M, Na W, Nah JJ, Choi JD, Kang HE, Song D, Jeong DG. A Robust Quadruple Protein-Based Indirect ELISA for Detection of Antibodies to African Swine Fever Virus in Pigs. Microorganisms 2023; 11:2758. [PMID: 38004769 PMCID: PMC10672928 DOI: 10.3390/microorganisms11112758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 11/02/2023] [Accepted: 11/10/2023] [Indexed: 11/26/2023] Open
Abstract
African swine fever (ASF) emerged in domestic pigs and wild boars in China in 2018 and rapidly spread to neighboring Asian countries. Currently, no effective vaccine or diagnostic tests are available to prevent its spread. We developed a robust quadruple recombinant-protein-based indirect enzyme-linked immunosorbent assay (QrP-iELISA) using four antigenic proteins (CD2v, CAP80, p54, and p22) to detect ASF virus (ASFV) antibodies and compared it with a commercial kit (IDvet) using ASFV-positive and -negative serum samples. The maximum positive/negative value was 24.033 at a single antigen concentration of 0.25 μg/mL and quadruple ASFV antigen combination of 1 μg/mL at a 1:100 serum dilution. Among 70 ASFV-positive samples, 65, 67, 65, 70, 70, and 14 were positive above the cut-offs of 0.121, 0.121, 0.183, 0.065, 0.201, and 0.122, for CD2v, CAP80, p54, p22-iELISA, QrP-iELISA, and IDvet, respectively, with sensitivities of 92.9%, 95.7%, 92.9%, 100%, 100%, and 20%, respectively, all with 100% specificity. The antibody responses in QrP-iELISA and IDvet were similar in pigs infected with ASFV I. QrP-iELISA was more sensitive than IDvet for early antibody detection in pigs infected with ASFV II. These data provide a foundation for developing advanced ASF antibody detection kits critical for ASF surveillance and control.
Collapse
Affiliation(s)
- Min-Chul Jung
- Bionanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea; (M.-C.J.); (T.N.L.); (J.-A.K.)
- Department of Proteome Structural Biology, KRIBB School of Bioscience, University of Science and Technology, Daejeon 34141, Republic of Korea
| | - Van Phan Le
- Department of Microbiology and Infectious Diseases, Faculty of Veterinary Medicine, Vietnam National University of Agriculture, Hanoi 100000, Vietnam; (V.P.L.); (T.B.N.T.)
| | - Sun-Woo Yoon
- Department of Biological Science and Biotechnology, Andong National University, Andong 36729, Republic of Korea;
| | - Thi Ngoc Le
- Bionanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea; (M.-C.J.); (T.N.L.); (J.-A.K.)
- Department of Proteome Structural Biology, KRIBB School of Bioscience, University of Science and Technology, Daejeon 34141, Republic of Korea
| | - Thi Bich Ngoc Trinh
- Department of Microbiology and Infectious Diseases, Faculty of Veterinary Medicine, Vietnam National University of Agriculture, Hanoi 100000, Vietnam; (V.P.L.); (T.B.N.T.)
| | - Hye Kwon Kim
- Department of Microbiology, College of Natural Sciences, Chungbuk National University, Cheongju 28644, Republic of Korea;
| | - Jung-Ah Kang
- Bionanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea; (M.-C.J.); (T.N.L.); (J.-A.K.)
| | - Jong-Woo Lim
- College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul 08826, Republic of Korea; (J.-W.L.); (M.Y.)
| | - Minjoo Yeom
- College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul 08826, Republic of Korea; (J.-W.L.); (M.Y.)
| | - Woonsung Na
- College of Veterinary Medicine, Chonnam National University, Gwangju 61186, Republic of Korea;
| | - Jin-Ju Nah
- Foreign Animal Disease Division, Animal and Plant Quarantine Agency, Gimcheon 39660, Republic of Korea; (J.-J.N.); (J.-D.C.); (H.-E.K.)
| | - Ji-Da Choi
- Foreign Animal Disease Division, Animal and Plant Quarantine Agency, Gimcheon 39660, Republic of Korea; (J.-J.N.); (J.-D.C.); (H.-E.K.)
| | - Hae-Eun Kang
- Foreign Animal Disease Division, Animal and Plant Quarantine Agency, Gimcheon 39660, Republic of Korea; (J.-J.N.); (J.-D.C.); (H.-E.K.)
| | - Daesub Song
- College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul 08826, Republic of Korea; (J.-W.L.); (M.Y.)
| | - Dae Gwin Jeong
- Bionanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea; (M.-C.J.); (T.N.L.); (J.-A.K.)
- Department of Proteome Structural Biology, KRIBB School of Bioscience, University of Science and Technology, Daejeon 34141, Republic of Korea
| |
Collapse
|
10
|
Zhou L, Song J, Wang M, Sun Z, Sun J, Tian P, Zhuang G, Zhang A, Wu Y, Zhang G. Establishment of a Dual-Antigen Indirect ELISA Based on p30 and pB602L to Detect Antibodies against African Swine Fever Virus. Viruses 2023; 15:1845. [PMID: 37766252 PMCID: PMC10534977 DOI: 10.3390/v15091845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 08/28/2023] [Indexed: 09/29/2023] Open
Abstract
African swine fever (ASF) is an acute, virulent, and highly fatal infectious disease caused by the African swine fever virus (ASFV). There is no effective vaccine or diagnostic method to prevent and control this disease currently, which highlights the significance of ASF early detection. In this study, we chose an early antigen and a late-expressed antigen to co-detect the target antibody, which not only helps in early detection but also improves accuracy and sensitivity. CP204L and B602L were successfully expressed as soluble proteins in an Escherichia coli vector system. By optimizing various conditions, a dual-antigen indirect ELISA for ASFV antibodies was established. The assay was non-cross-reactive with antibodies against the porcine reproductive and respiratory syndrome virus, classical swine fever virus, porcine circovirus type 2, and pseudorabies virus. The maximum serum dilution for detection of ASFV-positive sera was 1:1600. The intra-batch reproducibility coefficient of variation was <5% and the inter-batch reproducibility coefficient of variation was <10%. Compared with commercial kits, the dual-antigen indirect ELISA had good detection performance. In conclusion, we established a detection method with low cost, streamlined production process, and fewer instruments. It provides a new method for the serological diagnosis of ASF.
Collapse
Affiliation(s)
- Lei Zhou
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China; (L.Z.); (J.S.); (M.W.); (Z.S.); (J.S.); (P.T.); (G.Z.); (A.Z.)
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
| | - Jinxing Song
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China; (L.Z.); (J.S.); (M.W.); (Z.S.); (J.S.); (P.T.); (G.Z.); (A.Z.)
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
| | - Mengxiang Wang
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China; (L.Z.); (J.S.); (M.W.); (Z.S.); (J.S.); (P.T.); (G.Z.); (A.Z.)
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
| | - Zhuoya Sun
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China; (L.Z.); (J.S.); (M.W.); (Z.S.); (J.S.); (P.T.); (G.Z.); (A.Z.)
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
| | - Junru Sun
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China; (L.Z.); (J.S.); (M.W.); (Z.S.); (J.S.); (P.T.); (G.Z.); (A.Z.)
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
| | - Panpan Tian
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China; (L.Z.); (J.S.); (M.W.); (Z.S.); (J.S.); (P.T.); (G.Z.); (A.Z.)
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
| | - Guoqing Zhuang
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China; (L.Z.); (J.S.); (M.W.); (Z.S.); (J.S.); (P.T.); (G.Z.); (A.Z.)
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
| | - Angke Zhang
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China; (L.Z.); (J.S.); (M.W.); (Z.S.); (J.S.); (P.T.); (G.Z.); (A.Z.)
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
| | - Yanan Wu
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China; (L.Z.); (J.S.); (M.W.); (Z.S.); (J.S.); (P.T.); (G.Z.); (A.Z.)
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
| | - Gaiping Zhang
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China; (L.Z.); (J.S.); (M.W.); (Z.S.); (J.S.); (P.T.); (G.Z.); (A.Z.)
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
- Longhu Laboratory of Advanced Immunology, Zhengzhou 450046, China
| |
Collapse
|
11
|
Penrith ML, Okoth E, Livio Heath. Special Issue "African Swine Fever and Other Swine Viral Diseases in Africa". Viruses 2023; 15:1438. [PMID: 37515126 PMCID: PMC10386646 DOI: 10.3390/v15071438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 06/20/2023] [Indexed: 07/30/2023] Open
Abstract
African swine fever (ASF) has become the swine disease of most global concern since its second escape from Africa in 2007 resulted in its spread to five continents and the consequent devastation of industrial to subsistence pig farming [...].
Collapse
Affiliation(s)
- Mary-Louise Penrith
- Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Pretoria 0110, South Africa
| | - Edward Okoth
- Biosciences, Animal and Human Health Program, International Livestock Research Institute (ILRI), Nairobi 00100, Kenya
| | - Livio Heath
- Transboundary Animal Diseases, Onderstepoort Veterinary Research, Agricultural Research Council, Pretoria 0110, South Africa
| |
Collapse
|
12
|
Wang L, Li D, Liu Y, Zhang L, Peng G, Xu Z, Jia H, Song C. Development of an effective one-step double-antigen sandwich ELISA based on p72 to detect antibodies against African swine fever virus. Front Vet Sci 2023; 10:1160583. [PMID: 37360404 PMCID: PMC10287978 DOI: 10.3389/fvets.2023.1160583] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 05/16/2023] [Indexed: 06/28/2023] Open
Abstract
African swine fever (ASF), caused by ASF virus (ASFV), is a highly contagious and lethal disease of domestic pigs leading to tremendous economic losses. As there are no vaccines and drugs available. An effective diagnosis to eliminate ASFV-infected pigs is a crucial strategy to prevent and control ASF. To this end, ASFV capsid protein p72 was expressed using Chinese hamster ovary (CHO) cells and subsequently conjugated with horseradish peroxidase (HRP) to develop a one-step double-antigen sandwich enzyme-linked immunosorbent assay (one-step DAgS-ELISA). The performance of this ELISA for detecting ASFV antibodies was evaluated. Overall, a diagnostic sensitivity of 97.96% and specificity of 98.96% was achieved when the cutoff value was set to 0.25. No cross-reaction with healthy pig serum and other swine viruses was observed. The coefficients of variation of the intra-assay and inter-assay were both <10%. Importantly, this ELISA could detect antibodies in standard serum with 12,800-fold dilution, and seroconversion started from the 7th day post-inoculation (dpi), showing excellent analytical sensitivity and great utility. Furthermore, compared to the commercial kit, this ELISA had a good agreement and significantly shorter operation time. Collectively, a novel one-step DAgS-ELISA for detecting antibodies against ASFV is developed, which will be reliable and convenient to monitor ASFV infection.
Collapse
Affiliation(s)
- Lei Wang
- College of Animal Science and National Engineering Center for Swine Breeding Industry, South China Agricultural University, Guangzhou, China
- Henry Fok School of Biology and Agriculture, Shaoguan University, Shaoguan, China
| | - Duan Li
- College of Animal Science and National Engineering Center for Swine Breeding Industry, South China Agricultural University, Guangzhou, China
| | - Yanlin Liu
- College of Animal Science and National Engineering Center for Swine Breeding Industry, South China Agricultural University, Guangzhou, China
| | - Leyi Zhang
- College of Animal Science and National Engineering Center for Swine Breeding Industry, South China Agricultural University, Guangzhou, China
| | - Guoliang Peng
- Henry Fok School of Biology and Agriculture, Shaoguan University, Shaoguan, China
| | - Zheng Xu
- College of Animal Science and National Engineering Center for Swine Breeding Industry, South China Agricultural University, Guangzhou, China
| | - Hong Jia
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Changxu Song
- College of Animal Science and National Engineering Center for Swine Breeding Industry, South China Agricultural University, Guangzhou, China
| |
Collapse
|
13
|
Jiang W, Jiang D, Li L, Wang J, Wang P, Shi X, Zhao Q, Liu B, Ji P, Zhang G. Identification of Two Novel Linear B Cell Epitopes on the CD2v Protein of African Swine Fever Virus Using Monoclonal Antibodies. Viruses 2022; 15:131. [PMID: 36680174 PMCID: PMC9866794 DOI: 10.3390/v15010131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 12/28/2022] [Accepted: 12/29/2022] [Indexed: 01/03/2023] Open
Abstract
African swine fever virus (ASFV) is a highly infectious viral pathogen that endangers the global pig industry, and no effective vaccine is available thus far. The CD2v protein is a glycoprotein on the outer envelope of ASFV, which mediates the transmission of the virus in the blood and recognition of the virus serotype, playing an important role in ASFV vaccine development and disease prevention. Here, we generated two specific monoclonal antibodies (mAbs), 6C11 and 8F12 (subtype IgG1/kappa-type), against the ASFV CD2v extracellular domain (CD2v-ex, GenBank: MK128995.1, 1-588 bp) and characterized their specificity. Peptide scanning technology was used to identify the epitopes recognized by mAbs 6C11 and 8F12. As a result, two novel B cell epitopes, 38DINGVSWN45 and 134GTNTNIY140, were defined. Amino acid sequence alignment showed that the defined epitopes were conserved in all referenced ASFV strains from various regions of China including the highly pathogenic, epidemic strain, Georgia2007/1 (NC_044959.2), with the same noted substitutions compared to the four foreign ASFV wild-type strains. This study provides important reference values for the design and development of an ASFV vaccine and useful biological materials for the functional study of the CD2v protein by deletion analysis.
Collapse
Affiliation(s)
- Wenting Jiang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
- International Joint Research Center of National Animal Immunology, Zhengzhou 450046, China
| | - Dawei Jiang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
- International Joint Research Center of National Animal Immunology, Zhengzhou 450046, China
- Longhu Laboratory, Zhengzhou 450046, China
| | - Lu Li
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
- International Joint Research Center of National Animal Immunology, Zhengzhou 450046, China
| | - Jiabin Wang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
- International Joint Research Center of National Animal Immunology, Zhengzhou 450046, China
| | - Panpan Wang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
- International Joint Research Center of National Animal Immunology, Zhengzhou 450046, China
| | - Xuejian Shi
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
- International Joint Research Center of National Animal Immunology, Zhengzhou 450046, China
| | - Qi Zhao
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
- International Joint Research Center of National Animal Immunology, Zhengzhou 450046, China
| | - Boyuan Liu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
- International Joint Research Center of National Animal Immunology, Zhengzhou 450046, China
| | - Pengchao Ji
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
- International Joint Research Center of National Animal Immunology, Zhengzhou 450046, China
- Henan Engineering Laboratory of Animal Biological Products, Zhengzhou 450046, China
| | - Gaiping Zhang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
- International Joint Research Center of National Animal Immunology, Zhengzhou 450046, China
- Longhu Laboratory, Zhengzhou 450046, China
- Henan Engineering Laboratory of Animal Biological Products, Zhengzhou 450046, China
| |
Collapse
|