1
|
Singh H, Mohanto S, Kumar A, Mishra AK, Kumar A, Mishra A, Ahmed MG, Singh MK, Yadav AP, Chopra S, Chopra H. Genetic and molecular profiling in Merkel Cell Carcinoma: Focus on MCPyV oncoproteins and emerging diagnostic techniques. Pathol Res Pract 2025:155869. [PMID: 40023704 DOI: 10.1016/j.prp.2025.155869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 12/21/2024] [Accepted: 02/25/2025] [Indexed: 03/04/2025]
Abstract
Merkel Cell Carcinoma (MCC) is an uncommon yet highly malignant form of skin cancer, frequently linked to the Merkel cell polyomavirus (MCPyV). This review comprehensively covers data from year 2000 to 2024, employing keywords such as MCC, MCPyV Oncoproteins, Immunohistochemistry, Southern Blot, Western Blot, Polymerase Chain Reaction (PCR), Digital Droplet PCR (ddPCR), Next-Generation Sequencing (NGS), and In Situ Hybridization (ISH). The search engines utilized were Google, PubMed Central, Scopus, and other journal databases like ScienceDirect. This review is essential for researchers and the broader medical community as it consolidates two decades of research on the genetic and molecular profiling of MCC, particularly focusing on MCPyV's role in its pathogenesis. It highlights the diagnostic advancements and therapeutic potential of targeting viral oncoproteins and provides insights into the development of both in vivo and in vitro models for better understanding MCC. The findings emphasize the significance of early detection, molecular diagnostics, and personalized treatment approaches, aiming to improve outcomes for patients with this malignant malignancy.
Collapse
Affiliation(s)
- Harpreet Singh
- School of Pharmaceutical Sciences, IFTM University, Moradabad, Uttar Pradesh 244102, India.
| | - Sourav Mohanto
- Department of Pharmaceutics, Yenepoya Pharmacy College & Research Centre, Yenepoya (Deemed to be University), Mangalore, Karnataka 575018, India
| | - Anil Kumar
- Moradabad Educational Trust Group of Institutions, Faculty of Pharmacy, Moradabad, Uttar Pradesh 244001, India
| | - Arun Kumar Mishra
- SOS School of Pharmacy, IFTM University, Moradabad, Uttar Pradesh 244102, India
| | - Arvind Kumar
- School of Pharmaceutical Sciences, IFTM University, Moradabad, Uttar Pradesh 244102, India
| | - Amrita Mishra
- School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, New Delhi 110017, India
| | - Mohammed Gulzar Ahmed
- Department of Pharmaceutics, Yenepoya Pharmacy College & Research Centre, Yenepoya (Deemed to be University), Mangalore, Karnataka 575018, India
| | - Mukesh Kr Singh
- School of Pharmaceutical Sciences, IFTM University, Moradabad, Uttar Pradesh 244102, India
| | | | - Shivani Chopra
- Department of Biosciences, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu 602105, India
| | - Hitesh Chopra
- Centre for Research Impact & Outcome, Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab 140401, India.
| |
Collapse
|
2
|
Myrda J, Bremm F, Schaft N, Dörrie J. The Role of the Large T Antigen in the Molecular Pathogenesis of Merkel Cell Carcinoma. Genes (Basel) 2024; 15:1127. [PMID: 39336718 PMCID: PMC11431464 DOI: 10.3390/genes15091127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/20/2024] [Accepted: 08/22/2024] [Indexed: 09/30/2024] Open
Abstract
The large T antigen (LT) of the Merkel cell polyomavirus (MCPyV) is crucial for Merkel cell carcinoma (MCC), a rare but very aggressive form of neuroendocrine skin cancer. The clonal integration of MCPyV DNA into the host genome is a signature event of this malignancy. The resulting expression of oncogenes, including the small T (sT) antigen and a truncated form of the LT (truncLT), directly contribute to carcinogenesis. The truncation of the C-terminus of LT prevents the virus from replicating due to the loss of the origin binding domain (OBD) and the helicase domain. This precludes cytopathic effects that would lead to DNA damage and ultimately cell death. At the same time, the LxCxE motif in the N-terminus is retained, allowing truncLT to bind the retinoblastoma protein (pRb), a cellular tumor suppressor. The continuously inactivated pRb promotes cell proliferation and tumor development. truncLT exerts several classical functions of an oncogene: altering the host cell cycle, suppressing innate immune responses to viral DNA, causing immune escape, and shifting metabolism in favor of cancer cells. Given its central role in MCC, the LT is a major target for therapeutic interventions with novel approaches, such as immune checkpoint inhibition, T cell-based immunotherapy, and cancer vaccines.
Collapse
Affiliation(s)
- Julia Myrda
- Department of Dermatology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
- Comprehensive Cancer Center Erlangen European Metropolitan Area of Nuremberg (CCC ER-EMN), 91054 Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), 91054 Erlangen, Germany
- Bavarian Cancer Research Center (BZKF), 91054 Erlangen, Germany
| | - Franziska Bremm
- Department of Dermatology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
- Comprehensive Cancer Center Erlangen European Metropolitan Area of Nuremberg (CCC ER-EMN), 91054 Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), 91054 Erlangen, Germany
- Bavarian Cancer Research Center (BZKF), 91054 Erlangen, Germany
| | - Niels Schaft
- Department of Dermatology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
- Comprehensive Cancer Center Erlangen European Metropolitan Area of Nuremberg (CCC ER-EMN), 91054 Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), 91054 Erlangen, Germany
- Bavarian Cancer Research Center (BZKF), 91054 Erlangen, Germany
| | - Jan Dörrie
- Department of Dermatology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
- Comprehensive Cancer Center Erlangen European Metropolitan Area of Nuremberg (CCC ER-EMN), 91054 Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), 91054 Erlangen, Germany
- Bavarian Cancer Research Center (BZKF), 91054 Erlangen, Germany
| |
Collapse
|
3
|
Pedersen EA, Verhaegen ME, Joseph MK, Harms KL, Harms PW. Merkel cell carcinoma: updates in tumor biology, emerging therapies, and preclinical models. Front Oncol 2024; 14:1413793. [PMID: 39136002 PMCID: PMC11317257 DOI: 10.3389/fonc.2024.1413793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 07/08/2024] [Indexed: 08/15/2024] Open
Abstract
Merkel cell carcinoma (MCC) is an aggressive cutaneous neuroendocrine carcinoma thought to arise via either viral (Merkel cell polyomavirus) or ultraviolet-associated pathways. Surgery and radiotherapy have historically been mainstays of management, and immunotherapy has improved outcomes for advanced disease. However, there remains a lack of effective therapy for those patients who fail to respond to these established approaches, underscoring a critical need to better understand MCC biology for more effective prognosis and treatment. Here, we review the fundamental aspects of MCC biology and the recent advances which have had profound impact on management. The first genetically-engineered mouse models for MCC tumorigenesis provide opportunities to understand the potential MCC cell of origin and may prove useful for preclinical investigation of novel therapeutics. The MCC cell of origin debate has also been advanced by recent observations of MCC arising in association with a clonally related hair follicle tumor or squamous cell carcinoma in situ. These studies also suggested a role for epigenetics in the origin of MCC, highlighting a potential utility for this therapeutic avenue in MCC. These and other therapeutic targets form the basis for a wealth of ongoing clinical trials to improve MCC management. Here, we review these recent advances in the context of the existing literature and implications for future investigations.
Collapse
Affiliation(s)
| | | | - Mallory K. Joseph
- Department of Dermatology, University of Michigan, Ann Arbor, MI, United States
| | - Kelly L. Harms
- Department of Dermatology, University of Michigan, Ann Arbor, MI, United States
| | - Paul W. Harms
- Department of Dermatology, University of Michigan, Ann Arbor, MI, United States
- Department of Pathology, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
4
|
Passerini S, Babini G, Merenda E, Carletti R, Scribano D, Rosa L, Conte AL, Moens U, Ottolenghi L, Romeo U, Conte MP, Di Gioia CRT, Pietropaolo V. Merkel Cell Polyomavirus in the Context of Oral Squamous Cell Carcinoma and Oral Potentially Malignant Disorders. Biomedicines 2024; 12:709. [PMID: 38672065 PMCID: PMC11047982 DOI: 10.3390/biomedicines12040709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/15/2024] [Accepted: 03/20/2024] [Indexed: 04/28/2024] Open
Abstract
Despite recent advances in prevention, detection and treatment, oral squamous cell carcinoma (OSCC) remains a global health concern, strongly associated with environmental and lifestyle risk factors and infection with oncogenic viruses. Merkel Cell Polyomavirus (MCPyV), well known to be the causative agent of Merkel Cell Carcinoma (MCC) has been found in OSCC, suggesting its potential role as a co-factor in the development of oral cavity cancers. To improve our understanding about MCPyV in oral cavities, the detection and analysis of MCPyV DNA, transcripts and miRNA were performed on OSCCs and oral potentially malignant disorders (OPMDs). In addition, the cellular miR-375, known to be deregulated in tumors, was examined. MCPyV DNA was found in 3 out of 11 OSCC and 4 out of 12 OPMD samples, with a viral mean value of 1.49 × 102 copies/mL. Viral integration was not observed and LTAg and VP1 transcripts were detected. Viral miRNAs were not detected whereas the cellular miR-375 was found over expressed in all MCPyV positive oral specimens. Our results reported evidence of MCPyV replication in both OSCC and OPMD suggesting the oral cavity as a site of replicative MCPyV infection, therefore underscoring an active role of this virus in the occurrence of oral lesions.
Collapse
Affiliation(s)
- Sara Passerini
- Department of Public Health and Infectious Diseases, “Sapienza” University of Rome, 00185 Rome, Italy; (G.B.); (D.S.); (A.L.C.); (M.P.C.)
| | - Giulia Babini
- Department of Public Health and Infectious Diseases, “Sapienza” University of Rome, 00185 Rome, Italy; (G.B.); (D.S.); (A.L.C.); (M.P.C.)
| | - Elisabetta Merenda
- Department of Radiological, Oncological and Pathological Science, “Sapienza” University of Rome, 00161 Rome, Italy; (E.M.); (R.C.); (C.R.T.D.G.)
| | - Raffaella Carletti
- Department of Radiological, Oncological and Pathological Science, “Sapienza” University of Rome, 00161 Rome, Italy; (E.M.); (R.C.); (C.R.T.D.G.)
| | - Daniela Scribano
- Department of Public Health and Infectious Diseases, “Sapienza” University of Rome, 00185 Rome, Italy; (G.B.); (D.S.); (A.L.C.); (M.P.C.)
| | - Luigi Rosa
- Laboratory of Virology, National Institute for Infectious Diseases “Spallanzani”, 00149 Rome, Italy;
| | - Antonietta Lucia Conte
- Department of Public Health and Infectious Diseases, “Sapienza” University of Rome, 00185 Rome, Italy; (G.B.); (D.S.); (A.L.C.); (M.P.C.)
| | - Ugo Moens
- Department of Medical Biology, Faculty of Health Sciences, University of Tromsø, UiT-The Arctic University of Norway, 9037 Tromsø, Norway;
| | - Livia Ottolenghi
- Department of Oral and Maxillofacial Sciences, Sapienza University of Rome, Via Caserta 6, 00161 Rome, Italy; (L.O.); (U.R.)
| | - Umberto Romeo
- Department of Oral and Maxillofacial Sciences, Sapienza University of Rome, Via Caserta 6, 00161 Rome, Italy; (L.O.); (U.R.)
| | - Maria Pia Conte
- Department of Public Health and Infectious Diseases, “Sapienza” University of Rome, 00185 Rome, Italy; (G.B.); (D.S.); (A.L.C.); (M.P.C.)
| | - Cira Rosaria Tiziana Di Gioia
- Department of Radiological, Oncological and Pathological Science, “Sapienza” University of Rome, 00161 Rome, Italy; (E.M.); (R.C.); (C.R.T.D.G.)
| | - Valeria Pietropaolo
- Department of Public Health and Infectious Diseases, “Sapienza” University of Rome, 00185 Rome, Italy; (G.B.); (D.S.); (A.L.C.); (M.P.C.)
| |
Collapse
|
5
|
Studstill CJ, Mac M, Moody CA. Interplay between the DNA damage response and the life cycle of DNA tumor viruses. Tumour Virus Res 2023; 16:200272. [PMID: 37918513 PMCID: PMC10685005 DOI: 10.1016/j.tvr.2023.200272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/26/2023] [Accepted: 10/29/2023] [Indexed: 11/04/2023] Open
Abstract
Approximately 20 % of human cancers are associated with virus infection. DNA tumor viruses can induce tumor formation in host cells by disrupting the cell's DNA replication and repair mechanisms. Specifically, these viruses interfere with the host cell's DNA damage response (DDR), which is a complex network of signaling pathways that is essential for maintaining the integrity of the genome. DNA tumor viruses can disrupt these pathways by expressing oncoproteins that mimic or inhibit various DDR components, thereby promoting genomic instability and tumorigenesis. Recent studies have highlighted the molecular mechanisms by which DNA tumor viruses interact with DDR components, as well as the ways in which these interactions contribute to viral replication and tumorigenesis. Understanding the interplay between DNA tumor viruses and the DDR pathway is critical for developing effective strategies to prevent and treat virally associated cancers. In this review, we discuss the current state of knowledge regarding the mechanisms by which human papillomavirus (HPV), merkel cell polyomavirus (MCPyV), Kaposi's sarcoma-associated herpesvirus (KSHV), and Epstein-Barr virus (EBV) interfere with DDR pathways to facilitate their respective life cycles, and the consequences of such interference on genomic stability and cancer development.
Collapse
Affiliation(s)
- Caleb J Studstill
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, United States
| | - Michelle Mac
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, United States
| | - Cary A Moody
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, United States; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, United States.
| |
Collapse
|
6
|
Passerini S, Prezioso C, Babini G, Ferlosio A, Cosio T, Campione E, Moens U, Ciotti M, Pietropaolo V. Detection of Merkel Cell Polyomavirus (MCPyV) DNA and Transcripts in Merkel Cell Carcinoma (MCC). Pathogens 2023; 12:894. [PMID: 37513741 PMCID: PMC10385104 DOI: 10.3390/pathogens12070894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/14/2023] [Accepted: 06/28/2023] [Indexed: 07/30/2023] Open
Abstract
Merkel cell polyomavirus (MCPyV) is the etiological agent of the majority of Merkel cell carcinoma (MCC): a rare skin tumor. To improve our understanding of the role of MCPyV in MCCs, the detection and analysis of MCPyV DNA and transcripts were performed on primary tumors and regional lymph nodes from two MCC patients: one metastatic and one non-metastatic. MCPyV-DNA was searched by a quantitative polymerase chain reaction (qPCR), followed by the amplification of a Large T Antigen (LTAg), Viral Protein 1 (VP1) and Non-Coding Control Region (NCCR). LTAg and VP1 transcripts were investigated by reverse-transcription PCR (RT-PCR). Viral integration was also studied, and full-length LTAg sequencing was performed. qPCR revealed that the primary tumor of both patients and the lymph node of one patient was positive for the small t-antigen, with an average value of 7.0 × 102 copies/µg. The same samples harbored LTAg, NCCR and VP1 DNA. Sequencing results showed truncated LTAg with the conserved retinoblastoma (Rb) protein binding motif and VP1 and NCCR sequences identical to the MCC350 strain. RT-PCR detected LTAg but not VP1 transcripts. The MCPyV genome was integrated into the primary tumor of both patients. The results confirmed the connection between MCPyV and MCC, assuming integration, LTAg truncation and Rb sequestration as key players in MCPyV-mediated oncogenesis.
Collapse
Affiliation(s)
- Sara Passerini
- Department of Public Health and Infectious Diseases, "Sapienza" University of Rome, 00185 Rome, Italy
| | - Carla Prezioso
- Laboratory of Microbiology of Chronic-Neurodegenerative Diseases, IRCCS San Raffaele Roma, 00166 Rome, Italy
| | - Giulia Babini
- Department of Public Health and Infectious Diseases, "Sapienza" University of Rome, 00185 Rome, Italy
| | - Amedeo Ferlosio
- Anatomic Pathology, Department of Biomedicine and Prevention, Tor Vergata University of Rome, 00133 Rome, Italy
| | - Terenzio Cosio
- Dermatologic Unit, Department of Systems Medicine, Tor Vergata University of Rome, 00133 Rome, Italy
- Department of Experimental Medicine, Tor Vergata University of Rome, 00133 Rome, Italy
| | - Elena Campione
- Dermatologic Unit, Department of Systems Medicine, Tor Vergata University of Rome, 00133 Rome, Italy
| | - Ugo Moens
- Department of Medical Biology, Faculty of Health Sciences, University of Tromsø-The Arctic University of Norway, 9037 Tromsø, Norway
| | - Marco Ciotti
- Virology Unit, Polyclinic Tor Vergata Foundation, 00133 Rome, Italy
| | - Valeria Pietropaolo
- Department of Public Health and Infectious Diseases, "Sapienza" University of Rome, 00185 Rome, Italy
| |
Collapse
|
7
|
Zhu Y, Yin Y, Li F, Ren Z, Dong Y. A review on the oncogenesis of Merkel cell carcinoma: Several subsets arise from different stages of differentiation of stem cell. Medicine (Baltimore) 2023; 102:e33535. [PMID: 37058042 PMCID: PMC10101282 DOI: 10.1097/md.0000000000033535] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 03/24/2023] [Indexed: 04/15/2023] Open
Abstract
Merkel cell carcinoma (MCC), a rare primary cutaneous neuroendocrine neoplasm, is extremely aggressive and has a higher mortality rate than melanoma. Based on Merkel cell polyomavirus (MCPyV) status and morphology, MCCs are often divided into several distinct subsets: pure MCPyV-positive, pure MCPyV-negative, and combined MCC. MCPyV-positive MCC develops by the clonal integration of viral DNA, whereas MCPyV-negative MCC is induced by frequent ultraviolet (UV)-mediated mutations, that are characterized by a high mutational burden, UV signature mutations, and many mutations in TP53 and retinoblastoma suppressor gene (RB1). Combined MCC consists of an intimate mix of MCC and other cutaneous tumor populations, and is usually MCPyV-negative, with rare exceptions. Based on the existing subsets of MCC, it is speculated that there are at least 4 stages in the natural history of stem cell differentiation: primitive pluripotent stem cells, divergent differentiated stem cells, unidirectional stem cells, and Merkel cells (or epidermal/adnexal cells). In the first stage, MCPyV may integrate into the genome of primitive pluripotent stem cells, driving oncogenesis in pure MCPyV-positive MCC. If MCPyV integration does not occur, the stem cells enter the second stage and acquire the ability to undergo multidirectional neuroendocrine and epidermal (or adnexal) differentiation. At this stage, accumulated UV-mediated mutations may drive the development of combined MCC. In the third stage, the stem cells differentiate into unidirectional neuroendocrine stem cells, UV-mediated mutations can induce carcinogenesis in pure MCPyV-negative MCC. Therefore, it has been speculated that several subsets of MCCs arise from different stages of differentiation of common stem cells.
Collapse
Affiliation(s)
- Yueyang Zhu
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Yuan Yin
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Fuqiang Li
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Zhiyuan Ren
- Department of Mechanical Engineering, University of Illinois Urbana Champaign, Champaign, IL
| | - Yaru Dong
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
8
|
Strati K, Pyeon D. Special Issue "New Frontiers in Small DNA Virus Research". Viruses 2023; 15:259. [PMID: 36680299 PMCID: PMC9865906 DOI: 10.3390/v15010259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 01/13/2023] [Indexed: 01/18/2023] Open
Abstract
Scientific progress in understanding, preventing, treating, and managing viral infections and associated diseases exemplifies the extent to which research on small DNA tumor viruses has impacted human health [...].
Collapse
Affiliation(s)
- Katerina Strati
- Department of Biological Sciences, University of Cyprus, Nicosia 1678, Cyprus
| | - Dohun Pyeon
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|