1
|
Poulin KL, Clarkin RG, Del Papa J, Parks RJ. Development and Characterization of an Oncolytic Human Adenovirus-Based Vector Co-Expressing the Adenovirus Death Protein and p14 Fusion-Associated Small Transmembrane Fusogenic Protein. Int J Mol Sci 2024; 25:12451. [PMID: 39596515 PMCID: PMC11594305 DOI: 10.3390/ijms252212451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 11/16/2024] [Indexed: 11/28/2024] Open
Abstract
Human adenovirus (HAdV)-based oncolytic vectors, which are designed to preferentially replicate in and kill cancer cells, have shown modest efficacy in human clinical trials in part due to poor viral distribution throughout the tumor mass. Previously, we showed that expression of the p14 fusion-associated small transmembrane (FAST) fusogenic protein could enhance oncolytic HAdV efficacy and reduce tumor growth rate in a human xenograft mouse model of cancer. We now explore whether co-expression of the adenovirus death protein (ADP) with p14 FAST protein could synergize to further enhance oncolytic vector efficacy. ADP is naturally encoded within the early region 3 (E3) of HAdV, a region which is frequently removed from HAdV-based vectors, and functions to enhance cell lysis and progeny release. We evaluated a variety of approaches to achieve optimal expression of the two proteins, the most efficient method being insertion of an expression cassette within the E3 deletion, consisting of the coding sequences for p14 FAST protein and ADP separated by a self-cleaving peptide derived from the porcine teschovirus-1 (P2A). However, the quantities of p14 FAST protein and ADP produced from this vector were reduced approximately 10-fold compared to a similar vector-expressing only p14 FAST protein and wildtype HAdV, respectively. Compared to our original oncolytic vector-expressing p14 FAST protein alone, reduced expression of p14 FAST protein and ADP from the P2A construct reduced cell-cell fusion, vector spread, and cell-killing activity in human A549 adenocarcinoma cells in culture. These studies show that a self-cleaving peptide can be used to express two different transgenes in an armed oncolytic HAdV vector, but also highlight the challenges in maintaining adequate transgene expression when modifying vector design.
Collapse
Affiliation(s)
- Kathy L. Poulin
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
| | - Ryan G. Clarkin
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
- Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1N 6N5, Canada
- Eric Poulin Centre for Neuromuscular Disease, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Joshua Del Papa
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
- Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1N 6N5, Canada
- Eric Poulin Centre for Neuromuscular Disease, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Robin J. Parks
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
- Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1N 6N5, Canada
- Eric Poulin Centre for Neuromuscular Disease, University of Ottawa, Ottawa, ON K1N 6N5, Canada
- Department of Medicine, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| |
Collapse
|
2
|
Morales-Molina A, Rodriguez-Milla MA, Garcia-Rodriguez P, Hidalgo L, Alemany R, Garcia-Castro J. Deletion of the RGD motif from the penton base in oncolytic adenoviruses enhances antitumor efficacy of combined CAR T cell therapy. MOLECULAR THERAPY. ONCOLOGY 2024; 32:200863. [PMID: 39290319 PMCID: PMC11406095 DOI: 10.1016/j.omton.2024.200863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 07/17/2024] [Accepted: 08/20/2024] [Indexed: 09/19/2024]
Abstract
Oncolytic viruses often face challenges in achieving optimal antitumor immunity as standalone therapies. The penton base RGD-integrin interactions play a significant role in wild-type adenovirus-induced innate immune responses. To modify these responses, we present ISC301, a novel oncolytic adenovirus engineered by deleting the natural RGD motifs in the penton base while incorporating artificial RGD motifs in the fiber knobs. ISC301 demonstrated comparable in vitro infectivity, cytotoxic effects, and signaling profiles across various cell types to its parental ICOVIR-5, which retains the penton base RGD motif. In immunodeficient and immunocompetent mouse models, ISC301 exhibited similar in vivo antitumor efficacy to ICOVIR-5. However, ISC301 induced higher intratumoral inflammation through NF-κB activation, leading to increased levels of tumor-infiltrating leukocytes and higher proportion of cytotoxic CD8+ T cells. In addition, ISC301 elicits a heightened pro-inflammatory response in peripheral blood. Importantly, when combined with CAR T cell therapy, ISC301 exhibited superior antitumor efficacy, surpassing monotherapy outcomes. These findings emphasize the impact of adenoviral modifications on antitumor immune responses. The deletion of penton base RGD motifs enhances ISC301's pro-inflammatory profile and boosts CAR T cell therapy efficacy. This study enhances understanding of oncolytic virus engineering strategies, positioning ISC301 as a promising candidate for combined immunotherapeutic approaches in cancer treatment.
Collapse
Affiliation(s)
| | | | - Patricia Garcia-Rodriguez
- Cellular Biotechnology Unit, Instituto de Salud Carlos III, 28220 Madrid, Spain
- Universidad Nacional de Educación a Distancia, UNED, 28015 Madrid, Spain
| | - Laura Hidalgo
- Cellular Biotechnology Unit, Instituto de Salud Carlos III, 28220 Madrid, Spain
| | - Ramon Alemany
- Oncobell and ProCure Programs, IDIBELL-Institut Català d'Oncologia, L'Hospitalet de Llobregat, 08908 Barcelona, Spain
| | - Javier Garcia-Castro
- Cellular Biotechnology Unit, Instituto de Salud Carlos III, 28220 Madrid, Spain
- Instituto de Investigación de Enfermedades Raras (IIER) & Departamento de Desarrollo de Medicamentos de Terapias Avanzadas (DDMTA), Instituto de Salud Carlos III, 28220 Madrid, Spain
| |
Collapse
|
3
|
Lin C, Teng W, Tian Y, Li S, Xia N, Huang C. Immune landscape and response to oncolytic virus-based immunotherapy. Front Med 2024; 18:411-429. [PMID: 38453818 DOI: 10.1007/s11684-023-1048-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 11/15/2023] [Indexed: 03/09/2024]
Abstract
Oncolytic virus (OV)-based immunotherapy has emerged as a promising strategy for cancer treatment, offering a unique potential to selectively target malignant cells while sparing normal tissues. However, the immunosuppressive nature of tumor microenvironment (TME) poses a substantial hurdle to the development of OVs as effective immunotherapeutic agents, as it restricts the activation and recruitment of immune cells. This review elucidates the potential of OV-based immunotherapy in modulating the immune landscape within the TME to overcome immune resistance and enhance antitumor immune responses. We examine the role of OVs in targeting specific immune cell populations, including dendritic cells, T cells, natural killer cells, and macrophages, and their ability to alter the TME by inhibiting angiogenesis and reducing tumor fibrosis. Additionally, we explore strategies to optimize OV-based drug delivery and improve the efficiency of OV-mediated immunotherapy. In conclusion, this review offers a concise and comprehensive synopsis of the current status and future prospects of OV-based immunotherapy, underscoring its remarkable potential as an effective immunotherapeutic agent for cancer treatment.
Collapse
Affiliation(s)
- Chaolong Lin
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Department of Laboratory Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Xiamen University, Xiamen, 361102, China
| | - Wenzhong Teng
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Department of Laboratory Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Xiamen University, Xiamen, 361102, China
| | - Yang Tian
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Department of Laboratory Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Xiamen University, Xiamen, 361102, China
| | - Shaopeng Li
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Department of Laboratory Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Xiamen University, Xiamen, 361102, China
| | - Ningshao Xia
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Department of Laboratory Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China.
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Xiamen University, Xiamen, 361102, China.
| | - Chenghao Huang
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Department of Laboratory Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China.
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Xiamen University, Xiamen, 361102, China.
| |
Collapse
|
4
|
Göttig L, Schreiner S. E4orf1: The triple agent of adenovirus - Unraveling its roles in oncogenesis, infectious obesity and immune responses in virus replication and vector therapy. Tumour Virus Res 2024; 17:200277. [PMID: 38428735 PMCID: PMC10937242 DOI: 10.1016/j.tvr.2024.200277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 02/20/2024] [Accepted: 02/20/2024] [Indexed: 03/03/2024] Open
Abstract
Human Adenoviruses (HAdV) are nearly ubiquitous pathogens comprising numerous sub-types that infect various tissues and organs. Among many encoded proteins that facilitate viral replication and subversion of host cellular processes, the viral E4orf1 protein has emerged as an intriguing yet under-investigated player in the complex interplay between the virus and its host. E4orf1 has gained attention as a metabolism activator and oncogenic agent, while recent research is showing that E4orf1 may play a more important role in modulating cellular pathways such as PI3K-Akt-mTOR, Ras, the immune response and further HAdV replication stages than previously anticipated. In this review, we aim to explore the structure, molecular mechanisms, and biological functions of E4orf1, shedding light on its potentially multifaceted roles during HAdV infection, including metabolic diseases and oncogenesis. Furthermore, we discuss the role of functional E4orf1 in biotechnological applications such as Adenovirus (AdV) vaccine vectors and oncolytic AdV. By dissecting the intricate relationships between HAdV types and E4orf1 proteins, this review provides valuable insights into viral pathogenesis and points to promising areas of future research.
Collapse
Affiliation(s)
- Lilian Göttig
- Institute of Virology, School of Medicine, Technical University of Munich, Germany
| | - Sabrina Schreiner
- Institute of Virology, School of Medicine, Technical University of Munich, Germany; Institute of Virology, Hannover Medical School, Hannover, Germany; Cluster of Excellence RESIST (Resolving Infection Susceptibility; EXC 2155), Hannover, Germany; Institute of Virology, Medical Center - University of Freiburg, Freiburg, Germany.
| |
Collapse
|
5
|
Shin SC, Vickman RE, Filimon B, Yang Y, Hu Z, Mangold KA, Prabhakar BS, Schreiber H, Xu W. The safety and efficacy of systemic delivery of a new liver-de-targeted TGFβ signaling inhibiting adenovirus in an immunocompetent triple negative mouse mammary tumor model. Cancer Gene Ther 2024; 31:574-585. [PMID: 38267626 PMCID: PMC11016465 DOI: 10.1038/s41417-024-00735-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 01/09/2024] [Accepted: 01/12/2024] [Indexed: 01/26/2024]
Abstract
Aberrant TGFβ signaling is linked to metastasis and tumor immune escape of many cancers including metastatic triple negative breast cancer (mTNBC). Previously, we have found that oncolytic adenoviruses expressing a TGFβ signaling inhibitory protein (sTGFβRIIFc) induced immune activation in a mouse TNBC (4T1) immunocompetent subcutaneous model with intratumoral injection. Systemic administration of adenoviruses can be a superior route to treat mTNBC but faces the challenges of increased toxicity and viral clearance. Thus, we created a liver-de-targeted sTGFβRIIFc- and LyP-1 peptide-expressing adenovirus (mHAdLyp.sT) with enhanced breast cancer cell tropism. Its safety and immune response features were profiled in the 4T1 model. Our data showed that the systemic administration of mHAdLyp.sT resulted in reduced hepatic and systemic toxicity. mHAdLyp.sT was also effective in increasing Th1 cytokines and anti-tumor cell populations by cytokine analysis, spleen/tumor qRT-PCR, and flow cytometry. We further tested the therapeutic effects of mHAdLyp.sT alone and in combination with immune checkpoint inhibitors (ICIs). mHAdLyp.sT alone and with all ICI combinations elicited significant inhibition of lung metastasis by histological analysis. When mHAdLyp.sT was combined with both anti-PD-1 and anti-CTLA-4 antibodies, primary 4T1 tumor growth was also significantly inhibited. We are confident in advancing this new treatment option for mTNBC.
Collapse
Affiliation(s)
- Soon Cheon Shin
- Cancer Gene Therapy Program, Department of Medicine, NorthShore University HealthSystem, an Academic Affiliate of the University of Chicago Pritzker School of Medicine, Endeavor Health Medical Group, Evanston, IL, USA
| | - Renee E Vickman
- Center for Personalized Cancer Care, Department of Surgery, NorthShore University HealthSystem, an Academic Affiliate of the University of Chicago Pritzker School of Medicine, Endeavor Health Medical Group, Evanston, IL, USA
| | - Beniamin Filimon
- Cancer Gene Therapy Program, Department of Medicine, NorthShore University HealthSystem, an Academic Affiliate of the University of Chicago Pritzker School of Medicine, Endeavor Health Medical Group, Evanston, IL, USA
| | - Yuefeng Yang
- Cancer Gene Therapy Program, Department of Medicine, NorthShore University HealthSystem, an Academic Affiliate of the University of Chicago Pritzker School of Medicine, Endeavor Health Medical Group, Evanston, IL, USA
- Department of Experimental Medical Science and Key Laboratory of Diagnosis and Treatment of Digestive System Tumors of Zhejiang Province, Ningbo, China
| | - Zebin Hu
- Cancer Gene Therapy Program, Department of Medicine, NorthShore University HealthSystem, an Academic Affiliate of the University of Chicago Pritzker School of Medicine, Endeavor Health Medical Group, Evanston, IL, USA
- National Institutes for Food and Drug Control, Beijing, China
| | - Kathy A Mangold
- Department of Pathology and Laboratory Medicine, NorthShore University HealthSystem, Endeavor Health Medical Group, Evanston, IL, USA
- Department of Pathology, The University of Chicago, Chicago, IL, USA
| | - Bellur S Prabhakar
- Department of Microbiology and Immunology, University of Illinois College of Medicine, Chicago, IL, USA
| | - Hans Schreiber
- Department of Pathology, The University of Chicago, Chicago, IL, USA
| | - Weidong Xu
- Cancer Gene Therapy Program, Department of Medicine, NorthShore University HealthSystem, an Academic Affiliate of the University of Chicago Pritzker School of Medicine, Endeavor Health Medical Group, Evanston, IL, USA.
| |
Collapse
|
6
|
Shirazi MMA, Saedi TA, Moghaddam ZS, Nemati M, Shiri R, Negahdari B, Goradel NH. Nanotechnology and nano-sized tools: Newer approaches to circumvent oncolytic adenovirus limitations. Pharmacol Ther 2024; 256:108611. [PMID: 38387653 DOI: 10.1016/j.pharmthera.2024.108611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 01/03/2024] [Accepted: 02/14/2024] [Indexed: 02/24/2024]
Abstract
Oncolytic adenoviruses (OAds), engineered Ads preferentially infect and lyse tumor cells, have attracted remarkable attention as immunotherapy weapons for the treatment of various malignancies. Despite hopeful successes in preclinical investigations and translation into clinical phases, they face some challenges that thwart their therapeutic effectiveness, including low infectivity of cancer cells, liver sequestration, pre-existing neutralizing antibodies, physical barriers to the spread of Ads, and immunosuppressive TME. Nanotechnology and nano-sized tools provide several advantages to overcome these limitations of OAds. Nano-sized tools could improve the therapeutic efficacy of OAds by enhancing infectivity and cellular uptake, targeting and protecting from pre-existing immune responses, masking and preventing liver tropism, and co-delivery with other therapeutic agents. Herein, we reviewed the constructs of various OAds and their application in clinical trials, as well as the limitations they have faced. Furthermore, we emphasized the potential applications of nanotechnology to solve the constraints of OAds to improve their anti-tumor activities.
Collapse
Affiliation(s)
| | - Tayebeh Azam Saedi
- Department of Genetics, Faculty of Science, Islamic Azad University, Tonekabon Branch, Tonekabon, Iran
| | - Zahra Samadi Moghaddam
- Department of Medical Biotechnology, Maragheh University of Medical Sciences, Maragheh, Iran
| | - Mahnaz Nemati
- Amir Oncology Hospital, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Reza Shiri
- Department of Basic Sciences, Maragheh University of Medical Sciences, Maragheh, Iran
| | - Babak Negahdari
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Nasser Hashemi Goradel
- Department of Medical Biotechnology, Maragheh University of Medical Sciences, Maragheh, Iran; Arthropod-Borne Diseases Research Centre, Ardabil University of Medical Sciences, Ardabil, Iran.
| |
Collapse
|
7
|
Dawson LM, Alshawabkeh M, Schröer K, Arakrak F, Ehrhardt A, Zhang W. Role of homologous recombination/recombineering on human adenovirus genome engineering: Not the only but the most competent solution. ENGINEERING MICROBIOLOGY 2024; 4:100140. [PMID: 39628785 PMCID: PMC11611009 DOI: 10.1016/j.engmic.2024.100140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 02/06/2024] [Accepted: 02/06/2024] [Indexed: 12/06/2024]
Abstract
Adenoviruses typically cause mild illnesses, but severe diseases may occur primarily in immunodeficient individuals, particularly children. Recently, adenoviruses have garnered significant interest as a versatile tool in gene therapy, tumor treatment, and vaccine vector development. Over the past two decades, the advent of recombineering, a method based on homologous recombination, has notably enhanced the utility of adenoviral vectors in therapeutic applications. This review summarizes recent advancements in the use of human adenoviral vectors in medicine and discusses the pivotal role of recombineering in the development of these vectors. Additionally, it highlights the current achievements and potential future impact of therapeutic adenoviral vectors.
Collapse
Affiliation(s)
| | | | | | - Fatima Arakrak
- Virology and Microbiology, Center for Biomedical Education and Research (ZBAF), School of Medicine, Faculty of Health, Witten/Herdecke University, Stockumer Str. 10 58453 Witten, Germany
| | - Anja Ehrhardt
- Virology and Microbiology, Center for Biomedical Education and Research (ZBAF), School of Medicine, Faculty of Health, Witten/Herdecke University, Stockumer Str. 10 58453 Witten, Germany
| | - Wenli Zhang
- Virology and Microbiology, Center for Biomedical Education and Research (ZBAF), School of Medicine, Faculty of Health, Witten/Herdecke University, Stockumer Str. 10 58453 Witten, Germany
| |
Collapse
|
8
|
Seyed-Khorrami SM, Azadi A, Rastegarvand N, Habibian A, Soleimanjahi H, Łos MJ. A promising future in cancer immunotherapy: Oncolytic viruses. Eur J Pharmacol 2023; 960:176063. [PMID: 37797673 DOI: 10.1016/j.ejphar.2023.176063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 09/18/2023] [Accepted: 09/19/2023] [Indexed: 10/07/2023]
Abstract
Alongside the conventional methods, attention has been drawn to the use of immunotherapy-based methods for cancer treatment. Immunotherapy has developed as a therapeutic option that can be more specific with better outcomes in tumor treatment. It can boost or regulate the immune system behind the targeted virotherapy. Virotherapy is a kind of oncolytic immunotherapy that investigated broadly in cancer treatment in recent decades, due to its several advantages. According to recent advance in the field of understanding cancer cell biology and its occurrence, as well as increasing the knowledge about conditionally replicating oncolytic viruses and their destructive function in the tumor cells, nowadays, it is possible to apply this strategy in the treatment of malignancies. Relying on achievements in clinical trials of oncolytic viruses, we can certainly expect that this therapeutic perception can play a more central role in cancer treatment. In cancer treatment, combination therapy using oncolytic viruses alongside standard cancer treatment methods and other immunotherapy-based treatments can expect more promising results in the future.
Collapse
Affiliation(s)
| | - Arezou Azadi
- Department of Virology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Nasrin Rastegarvand
- Department of Virology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Ala Habibian
- Department of Virology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Hoorieh Soleimanjahi
- Department of Virology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Marek J Łos
- Biotechnology Center, Silesian University of Technology, 8 Krzywousty St., 44-100, Gliwice, Poland; LinkoCare Life Sciences AB, Linkoping, Sweden.
| |
Collapse
|
9
|
Xu W, Shin SC, Vickman R, Filimon B, Yang Y, Hu Z, Mangold K, Prabhakar B, Schreiber H. The Safety and Efficacy of Systemic Delivery of a New Liver-de-targeted TGFβ Signaling Inhibiting Adenovirus in an Immunocompetent Triple Negative Mouse Mammary Tumor Model. RESEARCH SQUARE 2023:rs.3.rs-3317863. [PMID: 37790556 PMCID: PMC10543255 DOI: 10.21203/rs.3.rs-3317863/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Aberrant TGFβ signaling is linked to metastasis and tumor immune escape of many cancers including metastatic triple negative breast cancer (mTNBC). Previously, we have found that oncolytic adenoviruses expressing a TGFβ signaling inhibitory protein (sTGFβRIIFc) induced immune activation in a mouse TNBC (4T1) immunocompetent subcutaneous model with intratumoral injection. Systemic administration of adenoviruses can be a superior route to treat mTNBC but faces the challenges of increased toxicity and viral clearance. Thus, we created a liver-de-targeted sTGFβRIIFc- and LyP-1 peptide-expressing adenovirus (mHAdLyp.sT) with enhanced breast cancer cell tropism. Its safety and immune response features were profiled in the 4T1 model. Our data showed that the systemic administration of mHAdLyp.sT resulted in reduced hepatic and systemic toxicity. mHAdLyp.sT was also effective in increasing Th1 cytokines and anti-tumor cell populations by cytokine analysis, spleen/tumor qRT-PCR, and flow cytometry. We further tested the therapeutic effects of mHAdLyp.sT alone and in combination with immune checkpoint inhibitors (ICIs). mHAdLyp.sT alone and with all ICI combinations elicited significant inhibition of lung metastasis by histological analysis. When mHAdLyp.sT was combined with both anti-PD-1 and anti-CTLA-4 antibodies, primary 4T1 tumor growth was also significantly inhibited. We are confident in advancing this new treatment option for mTNBC.
Collapse
Affiliation(s)
- Weidong Xu
- NorthShore University HealthSystem, an Academic Affiliate of the University of Chicago Pritzker School of Medicine
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Rice-Boucher PJ, Mendonça SA, Alvarez AB, Sturtz AJ, Lorincz R, Dmitriev IP, Kashentseva EA, Lu ZH, Romano R, Selby M, Pingale K, Curiel DT. Adenoviral vectors infect B lymphocytes in vivo. Mol Ther 2023; 31:2600-2611. [PMID: 37452494 PMCID: PMC10492023 DOI: 10.1016/j.ymthe.2023.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/14/2023] [Accepted: 07/10/2023] [Indexed: 07/18/2023] Open
Abstract
B cells are the antibody-producing arm of the adaptive immune system and play a critical role in controlling pathogens. Several groups have now demonstrated the feasibility of using engineered B cells as a therapy, including infectious disease control and gene therapy of serum deficiencies. These studies have largely utilized ex vivo modification of the cells. Direct in vivo engineering would be of utility to the field, particularly in infectious disease control where the infrastructure needs of ex vivo cell modification would make a broad vaccination campaign highly challenging. In this study we demonstrate that engineered adenoviral vectors are capable of efficiently transducing murine and human primary B cells both ex vivo and in vivo. We found that unmodified human adenovirus C5 was capable of infecting B cells in vivo, likely due to interactions between the virus penton base protein and integrins. We further describe vector modification with B cell-specific gene promoters and successfully restrict transgene expression to B cells, resulting in a strong reduction in gene expression from the liver, the main site of human adenovirus C5 infection in vivo.
Collapse
Affiliation(s)
- Paul J Rice-Boucher
- Department of Radiation Oncology, Biologic Therapeutics Center, Washington University School of Medicine, St. Louis, MO, USA; Department of Biomedical Engineering, McKelvey School of Engineering, Washington University in Saint Louis, St. Louis, MO, USA
| | - Samir Andrade Mendonça
- Department of Radiation Oncology, Biologic Therapeutics Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Aluet Borrego Alvarez
- Department of Radiation Oncology, Biologic Therapeutics Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Alexandria J Sturtz
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Reka Lorincz
- Department of Radiation Oncology, Biologic Therapeutics Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Igor P Dmitriev
- Department of Radiation Oncology, Biologic Therapeutics Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Elena A Kashentseva
- Department of Radiation Oncology, Biologic Therapeutics Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Zhi Hong Lu
- Department of Radiation Oncology, Biologic Therapeutics Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Rosa Romano
- Walking Fish Therapeutics, Inc., South San Francisco, CA, USA
| | - Mark Selby
- Walking Fish Therapeutics, Inc., South San Francisco, CA, USA
| | - Kunal Pingale
- Department of Radiation Oncology, Biologic Therapeutics Center, Washington University School of Medicine, St. Louis, MO, USA
| | - David T Curiel
- Department of Radiation Oncology, Biologic Therapeutics Center, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
11
|
Dobner T, Bertzbach LD. Updates and New Perspectives on Adenoviral Gene Therapy and Vaccine Vectors. Viruses 2023; 15:514. [PMID: 36851728 PMCID: PMC9958560 DOI: 10.3390/v15020514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 02/08/2023] [Accepted: 02/10/2023] [Indexed: 02/17/2023] Open
Abstract
Adenoviruses are commonly used as efficient high-capacity vectors and excellent gene delivery vehicles [...].
Collapse
Affiliation(s)
- Thomas Dobner
- Department of Viral Transformation, Leibniz Institute of Virology (LIV), 20251 Hamburg, Germany
| | - Luca D. Bertzbach
- Department of Viral Transformation, Leibniz Institute of Virology (LIV), 20251 Hamburg, Germany
| |
Collapse
|